source: src/ResolvExpr/CandidateFinder.cpp@ d5efcb7

Last change on this file since d5efcb7 was 5eb3f65, checked in by Peter A. Buhr <pabuhr@…>, 15 months ago

change enumeration function names labelE, valueE, posE to label, value, posn

  • Property mode set to 100644
File size: 81.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// CandidateFinder.cpp --
8//
9// Author : Aaron B. Moss
10// Created On : Wed Jun 5 14:30:00 2019
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Sat Jun 22 08:07:26 2024
13// Update Count : 4
14//
15
16#include "CandidateFinder.hpp"
17
18#include <deque>
19#include <iterator> // for back_inserter
20#include <sstream>
21#include <string>
22#include <unordered_map>
23#include <vector>
24
25#include "AdjustExprType.hpp"
26#include "Candidate.hpp"
27#include "CastCost.hpp" // for castCost
28#include "CompilationState.hpp"
29#include "ConversionCost.hpp" // for conversionCast
30#include "Cost.hpp"
31#include "ExplodedArg.hpp"
32#include "PolyCost.hpp"
33#include "RenameVars.hpp" // for renameTyVars
34#include "Resolver.hpp"
35#include "ResolveTypeof.hpp"
36#include "SatisfyAssertions.hpp"
37#include "SpecCost.hpp"
38#include "Typeops.hpp" // for combos
39#include "Unify.hpp"
40#include "WidenMode.hpp"
41#include "AST/Expr.hpp"
42#include "AST/Node.hpp"
43#include "AST/Pass.hpp"
44#include "AST/Print.hpp"
45#include "AST/SymbolTable.hpp"
46#include "AST/Type.hpp"
47#include "Common/Utility.hpp" // for move, copy
48#include "SymTab/Mangler.hpp"
49#include "Tuples/Tuples.hpp" // for handleTupleAssignment
50#include "InitTweak/InitTweak.hpp" // for getPointerBase
51
52#include "Common/Stats/Counter.hpp"
53
54#include "AST/Inspect.hpp" // for getFunctionName
55
56#define PRINT( text ) if ( resolvep ) { text }
57
58namespace ResolvExpr {
59
60/// Unique identifier for matching expression resolutions to their requesting expression
61ast::UniqueId globalResnSlot = 0;
62
63namespace {
64 /// First index is which argument, second is which alternative, third is which exploded element
65 using ExplodedArgs = std::deque< std::vector< ExplodedArg > >;
66
67 /// Returns a list of alternatives with the minimum cost in the given list
68 CandidateList findMinCost( const CandidateList & candidates ) {
69 CandidateList out;
70 Cost minCost = Cost::infinity;
71 for ( const CandidateRef & r : candidates ) {
72 if ( r->cost < minCost ) {
73 minCost = r->cost;
74 out.clear();
75 out.emplace_back( r );
76 } else if ( r->cost == minCost ) {
77 out.emplace_back( r );
78 }
79 }
80 return out;
81 }
82
83 /// Computes conversion cost for a given expression to a given type
84 const ast::Expr * computeExpressionConversionCost(
85 const ast::Expr * arg, const ast::Type * paramType, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env, Cost & outCost
86 ) {
87 Cost convCost = computeConversionCost(
88 arg->result, paramType, arg->get_lvalue(), symtab, env );
89 outCost += convCost;
90
91 // If there is a non-zero conversion cost, ignoring poly cost, then the expression requires
92 // conversion. Ignore poly cost for now, since this requires resolution of the cast to
93 // infer parameters and this does not currently work for the reason stated below
94 Cost tmpCost = convCost;
95 tmpCost.incPoly( -tmpCost.get_polyCost() );
96 if ( tmpCost != Cost::zero ) {
97 ast::ptr< ast::Type > newType = paramType;
98 env.apply( newType );
99 return new ast::CastExpr{ arg, newType };
100
101 // xxx - *should* be able to resolve this cast, but at the moment pointers are not
102 // castable to zero_t, but are implicitly convertible. This is clearly inconsistent,
103 // once this is fixed it should be possible to resolve the cast.
104 // xxx - this isn't working, it appears because type1 (parameter) is seen as widenable,
105 // but it shouldn't be because this makes the conversion from DT* to DT* since
106 // commontype(zero_t, DT*) is DT*, rather than nothing
107
108 // CandidateFinder finder{ symtab, env };
109 // finder.find( arg, ResolveMode::withAdjustment() );
110 // assertf( finder.candidates.size() > 0,
111 // "Somehow castable expression failed to find alternatives." );
112 // assertf( finder.candidates.size() == 1,
113 // "Somehow got multiple alternatives for known cast expression." );
114 // return finder.candidates.front()->expr;
115 }
116
117 return arg;
118 }
119
120 /// Computes conversion cost for a given candidate
121 Cost computeApplicationConversionCost(
122 CandidateRef cand, const ast::SymbolTable & symtab
123 ) {
124 auto appExpr = cand->expr.strict_as< ast::ApplicationExpr >();
125 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
126 auto function = pointer->base.strict_as< ast::FunctionType >();
127
128 Cost convCost = Cost::zero;
129 const auto & params = function->params;
130 auto param = params.begin();
131 auto & args = appExpr->args;
132
133 for ( unsigned i = 0; i < args.size(); ++i ) {
134 const ast::Type * argType = args[i]->result;
135 PRINT(
136 std::cerr << "arg expression:" << std::endl;
137 ast::print( std::cerr, args[i], 2 );
138 std::cerr << "--- results are" << std::endl;
139 ast::print( std::cerr, argType, 2 );
140 )
141
142 if ( param == params.end() ) {
143 if ( function->isVarArgs ) {
144 convCost.incUnsafe();
145 PRINT( std::cerr << "end of params with varargs function: inc unsafe: "
146 << convCost << std::endl; ; )
147 // convert reference-typed expressions into value-typed expressions
148 cand->expr = ast::mutate_field_index(
149 appExpr, &ast::ApplicationExpr::args, i,
150 referenceToRvalueConversion( args[i], convCost ) );
151 continue;
152 } else return Cost::infinity;
153 }
154
155 if ( auto def = args[i].as< ast::DefaultArgExpr >() ) {
156 // Default arguments should be free - don't include conversion cost.
157 // Unwrap them here because they are not relevant to the rest of the system
158 cand->expr = ast::mutate_field_index(
159 appExpr, &ast::ApplicationExpr::args, i, def->expr );
160 ++param;
161 continue;
162 }
163
164 // mark conversion cost and also specialization cost of param type
165 // const ast::Type * paramType = (*param)->get_type();
166 cand->expr = ast::mutate_field_index(
167 appExpr, &ast::ApplicationExpr::args, i,
168 computeExpressionConversionCost(
169 args[i], *param, symtab, cand->env, convCost ) );
170 convCost.decSpec( specCost( *param ) );
171 ++param; // can't be in for-loop update because of the continue
172 }
173
174 if ( param != params.end() ) return Cost::infinity;
175
176 // specialization cost of return types can't be accounted for directly, it disables
177 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:
178 //
179 // forall(otype OS) {
180 // void ?|?(OS&, int); // with newline
181 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization
182 // }
183
184 // mark type variable and specialization cost of forall clause
185 convCost.incVar( function->forall.size() );
186 convCost.decSpec( function->assertions.size() );
187
188 return convCost;
189 }
190
191 void makeUnifiableVars(
192 const ast::FunctionType * type, ast::OpenVarSet & unifiableVars,
193 ast::AssertionSet & need
194 ) {
195 for ( auto & tyvar : type->forall ) {
196 unifiableVars[ *tyvar ] = ast::TypeData{ tyvar->base };
197 }
198 for ( auto & assn : type->assertions ) {
199 need[ assn ].isUsed = true;
200 }
201 }
202
203 /// Gets a default value from an initializer, nullptr if not present
204 const ast::ConstantExpr * getDefaultValue( const ast::Init * init ) {
205 if ( auto si = dynamic_cast< const ast::SingleInit * >( init ) ) {
206 if ( auto ce = si->value.as< ast::CastExpr >() ) {
207 return ce->arg.as< ast::ConstantExpr >();
208 } else {
209 return si->value.as< ast::ConstantExpr >();
210 }
211 }
212 return nullptr;
213 }
214
215 /// State to iteratively build a match of parameter expressions to arguments
216 struct ArgPack {
217 std::size_t parent; ///< Index of parent pack
218 ast::ptr< ast::Expr > expr; ///< The argument stored here
219 Cost cost; ///< The cost of this argument
220 ast::TypeEnvironment env; ///< Environment for this pack
221 ast::AssertionSet need; ///< Assertions outstanding for this pack
222 ast::AssertionSet have; ///< Assertions found for this pack
223 ast::OpenVarSet open; ///< Open variables for this pack
224 unsigned nextArg; ///< Index of next argument in arguments list
225 unsigned tupleStart; ///< Number of tuples that start at this index
226 unsigned nextExpl; ///< Index of next exploded element
227 unsigned explAlt; ///< Index of alternative for nextExpl > 0
228
229 ArgPack()
230 : parent( 0 ), expr(), cost( Cost::zero ), env(), need(), have(), open(), nextArg( 0 ),
231 tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
232
233 ArgPack(
234 const ast::TypeEnvironment & env, const ast::AssertionSet & need,
235 const ast::AssertionSet & have, const ast::OpenVarSet & open )
236 : parent( 0 ), expr(), cost( Cost::zero ), env( env ), need( need ), have( have ),
237 open( open ), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
238
239 ArgPack(
240 std::size_t parent, const ast::Expr * expr, ast::TypeEnvironment && env,
241 ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open,
242 unsigned nextArg, unsigned tupleStart = 0, Cost cost = Cost::zero,
243 unsigned nextExpl = 0, unsigned explAlt = 0 )
244 : parent(parent), expr( expr ), cost( cost ), env( std::move( env ) ), need( std::move( need ) ),
245 have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( tupleStart ),
246 nextExpl( nextExpl ), explAlt( explAlt ) {}
247
248 ArgPack(
249 const ArgPack & o, ast::TypeEnvironment && env, ast::AssertionSet && need,
250 ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, Cost added )
251 : parent( o.parent ), expr( o.expr ), cost( o.cost + added ), env( std::move( env ) ),
252 need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ),
253 tupleStart( o.tupleStart ), nextExpl( 0 ), explAlt( 0 ) {}
254
255 /// true if this pack is in the middle of an exploded argument
256 bool hasExpl() const { return nextExpl > 0; }
257
258 /// Gets the list of exploded candidates for this pack
259 const ExplodedArg & getExpl( const ExplodedArgs & args ) const {
260 return args[ nextArg-1 ][ explAlt ];
261 }
262
263 /// Ends a tuple expression, consolidating the appropriate args
264 void endTuple( const std::vector< ArgPack > & packs ) {
265 // add all expressions in tuple to list, summing cost
266 std::deque< const ast::Expr * > exprs;
267 const ArgPack * pack = this;
268 if ( expr ) { exprs.emplace_front( expr ); }
269 while ( pack->tupleStart == 0 ) {
270 pack = &packs[pack->parent];
271 exprs.emplace_front( pack->expr );
272 cost += pack->cost;
273 }
274 // reset pack to appropriate tuple
275 std::vector< ast::ptr< ast::Expr > > exprv( exprs.begin(), exprs.end() );
276 expr = new ast::TupleExpr{ expr->location, std::move( exprv ) };
277 tupleStart = pack->tupleStart - 1;
278 parent = pack->parent;
279 }
280 };
281
282 /// Instantiates an argument to match a parameter, returns false if no matching results left
283 bool instantiateArgument(
284 const CodeLocation & location,
285 const ast::Type * paramType, const ast::Init * init, const ExplodedArgs & args,
286 std::vector< ArgPack > & results, std::size_t & genStart, const ResolveContext & context,
287 unsigned nTuples = 0
288 ) {
289 if ( auto tupleType = dynamic_cast< const ast::TupleType * >( paramType ) ) {
290 // paramType is a TupleType -- group args into a TupleExpr
291 ++nTuples;
292 for ( const ast::Type * type : *tupleType ) {
293 // xxx - dropping initializer changes behaviour from previous, but seems correct
294 // ^^^ need to handle the case where a tuple has a default argument
295 if ( ! instantiateArgument( location,
296 type, nullptr, args, results, genStart, context, nTuples ) ) return false;
297 nTuples = 0;
298 }
299 // re-constitute tuples for final generation
300 for ( auto i = genStart; i < results.size(); ++i ) {
301 results[i].endTuple( results );
302 }
303 return true;
304 } else if ( const ast::TypeInstType * ttype = Tuples::isTtype( paramType ) ) {
305 // paramType is a ttype, consumes all remaining arguments
306
307 // completed tuples; will be spliced to end of results to finish
308 std::vector< ArgPack > finalResults{};
309
310 // iterate until all results completed
311 std::size_t genEnd;
312 ++nTuples;
313 do {
314 genEnd = results.size();
315
316 // add another argument to results
317 for ( std::size_t i = genStart; i < genEnd; ++i ) {
318 unsigned nextArg = results[i].nextArg;
319
320 // use next element of exploded tuple if present
321 if ( results[i].hasExpl() ) {
322 const ExplodedArg & expl = results[i].getExpl( args );
323
324 unsigned nextExpl = results[i].nextExpl + 1;
325 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
326
327 results.emplace_back(
328 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
329 copy( results[i].need ), copy( results[i].have ),
330 copy( results[i].open ), nextArg, nTuples, Cost::zero, nextExpl,
331 results[i].explAlt );
332
333 continue;
334 }
335
336 // finish result when out of arguments
337 if ( nextArg >= args.size() ) {
338 ArgPack newResult{
339 results[i].env, results[i].need, results[i].have, results[i].open };
340 newResult.nextArg = nextArg;
341 const ast::Type * argType = nullptr;
342
343 if ( nTuples > 0 || ! results[i].expr ) {
344 // first iteration or no expression to clone,
345 // push empty tuple expression
346 newResult.parent = i;
347 newResult.expr = new ast::TupleExpr( location, {} );
348 argType = newResult.expr->result;
349 } else {
350 // clone result to collect tuple
351 newResult.parent = results[i].parent;
352 newResult.cost = results[i].cost;
353 newResult.tupleStart = results[i].tupleStart;
354 newResult.expr = results[i].expr;
355 argType = newResult.expr->result;
356
357 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {
358 // the case where a ttype value is passed directly is special,
359 // e.g. for argument forwarding purposes
360 // xxx - what if passing multiple arguments, last of which is
361 // ttype?
362 // xxx - what would happen if unify was changed so that unifying
363 // tuple
364 // types flattened both before unifying lists? then pass in
365 // TupleType (ttype) below.
366 --newResult.tupleStart;
367 } else {
368 // collapse leftover arguments into tuple
369 newResult.endTuple( results );
370 argType = newResult.expr->result;
371 }
372 }
373
374 // check unification for ttype before adding to final
375 if (
376 unify(
377 ttype, argType, newResult.env, newResult.need, newResult.have,
378 newResult.open )
379 ) {
380 finalResults.emplace_back( std::move( newResult ) );
381 }
382
383 continue;
384 }
385
386 // add each possible next argument
387 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
388 const ExplodedArg & expl = args[nextArg][j];
389
390 // fresh copies of parent parameters for this iteration
391 ast::TypeEnvironment env = results[i].env;
392 ast::OpenVarSet open = results[i].open;
393
394 env.addActual( expl.env, open );
395
396 // skip empty tuple arguments by (nearly) cloning parent into next gen
397 if ( expl.exprs.empty() ) {
398 results.emplace_back(
399 results[i], std::move( env ), copy( results[i].need ),
400 copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost );
401
402 continue;
403 }
404
405 // add new result
406 results.emplace_back(
407 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
408 copy( results[i].have ), std::move( open ), nextArg + 1, nTuples,
409 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
410 }
411 }
412
413 // reset for next round
414 genStart = genEnd;
415 nTuples = 0;
416 } while ( genEnd != results.size() );
417
418 // splice final results onto results
419 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {
420 results.emplace_back( std::move( finalResults[i] ) );
421 }
422 return ! finalResults.empty();
423 }
424
425 // iterate each current subresult
426 std::size_t genEnd = results.size();
427 for ( std::size_t i = genStart; i < genEnd; ++i ) {
428 unsigned nextArg = results[i].nextArg;
429
430 // use remainder of exploded tuple if present
431 if ( results[i].hasExpl() ) {
432 const ExplodedArg & expl = results[i].getExpl( args );
433 const ast::Expr * expr = expl.exprs[ results[i].nextExpl ];
434
435 ast::TypeEnvironment env = results[i].env;
436 ast::AssertionSet need = results[i].need, have = results[i].have;
437 ast::OpenVarSet open = results[i].open;
438
439 const ast::Type * argType = expr->result;
440
441 PRINT(
442 std::cerr << "param type is ";
443 ast::print( std::cerr, paramType );
444 std::cerr << std::endl << "arg type is ";
445 ast::print( std::cerr, argType );
446 std::cerr << std::endl;
447 )
448
449 if ( unify( paramType, argType, env, need, have, open ) ) {
450 unsigned nextExpl = results[i].nextExpl + 1;
451 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
452
453 results.emplace_back(
454 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg,
455 nTuples, Cost::zero, nextExpl, results[i].explAlt );
456 }
457
458 continue;
459 }
460
461 // use default initializers if out of arguments
462 if ( nextArg >= args.size() ) {
463 if ( const ast::ConstantExpr * cnst = getDefaultValue( init ) ) {
464 ast::TypeEnvironment env = results[i].env;
465 ast::AssertionSet need = results[i].need, have = results[i].have;
466 ast::OpenVarSet open = results[i].open;
467
468 if ( unify( paramType, cnst->result, env, need, have, open ) ) {
469 results.emplace_back(
470 i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ),
471 std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples );
472 }
473 }
474
475 continue;
476 }
477
478 // Check each possible next argument
479 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
480 const ExplodedArg & expl = args[nextArg][j];
481
482 // fresh copies of parent parameters for this iteration
483 ast::TypeEnvironment env = results[i].env;
484 ast::AssertionSet need = results[i].need, have = results[i].have;
485 ast::OpenVarSet open = results[i].open;
486
487 env.addActual( expl.env, open );
488
489 // skip empty tuple arguments by (nearly) cloning parent into next gen
490 if ( expl.exprs.empty() ) {
491 results.emplace_back(
492 results[i], std::move( env ), std::move( need ), std::move( have ), std::move( open ),
493 nextArg + 1, expl.cost );
494
495 continue;
496 }
497
498 // consider only first exploded arg
499 const ast::Expr * expr = expl.exprs.front();
500 const ast::Type * argType = expr->result;
501
502 PRINT(
503 std::cerr << "param type is ";
504 ast::print( std::cerr, paramType );
505 std::cerr << std::endl << "arg type is ";
506 ast::print( std::cerr, argType );
507 std::cerr << std::endl;
508 )
509
510 // attempt to unify types
511 ast::ptr<ast::Type> common;
512 if ( unify( paramType, argType, env, need, have, open, common ) ) {
513 // add new result
514 assert( common );
515
516 auto paramAsEnum = dynamic_cast<const ast::EnumInstType *>(paramType);
517 auto argAsEnum =dynamic_cast<const ast::EnumInstType *>(argType);
518 if (paramAsEnum && argAsEnum) {
519 if (paramAsEnum->base->name != argAsEnum->base->name) {
520 Cost c = castCost(argType, paramType, expr, context.symtab, env);
521 if (c < Cost::infinity) {
522 CandidateFinder subFinder( context, env );
523 expr = subFinder.makeEnumOffsetCast(argAsEnum, paramAsEnum, expr, c);
524 results.emplace_back(
525 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),
526 nextArg + 1, nTuples, expl.cost + c, expl.exprs.size() == 1 ? 0 : 1, j );
527 continue;
528 } else {
529 std::cerr << "Cannot instantiate " << paramAsEnum->base->name << " with " << argAsEnum->base->name << std::endl;
530 }
531 }
532 }
533 results.emplace_back(
534 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),
535 nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
536 }
537 }
538 }
539
540 // reset for next parameter
541 genStart = genEnd;
542
543 return genEnd != results.size(); // were any new results added?
544 }
545
546 /// Generate a cast expression from `arg` to `toType`
547 const ast::Expr * restructureCast(
548 ast::ptr< ast::Expr > & arg, const ast::Type * toType, ast::GeneratedFlag isGenerated = ast::GeneratedCast
549 ) {
550 if (
551 arg->result->size() > 1
552 && ! toType->isVoid()
553 && ! dynamic_cast< const ast::ReferenceType * >( toType )
554 ) {
555 // Argument is a tuple and the target type is neither void nor a reference. Cast each
556 // member of the tuple to its corresponding target type, producing the tuple of those
557 // cast expressions. If there are more components of the tuple than components in the
558 // target type, then excess components do not come out in the result expression (but
559 // UniqueExpr ensures that the side effects will still be produced)
560 if ( Tuples::maybeImpureIgnoreUnique( arg ) ) {
561 // expressions which may contain side effects require a single unique instance of
562 // the expression
563 arg = new ast::UniqueExpr{ arg->location, arg };
564 }
565 std::vector< ast::ptr< ast::Expr > > components;
566 for ( unsigned i = 0; i < toType->size(); ++i ) {
567 // cast each component
568 ast::ptr< ast::Expr > idx = new ast::TupleIndexExpr{ arg->location, arg, i };
569 components.emplace_back(
570 restructureCast( idx, toType->getComponent( i ), isGenerated ) );
571 }
572 return new ast::TupleExpr{ arg->location, std::move( components ) };
573 } else {
574 // handle normally
575 return new ast::CastExpr{ arg->location, arg, toType, isGenerated };
576 }
577 }
578
579 /// Gets the name from an untyped member expression (must be NameExpr)
580 const std::string & getMemberName( const ast::UntypedMemberExpr * memberExpr ) {
581 if ( memberExpr->member.as< ast::ConstantExpr >() ) {
582 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );
583 }
584
585 return memberExpr->member.strict_as< ast::NameExpr >()->name;
586 }
587
588 /// Actually visits expressions to find their candidate interpretations
589 class Finder final : public ast::WithShortCircuiting {
590 const ResolveContext & context;
591 const ast::SymbolTable & symtab;
592 public:
593 // static size_t traceId;
594 CandidateFinder & selfFinder;
595 CandidateList & candidates;
596 const ast::TypeEnvironment & tenv;
597 ast::ptr< ast::Type > & targetType;
598
599 enum Errors {
600 NotFound,
601 NoMatch,
602 ArgsToFew,
603 ArgsToMany,
604 RetsToFew,
605 RetsToMany,
606 NoReason
607 };
608
609 struct {
610 Errors code = NotFound;
611 } reason;
612
613 Finder( CandidateFinder & f )
614 : context( f.context ), symtab( context.symtab ), selfFinder( f ),
615 candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {}
616
617 void previsit( const ast::Node * ) { visit_children = false; }
618
619 /// Convenience to add candidate to list
620 template<typename... Args>
621 void addCandidate( Args &&... args ) {
622 candidates.emplace_back( new Candidate{ std::forward<Args>( args )... } );
623 reason.code = NoReason;
624 }
625
626 void postvisit( const ast::ApplicationExpr * applicationExpr ) {
627 addCandidate( applicationExpr, tenv );
628 }
629
630 /// Set up candidate assertions for inference
631 void inferParameters( CandidateRef & newCand, CandidateList & out );
632
633 /// Completes a function candidate with arguments located
634 void validateFunctionCandidate(
635 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
636 CandidateList & out );
637
638 /// Builds a list of candidates for a function, storing them in out
639 void makeFunctionCandidates(
640 const CodeLocation & location,
641 const CandidateRef & func, const ast::FunctionType * funcType,
642 const ExplodedArgs & args, CandidateList & out );
643
644 /// Adds implicit struct-conversions to the alternative list
645 void addAnonConversions( const CandidateRef & cand );
646
647 /// Adds aggregate member interpretations
648 void addAggMembers(
649 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
650 const Candidate & cand, const Cost & addedCost, const std::string & name
651 );
652
653 void addEnumValueAsCandidate(const ast::EnumInstType * instType, const ast::Expr * expr,
654 const Cost & addedCost
655 );
656
657 /// Adds tuple member interpretations
658 void addTupleMembers(
659 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
660 const Cost & addedCost, const ast::Expr * member
661 );
662
663 /// true if expression is an lvalue
664 static bool isLvalue( const ast::Expr * x ) {
665 return x->result && ( x->get_lvalue() || x->result.as< ast::ReferenceType >() );
666 }
667
668 void postvisit( const ast::UntypedExpr * untypedExpr );
669 void postvisit( const ast::VariableExpr * variableExpr );
670 void postvisit( const ast::ConstantExpr * constantExpr );
671 void postvisit( const ast::SizeofExpr * sizeofExpr );
672 void postvisit( const ast::AlignofExpr * alignofExpr );
673 void postvisit( const ast::AddressExpr * addressExpr );
674 void postvisit( const ast::LabelAddressExpr * labelExpr );
675 void postvisit( const ast::CastExpr * castExpr );
676 void postvisit( const ast::VirtualCastExpr * castExpr );
677 void postvisit( const ast::KeywordCastExpr * castExpr );
678 void postvisit( const ast::UntypedMemberExpr * memberExpr );
679 void postvisit( const ast::MemberExpr * memberExpr );
680 void postvisit( const ast::NameExpr * nameExpr );
681 void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr );
682 void postvisit( const ast::OffsetofExpr * offsetofExpr );
683 void postvisit( const ast::OffsetPackExpr * offsetPackExpr );
684 void postvisit( const ast::LogicalExpr * logicalExpr );
685 void postvisit( const ast::ConditionalExpr * conditionalExpr );
686 void postvisit( const ast::CommaExpr * commaExpr );
687 void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr );
688 void postvisit( const ast::ConstructorExpr * ctorExpr );
689 void postvisit( const ast::RangeExpr * rangeExpr );
690 void postvisit( const ast::UntypedTupleExpr * tupleExpr );
691 void postvisit( const ast::TupleExpr * tupleExpr );
692 void postvisit( const ast::TupleIndexExpr * tupleExpr );
693 void postvisit( const ast::TupleAssignExpr * tupleExpr );
694 void postvisit( const ast::UniqueExpr * unqExpr );
695 void postvisit( const ast::StmtExpr * stmtExpr );
696 void postvisit( const ast::UntypedInitExpr * initExpr );
697 void postvisit( const ast::QualifiedNameExpr * qualifiedExpr );
698 void postvisit( const ast::CountExpr * countExpr );
699
700 const ast::Expr * makeEnumOffsetCast( const ast::EnumInstType * src,
701 const ast::EnumInstType * dst
702 , const ast::Expr * expr, Cost minCost );
703
704 void postvisit( const ast::InitExpr * ) {
705 assertf( false, "CandidateFinder should never see a resolved InitExpr." );
706 }
707
708 void postvisit( const ast::DeletedExpr * ) {
709 assertf( false, "CandidateFinder should never see a DeletedExpr." );
710 }
711
712 void postvisit( const ast::GenericExpr * ) {
713 assertf( false, "_Generic is not yet supported." );
714 }
715 };
716
717 /// Set up candidate assertions for inference
718 void Finder::inferParameters( CandidateRef & newCand, CandidateList & out ) {
719 // Set need bindings for any unbound assertions
720 ast::UniqueId crntResnSlot = 0; // matching ID for this expression's assertions
721 for ( auto & assn : newCand->need ) {
722 // skip already-matched assertions
723 if ( assn.second.resnSlot != 0 ) continue;
724 // assign slot for expression if needed
725 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }
726 // fix slot to assertion
727 assn.second.resnSlot = crntResnSlot;
728 }
729 // pair slot to expression
730 if ( crntResnSlot != 0 ) {
731 newCand->expr.get_and_mutate()->inferred.resnSlots().emplace_back( crntResnSlot );
732 }
733
734 // add to output list; assertion satisfaction will occur later
735 out.emplace_back( newCand );
736 }
737
738 /// Completes a function candidate with arguments located
739 void Finder::validateFunctionCandidate(
740 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
741 CandidateList & out
742 ) {
743 ast::ApplicationExpr * appExpr =
744 new ast::ApplicationExpr{ func->expr->location, func->expr };
745 // sum cost and accumulate arguments
746 std::deque< const ast::Expr * > args;
747 Cost cost = func->cost;
748 const ArgPack * pack = &result;
749 while ( pack->expr ) {
750 args.emplace_front( pack->expr );
751 cost += pack->cost;
752 pack = &results[pack->parent];
753 }
754 std::vector< ast::ptr< ast::Expr > > vargs( args.begin(), args.end() );
755 appExpr->args = std::move( vargs );
756 // build and validate new candidate
757 auto newCand =
758 std::make_shared<Candidate>( appExpr, result.env, result.open, result.need, cost );
759 PRINT(
760 std::cerr << "instantiate function success: " << appExpr << std::endl;
761 std::cerr << "need assertions:" << std::endl;
762 ast::print( std::cerr, result.need, 2 );
763 )
764 inferParameters( newCand, out );
765 }
766
767 /// Builds a list of candidates for a function, storing them in out
768 void Finder::makeFunctionCandidates(
769 const CodeLocation & location,
770 const CandidateRef & func, const ast::FunctionType * funcType,
771 const ExplodedArgs & args, CandidateList & out
772 ) {
773 ast::OpenVarSet funcOpen;
774 ast::AssertionSet funcNeed, funcHave;
775 ast::TypeEnvironment funcEnv{ func->env };
776 makeUnifiableVars( funcType, funcOpen, funcNeed );
777 // add all type variables as open variables now so that those not used in the
778 // parameter list are still considered open
779 funcEnv.add( funcType->forall );
780
781 if ( targetType && ! targetType->isVoid() && ! funcType->returns.empty() ) {
782 // attempt to narrow based on expected target type
783 const ast::Type * returnType = funcType->returns.front();
784 if ( selfFinder.strictMode ) {
785 if ( !unifyExact(
786 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, noWiden() ) // xxx - is no widening correct?
787 ) {
788 // unification failed, do not pursue this candidate
789 return;
790 }
791 } else {
792 if ( !unify(
793 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen )
794 ) {
795 // unification failed, do not pursue this candidate
796 return;
797 }
798 }
799 }
800
801 // iteratively build matches, one parameter at a time
802 std::vector< ArgPack > results;
803 results.emplace_back( funcEnv, funcNeed, funcHave, funcOpen );
804 std::size_t genStart = 0;
805
806 // xxx - how to handle default arg after change to ftype representation?
807 if (const ast::VariableExpr * varExpr = func->expr.as<ast::VariableExpr>()) {
808 if (const ast::FunctionDecl * funcDecl = varExpr->var.as<ast::FunctionDecl>()) {
809 // function may have default args only if directly calling by name
810 // must use types on candidate however, due to RenameVars substitution
811 auto nParams = funcType->params.size();
812
813 for (size_t i=0; i<nParams; ++i) {
814 auto obj = funcDecl->params[i].strict_as<ast::ObjectDecl>();
815 if ( !instantiateArgument( location,
816 funcType->params[i], obj->init, args, results, genStart, context)) return;
817 }
818 goto endMatch;
819 }
820 }
821 for ( const auto & param : funcType->params ) {
822 // Try adding the arguments corresponding to the current parameter to the existing
823 // matches
824 // no default args for indirect calls
825 if ( !instantiateArgument( location,
826 param, nullptr, args, results, genStart, context ) ) return;
827 }
828
829 endMatch:
830 if ( funcType->isVarArgs ) {
831 // append any unused arguments to vararg pack
832 std::size_t genEnd;
833 do {
834 genEnd = results.size();
835
836 // iterate results
837 for ( std::size_t i = genStart; i < genEnd; ++i ) {
838 unsigned nextArg = results[i].nextArg;
839
840 // use remainder of exploded tuple if present
841 if ( results[i].hasExpl() ) {
842 const ExplodedArg & expl = results[i].getExpl( args );
843
844 unsigned nextExpl = results[i].nextExpl + 1;
845 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
846
847 results.emplace_back(
848 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
849 copy( results[i].need ), copy( results[i].have ),
850 copy( results[i].open ), nextArg, 0, Cost::zero, nextExpl,
851 results[i].explAlt );
852
853 continue;
854 }
855
856 // finish result when out of arguments
857 if ( nextArg >= args.size() ) {
858 validateFunctionCandidate( func, results[i], results, out );
859
860 continue;
861 }
862
863 // add each possible next argument
864 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
865 const ExplodedArg & expl = args[nextArg][j];
866
867 // fresh copies of parent parameters for this iteration
868 ast::TypeEnvironment env = results[i].env;
869 ast::OpenVarSet open = results[i].open;
870
871 env.addActual( expl.env, open );
872
873 // skip empty tuple arguments by (nearly) cloning parent into next gen
874 if ( expl.exprs.empty() ) {
875 results.emplace_back(
876 results[i], std::move( env ), copy( results[i].need ),
877 copy( results[i].have ), std::move( open ), nextArg + 1,
878 expl.cost );
879
880 continue;
881 }
882
883 // add new result
884 results.emplace_back(
885 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
886 copy( results[i].have ), std::move( open ), nextArg + 1, 0, expl.cost,
887 expl.exprs.size() == 1 ? 0 : 1, j );
888 }
889 }
890
891 genStart = genEnd;
892 } while( genEnd != results.size() );
893 } else {
894 // filter out the results that don't use all the arguments
895 for ( std::size_t i = genStart; i < results.size(); ++i ) {
896 ArgPack & result = results[i];
897 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {
898 validateFunctionCandidate( func, result, results, out );
899 }
900 }
901 }
902 }
903
904 void Finder::addEnumValueAsCandidate( const ast::EnumInstType * enumInst, const ast::Expr * expr,
905 const Cost & addedCost
906 ) {
907 if ( enumInst->base->base ) {
908 CandidateFinder finder( context, tenv );
909 auto location = expr->location;
910 auto callExpr = new ast::UntypedExpr(
911 location, new ast::NameExpr( location, "value" ), {expr}
912 );
913 finder.find( callExpr );
914 CandidateList winners = findMinCost( finder.candidates );
915 if (winners.size() != 1) {
916 SemanticError( callExpr, "Ambiguous expression in value..." );
917 }
918 CandidateRef & choice = winners.front();
919 choice->cost += addedCost;
920 addAnonConversions(choice);
921 candidates.emplace_back( std::move(choice) );
922 }
923 }
924
925 /// Adds implicit struct-conversions to the alternative list
926 void Finder::addAnonConversions( const CandidateRef & cand ) {
927 // adds anonymous member interpretations whenever an aggregate value type is seen.
928 // it's okay for the aggregate expression to have reference type -- cast it to the
929 // base type to treat the aggregate as the referenced value
930 ast::ptr< ast::Expr > aggrExpr( cand->expr );
931 ast::ptr< ast::Type > & aggrType = aggrExpr.get_and_mutate()->result;
932 cand->env.apply( aggrType );
933
934 if ( aggrType.as< ast::ReferenceType >() ) {
935 aggrExpr = new ast::CastExpr{ aggrExpr, aggrType->stripReferences() };
936 }
937
938 if ( auto structInst = aggrExpr->result.as< ast::StructInstType >() ) {
939 addAggMembers( structInst, aggrExpr, *cand, Cost::unsafe, "" );
940 } else if ( auto unionInst = aggrExpr->result.as< ast::UnionInstType >() ) {
941 addAggMembers( unionInst, aggrExpr, *cand, Cost::unsafe, "" );
942 } else if ( auto enumInst = aggrExpr->result.as< ast::EnumInstType >() ) {
943 addEnumValueAsCandidate(enumInst, aggrExpr, Cost::unsafe);
944 }
945 }
946
947
948 /// Adds aggregate member interpretations
949 void Finder::addAggMembers(
950 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
951 const Candidate & cand, const Cost & addedCost, const std::string & name
952 ) {
953 for ( const ast::Decl * decl : aggrInst->lookup( name ) ) {
954 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( decl );
955 CandidateRef newCand = std::make_shared<Candidate>(
956 cand, new ast::MemberExpr{ expr->location, dwt, expr }, addedCost );
957 // add anonymous member interpretations whenever an aggregate value type is seen
958 // as a member expression
959 addAnonConversions( newCand );
960 candidates.emplace_back( std::move( newCand ) );
961 }
962 }
963
964 /// Adds tuple member interpretations
965 void Finder::addTupleMembers(
966 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
967 const Cost & addedCost, const ast::Expr * member
968 ) {
969 if ( auto constantExpr = dynamic_cast< const ast::ConstantExpr * >( member ) ) {
970 // get the value of the constant expression as an int, must be between 0 and the
971 // length of the tuple to have meaning
972 long long val = constantExpr->intValue();
973 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {
974 addCandidate(
975 cand, new ast::TupleIndexExpr{ expr->location, expr, (unsigned)val },
976 addedCost );
977 }
978 }
979 }
980
981 void Finder::postvisit( const ast::UntypedExpr * untypedExpr ) {
982 std::vector< CandidateFinder > argCandidates =
983 selfFinder.findSubExprs( untypedExpr->args );
984
985 // take care of possible tuple assignments
986 // if not tuple assignment, handled as normal function call
987 Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates );
988
989 CandidateFinder funcFinder( context, tenv );
990 std::string funcName;
991 if (auto nameExpr = untypedExpr->func.as<ast::NameExpr>()) {
992 funcName = nameExpr->name;
993 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
994 if (kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS) {
995 assertf(!argCandidates.empty(), "special function call without argument");
996 for (auto & firstArgCand: argCandidates[0]) {
997 ast::ptr<ast::Type> argType = firstArgCand->expr->result;
998 firstArgCand->env.apply(argType);
999 // strip references
1000 // xxx - is this correct?
1001 while (argType.as<ast::ReferenceType>()) argType = argType.as<ast::ReferenceType>()->base;
1002
1003 // convert 1-tuple to plain type
1004 if (auto tuple = argType.as<ast::TupleType>()) {
1005 if (tuple->size() == 1) {
1006 argType = tuple->types[0];
1007 }
1008 }
1009
1010 // if argType is an unbound type parameter, all special functions need to be searched.
1011 if (isUnboundType(argType)) {
1012 funcFinder.otypeKeys.clear();
1013 break;
1014 }
1015
1016 if (argType.as<ast::PointerType>()) funcFinder.otypeKeys.insert(Mangle::Encoding::pointer);
1017 else funcFinder.otypeKeys.insert(Mangle::mangle(argType, Mangle::NoGenericParams | Mangle::Type));
1018 }
1019 }
1020 }
1021 // if candidates are already produced, do not fail
1022 // xxx - is it possible that handleTupleAssignment and main finder both produce candidates?
1023 // this means there exists ctor/assign functions with a tuple as first parameter.
1024 ResolveMode mode = {
1025 true, // adjust
1026 !untypedExpr->func.as<ast::NameExpr>(), // prune if not calling by name
1027 selfFinder.candidates.empty() // failfast if other options are not found
1028 };
1029 funcFinder.find( untypedExpr->func, mode );
1030 // short-circuit if no candidates
1031 // if ( funcFinder.candidates.empty() ) return;
1032
1033 reason.code = NoMatch;
1034
1035 // find function operators
1036 ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; // ??? why not ?{}
1037 CandidateFinder opFinder( context, tenv );
1038 // okay if there aren't any function operations
1039 opFinder.find( opExpr, ResolveMode::withoutFailFast() );
1040 PRINT(
1041 std::cerr << "known function ops:" << std::endl;
1042 print( std::cerr, opFinder.candidates, 1 );
1043 )
1044
1045 // pre-explode arguments
1046 ExplodedArgs argExpansions;
1047 for ( const CandidateFinder & args : argCandidates ) {
1048 argExpansions.emplace_back();
1049 auto & argE = argExpansions.back();
1050 for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); }
1051 }
1052
1053 // Find function matches
1054 CandidateList found;
1055 SemanticErrorException errors;
1056
1057 for ( CandidateRef & func : funcFinder ) {
1058 try {
1059 PRINT(
1060 std::cerr << "working on alternative:" << std::endl;
1061 print( std::cerr, *func, 2 );
1062 )
1063
1064 // check if the type is a pointer to function
1065 const ast::Type * funcResult = func->expr->result->stripReferences();
1066 if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) {
1067 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1068 // if (!selfFinder.allowVoid && function->returns.empty()) continue;
1069 CandidateRef newFunc{ new Candidate{ *func } };
1070 newFunc->expr =
1071 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1072 makeFunctionCandidates( untypedExpr->location,
1073 newFunc, function, argExpansions, found );
1074 }
1075 } else if (
1076 auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult )
1077 ) {
1078 if ( const ast::EqvClass * clz = func->env.lookup( *inst ) ) {
1079 if ( auto function = clz->bound.as< ast::FunctionType >() ) {
1080 CandidateRef newFunc( new Candidate( *func ) );
1081 newFunc->expr =
1082 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1083 makeFunctionCandidates( untypedExpr->location,
1084 newFunc, function, argExpansions, found );
1085 }
1086 }
1087 }
1088 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1089 }
1090
1091 // Find matches on function operators `?()`
1092 if ( ! opFinder.candidates.empty() ) {
1093 // add exploded function alternatives to front of argument list
1094 std::vector< ExplodedArg > funcE;
1095 funcE.reserve( funcFinder.candidates.size() );
1096 for ( const CandidateRef & func : funcFinder ) {
1097 funcE.emplace_back( *func, symtab );
1098 }
1099 argExpansions.emplace_front( std::move( funcE ) );
1100
1101 for ( const CandidateRef & op : opFinder ) {
1102 try {
1103 // check if type is pointer-to-function
1104 const ast::Type * opResult = op->expr->result->stripReferences();
1105 if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) {
1106 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1107 CandidateRef newOp{ new Candidate{ *op} };
1108 newOp->expr =
1109 referenceToRvalueConversion( newOp->expr, newOp->cost );
1110 makeFunctionCandidates( untypedExpr->location,
1111 newOp, function, argExpansions, found );
1112 }
1113 }
1114 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1115 }
1116 }
1117
1118 // Implement SFINAE; resolution errors are only errors if there aren't any non-error
1119 // candidates
1120 if ( found.empty() && ! errors.isEmpty() ) { throw errors; }
1121
1122 // only keep the best matching intrinsic result to match C semantics (no unexpected narrowing/widening)
1123 // TODO: keep one for each set of argument candidates?
1124 Cost intrinsicCost = Cost::infinity;
1125 CandidateList intrinsicResult;
1126
1127 // Compute conversion costs
1128 for ( CandidateRef & withFunc : found ) {
1129 Cost cvtCost = computeApplicationConversionCost( withFunc, symtab );
1130
1131 if (funcName == "?|?") {
1132 PRINT(
1133 auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >();
1134 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
1135 auto function = pointer->base.strict_as< ast::FunctionType >();
1136
1137 std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl;
1138 std::cerr << "parameters are:" << std::endl;
1139 ast::printAll( std::cerr, function->params, 2 );
1140 std::cerr << "arguments are:" << std::endl;
1141 ast::printAll( std::cerr, appExpr->args, 2 );
1142 std::cerr << "bindings are:" << std::endl;
1143 ast::print( std::cerr, withFunc->env, 2 );
1144 std::cerr << "cost is: " << withFunc->cost << std::endl;
1145 std::cerr << "cost of conversion is:" << cvtCost << std::endl;
1146 )
1147 }
1148 if ( cvtCost != Cost::infinity ) {
1149 withFunc->cvtCost = cvtCost;
1150 withFunc->cost += cvtCost;
1151 auto func = withFunc->expr.strict_as<ast::ApplicationExpr>()->func.as<ast::VariableExpr>();
1152 if (func && func->var->linkage == ast::Linkage::Intrinsic) {
1153 if (withFunc->cost < intrinsicCost) {
1154 intrinsicResult.clear();
1155 intrinsicCost = withFunc->cost;
1156 }
1157 if (withFunc->cost == intrinsicCost) {
1158 intrinsicResult.emplace_back(std::move(withFunc));
1159 }
1160 } else {
1161 candidates.emplace_back( std::move( withFunc ) );
1162 }
1163 }
1164 }
1165 spliceBegin( candidates, intrinsicResult );
1166 found = std::move( candidates );
1167
1168 // use a new list so that candidates are not examined by addAnonConversions twice
1169 // CandidateList winners = findMinCost( found );
1170 // promoteCvtCost( winners );
1171
1172 // function may return a struct/union value, in which case we need to add candidates
1173 // for implicit conversions to each of the anonymous members, which must happen after
1174 // `findMinCost`, since anon conversions are never the cheapest
1175 for ( const CandidateRef & c : found ) {
1176 addAnonConversions( c );
1177 }
1178 // would this be too slow when we don't check cost anymore?
1179 spliceBegin( candidates, found );
1180
1181 if ( candidates.empty() && targetType && ! targetType->isVoid() && !selfFinder.strictMode ) {
1182 // If resolution is unsuccessful with a target type, try again without, since it
1183 // will sometimes succeed when it wouldn't with a target type binding.
1184 // For example:
1185 // forall( otype T ) T & ?[]( T *, ptrdiff_t );
1186 // const char * x = "hello world";
1187 // unsigned char ch = x[0];
1188 // Fails with simple return type binding (xxx -- check this!) as follows:
1189 // * T is bound to unsigned char
1190 // * (x: const char *) is unified with unsigned char *, which fails
1191 // xxx -- fix this better
1192 targetType = nullptr;
1193 postvisit( untypedExpr );
1194 }
1195 }
1196
1197 void Finder::postvisit( const ast::AddressExpr * addressExpr ) {
1198 CandidateFinder finder( context, tenv );
1199 finder.find( addressExpr->arg );
1200
1201 if ( finder.candidates.empty() ) return;
1202
1203 reason.code = NoMatch;
1204
1205 for ( CandidateRef & r : finder.candidates ) {
1206 if ( !isLvalue( r->expr ) ) continue;
1207 addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } );
1208 }
1209 }
1210
1211 void Finder::postvisit( const ast::LabelAddressExpr * labelExpr ) {
1212 addCandidate( labelExpr, tenv );
1213 }
1214
1215 // src is a subset of dst
1216 const ast::Expr * Finder::makeEnumOffsetCast( const ast::EnumInstType * src,
1217 const ast::EnumInstType * dst,
1218 const ast::Expr * expr,
1219 Cost minCost ) {
1220
1221 auto srcDecl = src->base;
1222 auto dstDecl = dst->base;
1223
1224 if (srcDecl->name == dstDecl->name) return expr;
1225
1226 for (auto& dstChild: dstDecl->inlinedDecl) {
1227 Cost c = castCost(src, dstChild, false, symtab, tenv);
1228 ast::CastExpr * castToDst;
1229 if (c<minCost) {
1230 unsigned offset = dstDecl->calChildOffset(dstChild.get());
1231 if (offset > 0) {
1232 auto untyped = ast::UntypedExpr::createCall(
1233 expr->location,
1234 "?+?",
1235 { new ast::CastExpr( expr, new ast::BasicType(ast::BasicKind::SignedInt) ),
1236 ast::ConstantExpr::from_int(expr->location, offset)});
1237 CandidateFinder finder(context, tenv);
1238 finder.find( untyped );
1239 CandidateList winners = findMinCost( finder.candidates );
1240 CandidateRef & choice = winners.front();
1241 // choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1242 choice->expr = new ast::CastExpr(expr->location, choice->expr, dstChild, ast::GeneratedFlag::ExplicitCast);
1243 // castToDst = new ast::CastExpr(choice->expr, dstChild);
1244 castToDst = new ast::CastExpr(
1245 makeEnumOffsetCast( src, dstChild, choice->expr, minCost ),
1246 dst);
1247
1248 } else {
1249 castToDst = new ast::CastExpr( expr, dst );
1250 }
1251 return castToDst;
1252 }
1253 }
1254 SemanticError(expr, src->base->name + " is not a subtype of " + dst->base->name);
1255 return nullptr;
1256 }
1257
1258 void Finder::postvisit( const ast::CastExpr * castExpr ) {
1259 ast::ptr< ast::Type > toType = castExpr->result;
1260 assert( toType );
1261 toType = resolveTypeof( toType, context );
1262 toType = adjustExprType( toType, tenv, symtab );
1263
1264 CandidateFinder finder( context, tenv, toType );
1265 if (toType->isVoid()) {
1266 finder.allowVoid = true;
1267 }
1268 if ( castExpr->kind == ast::CastExpr::Return ) {
1269 finder.strictMode = true;
1270 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1271
1272 // return casts are eliminated (merely selecting an overload, no actual operation)
1273 candidates = std::move(finder.candidates);
1274 return;
1275 }
1276 else if (toType->isVoid()) {
1277 finder.find( castExpr->arg ); // no adjust
1278 }
1279 else {
1280 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1281 }
1282
1283 if ( !finder.candidates.empty() ) reason.code = NoMatch;
1284
1285 CandidateList matches;
1286 Cost minExprCost = Cost::infinity;
1287 Cost minCastCost = Cost::infinity;
1288 for ( CandidateRef & cand : finder.candidates ) {
1289 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1290 ast::OpenVarSet open( cand->open );
1291
1292 cand->env.extractOpenVars( open );
1293
1294 // It is possible that a cast can throw away some values in a multiply-valued
1295 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of the
1296 // subexpression results that are cast directly. The candidate is invalid if it
1297 // has fewer results than there are types to cast to.
1298 int discardedValues = cand->expr->result->size() - toType->size();
1299 if ( discardedValues < 0 ) continue;
1300
1301 // unification run for side-effects
1302 unify( toType, cand->expr->result, cand->env, need, have, open );
1303 Cost thisCost =
1304 (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast)
1305 ? conversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env )
1306 : castCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env );
1307
1308 // Redefine enum cast
1309 auto argAsEnum = cand->expr->result.as<ast::EnumInstType>();
1310 auto toAsEnum = toType.as<ast::EnumInstType>();
1311 if ( argAsEnum && toAsEnum && argAsEnum->name != toAsEnum->name ) {
1312 ast::ptr<ast::Expr> offsetExpr = makeEnumOffsetCast(argAsEnum, toAsEnum, cand->expr, thisCost);
1313 cand->expr = offsetExpr;
1314 }
1315
1316 PRINT(
1317 std::cerr << "working on cast with result: " << toType << std::endl;
1318 std::cerr << "and expr type: " << cand->expr->result << std::endl;
1319 std::cerr << "env: " << cand->env << std::endl;
1320 )
1321 if ( thisCost != Cost::infinity ) {
1322 PRINT(
1323 std::cerr << "has finite cost." << std::endl;
1324 )
1325 // count one safe conversion for each value that is thrown away
1326 thisCost.incSafe( discardedValues );
1327 // select first on argument cost, then conversion cost
1328 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1329 minExprCost = cand->cost;
1330 minCastCost = thisCost;
1331 matches.clear();
1332 }
1333 // ambigious case, still output candidates to print in error message
1334 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1335 CandidateRef newCand = std::make_shared<Candidate>(
1336 restructureCast( cand->expr, toType, castExpr->isGenerated ),
1337 copy( cand->env ), std::move( open ), std::move( need ), cand->cost + thisCost);
1338 // currently assertions are always resolved immediately so this should have no effect.
1339 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1340 // we may need to revisit the logic.
1341 inferParameters( newCand, matches );
1342 }
1343 // else skip, better alternatives found
1344
1345 }
1346 }
1347 candidates = std::move(matches);
1348 //CandidateList minArgCost = findMinCost( matches );
1349 //promoteCvtCost( minArgCost );
1350 //candidates = findMinCost( minArgCost );
1351 }
1352
1353 void Finder::postvisit( const ast::VirtualCastExpr * castExpr ) {
1354 assertf( castExpr->result, "Implicit virtual cast targets not yet supported." );
1355 CandidateFinder finder( context, tenv );
1356 // don't prune here, all alternatives guaranteed to have same type
1357 finder.find( castExpr->arg, ResolveMode::withoutPrune() );
1358 for ( CandidateRef & r : finder.candidates ) {
1359 addCandidate(
1360 *r,
1361 new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } );
1362 }
1363 }
1364
1365 void Finder::postvisit( const ast::KeywordCastExpr * castExpr ) {
1366 const auto & loc = castExpr->location;
1367 assertf( castExpr->result, "Cast target should have been set in Validate." );
1368 auto ref = castExpr->result.strict_as<ast::ReferenceType>();
1369 auto inst = ref->base.strict_as<ast::StructInstType>();
1370 auto target = inst->base.get();
1371
1372 CandidateFinder finder( context, tenv );
1373
1374 auto pick_alternatives = [target, this](CandidateList & found, bool expect_ref) {
1375 for (auto & cand : found) {
1376 const ast::Type * expr = cand->expr->result.get();
1377 if (expect_ref) {
1378 auto res = dynamic_cast<const ast::ReferenceType*>(expr);
1379 if (!res) { continue; }
1380 expr = res->base.get();
1381 }
1382
1383 if (auto insttype = dynamic_cast<const ast::TypeInstType*>(expr)) {
1384 auto td = cand->env.lookup(*insttype);
1385 if (!td) { continue; }
1386 expr = td->bound.get();
1387 }
1388
1389 if (auto base = dynamic_cast<const ast::StructInstType*>(expr)) {
1390 if (base->base == target) {
1391 candidates.push_back( std::move(cand) );
1392 reason.code = NoReason;
1393 }
1394 }
1395 }
1396 };
1397
1398 try {
1399 // Attempt 1 : turn (thread&)X into (thread$&)X.__thrd
1400 // Clone is purely for memory management
1401 std::unique_ptr<const ast::Expr> tech1 { new ast::UntypedMemberExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.field), castExpr->arg) };
1402
1403 // don't prune here, since it's guaranteed all alternatives will have the same type
1404 finder.find( tech1.get(), ResolveMode::withoutPrune() );
1405 pick_alternatives(finder.candidates, false);
1406
1407 return;
1408 } catch(SemanticErrorException & ) {}
1409
1410 // Fallback : turn (thread&)X into (thread$&)get_thread(X)
1411 std::unique_ptr<const ast::Expr> fallback { ast::UntypedExpr::createDeref(loc, new ast::UntypedExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.getter), { castExpr->arg })) };
1412 // don't prune here, since it's guaranteed all alternatives will have the same type
1413 finder.find( fallback.get(), ResolveMode::withoutPrune() );
1414
1415 pick_alternatives(finder.candidates, true);
1416
1417 // Whatever happens here, we have no more fallbacks
1418 }
1419
1420 void Finder::postvisit( const ast::UntypedMemberExpr * memberExpr ) {
1421 CandidateFinder aggFinder( context, tenv );
1422 aggFinder.find( memberExpr->aggregate, ResolveMode::withAdjustment() );
1423 for ( CandidateRef & agg : aggFinder.candidates ) {
1424 // it's okay for the aggregate expression to have reference type -- cast it to the
1425 // base type to treat the aggregate as the referenced value
1426 Cost addedCost = Cost::zero;
1427 agg->expr = referenceToRvalueConversion( agg->expr, addedCost );
1428
1429 // find member of the given type
1430 if ( auto structInst = agg->expr->result.as< ast::StructInstType >() ) {
1431 addAggMembers(
1432 structInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1433 } else if ( auto unionInst = agg->expr->result.as< ast::UnionInstType >() ) {
1434 addAggMembers(
1435 unionInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1436 } else if ( auto tupleType = agg->expr->result.as< ast::TupleType >() ) {
1437 addTupleMembers( tupleType, agg->expr, *agg, addedCost, memberExpr->member );
1438 }
1439 }
1440 }
1441
1442 void Finder::postvisit( const ast::MemberExpr * memberExpr ) {
1443 addCandidate( memberExpr, tenv );
1444 }
1445
1446 void Finder::postvisit( const ast::NameExpr * nameExpr ) {
1447 std::vector< ast::SymbolTable::IdData > declList;
1448 if (!selfFinder.otypeKeys.empty()) {
1449 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
1450 assertf(kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS, "special lookup with non-special target: %s", nameExpr->name.c_str());
1451
1452 for (auto & otypeKey: selfFinder.otypeKeys) {
1453 auto result = symtab.specialLookupId(kind, otypeKey);
1454 declList.insert(declList.end(), std::make_move_iterator(result.begin()), std::make_move_iterator(result.end()));
1455 }
1456 } else {
1457 declList = symtab.lookupIdIgnoreHidden( nameExpr->name );
1458 }
1459 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )
1460
1461 if ( declList.empty() ) return;
1462
1463 reason.code = NoMatch;
1464
1465 for ( auto & data : declList ) {
1466 Cost cost = Cost::zero;
1467 ast::Expr * newExpr = data.combine( nameExpr->location, cost );
1468
1469 CandidateRef newCand = std::make_shared<Candidate>(
1470 newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, Cost::zero,
1471 cost );
1472 if (newCand->expr->env) {
1473 newCand->env.add(*newCand->expr->env);
1474 auto mutExpr = newCand->expr.get_and_mutate();
1475 mutExpr->env = nullptr;
1476 newCand->expr = mutExpr;
1477 }
1478
1479 PRINT(
1480 std::cerr << "decl is ";
1481 ast::print( std::cerr, data.id );
1482 std::cerr << std::endl;
1483 std::cerr << "newExpr is ";
1484 ast::print( std::cerr, newExpr );
1485 std::cerr << std::endl;
1486 )
1487 newCand->expr = ast::mutate_field(
1488 newCand->expr.get(), &ast::Expr::result,
1489 renameTyVars( newCand->expr->result ) );
1490 // add anonymous member interpretations whenever an aggregate value type is seen
1491 // as a name expression
1492 addAnonConversions( newCand );
1493 candidates.emplace_back( std::move( newCand ) );
1494 }
1495 }
1496
1497 void Finder::postvisit(const ast::VariableExpr *variableExpr) {
1498 // not sufficient to just pass `variableExpr` here, type might have changed
1499
1500 auto cand = new Candidate(variableExpr, tenv);
1501 candidates.emplace_back(cand);
1502 }
1503
1504 void Finder::postvisit( const ast::ConstantExpr * constantExpr ) {
1505 addCandidate( constantExpr, tenv );
1506 }
1507
1508 void Finder::postvisit( const ast::SizeofExpr * sizeofExpr ) {
1509 if ( sizeofExpr->type ) {
1510 addCandidate(
1511 new ast::SizeofExpr{
1512 sizeofExpr->location, resolveTypeof( sizeofExpr->type, context ) },
1513 tenv );
1514 } else {
1515 // find all candidates for the argument to sizeof
1516 CandidateFinder finder( context, tenv );
1517 finder.find( sizeofExpr->expr );
1518 // find the lowest-cost candidate, otherwise ambiguous
1519 CandidateList winners = findMinCost( finder.candidates );
1520 if ( winners.size() != 1 ) {
1521 SemanticError(
1522 sizeofExpr->expr.get(), "Ambiguous expression in sizeof operand: " );
1523 }
1524 // return the lowest-cost candidate
1525 CandidateRef & choice = winners.front();
1526 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1527 choice->cost = Cost::zero;
1528 addCandidate( *choice, new ast::SizeofExpr{ sizeofExpr->location, choice->expr } );
1529 }
1530 }
1531
1532 void Finder::postvisit( const ast::CountExpr * countExpr ) {
1533 assert( countExpr->type );
1534 auto enumInst = countExpr->type.as<ast::EnumInstType>();
1535 if ( !enumInst ) {
1536 SemanticError( countExpr, "Count Expression only supports Enum Type as operand: ");
1537 }
1538 addCandidate( ast::ConstantExpr::from_ulong(countExpr->location, enumInst->base->members.size()), tenv );
1539 }
1540
1541 void Finder::postvisit( const ast::AlignofExpr * alignofExpr ) {
1542 if ( alignofExpr->type ) {
1543 addCandidate(
1544 new ast::AlignofExpr{
1545 alignofExpr->location, resolveTypeof( alignofExpr->type, context ) },
1546 tenv );
1547 } else {
1548 // find all candidates for the argument to alignof
1549 CandidateFinder finder( context, tenv );
1550 finder.find( alignofExpr->expr );
1551 // find the lowest-cost candidate, otherwise ambiguous
1552 CandidateList winners = findMinCost( finder.candidates );
1553 if ( winners.size() != 1 ) {
1554 SemanticError(
1555 alignofExpr->expr.get(), "Ambiguous expression in alignof operand: " );
1556 }
1557 // return the lowest-cost candidate
1558 CandidateRef & choice = winners.front();
1559 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1560 choice->cost = Cost::zero;
1561 addCandidate(
1562 *choice, new ast::AlignofExpr{ alignofExpr->location, choice->expr } );
1563 }
1564 }
1565
1566 void Finder::postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) {
1567 const ast::BaseInstType * aggInst;
1568 if (( aggInst = offsetofExpr->type.as< ast::StructInstType >() )) ;
1569 else if (( aggInst = offsetofExpr->type.as< ast::UnionInstType >() )) ;
1570 else return;
1571
1572 for ( const ast::Decl * member : aggInst->lookup( offsetofExpr->member ) ) {
1573 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( member );
1574 addCandidate(
1575 new ast::OffsetofExpr{ offsetofExpr->location, aggInst, dwt }, tenv );
1576 }
1577 }
1578
1579 void Finder::postvisit( const ast::OffsetofExpr * offsetofExpr ) {
1580 addCandidate( offsetofExpr, tenv );
1581 }
1582
1583 void Finder::postvisit( const ast::OffsetPackExpr * offsetPackExpr ) {
1584 addCandidate( offsetPackExpr, tenv );
1585 }
1586
1587 void Finder::postvisit( const ast::LogicalExpr * logicalExpr ) {
1588 CandidateFinder finder1( context, tenv );
1589 ast::ptr<ast::Expr> arg1 = createCondExpr( logicalExpr->arg1 );
1590 finder1.find( arg1, ResolveMode::withAdjustment() );
1591 if ( finder1.candidates.empty() ) return;
1592
1593 CandidateFinder finder2( context, tenv );
1594 ast::ptr<ast::Expr> arg2 = createCondExpr( logicalExpr->arg2 );
1595 finder2.find( arg2, ResolveMode::withAdjustment() );
1596 if ( finder2.candidates.empty() ) return;
1597
1598 reason.code = NoMatch;
1599
1600 for ( const CandidateRef & r1 : finder1.candidates ) {
1601 for ( const CandidateRef & r2 : finder2.candidates ) {
1602 ast::TypeEnvironment env{ r1->env };
1603 env.simpleCombine( r2->env );
1604 ast::OpenVarSet open{ r1->open };
1605 mergeOpenVars( open, r2->open );
1606 ast::AssertionSet need;
1607 mergeAssertionSet( need, r1->need );
1608 mergeAssertionSet( need, r2->need );
1609
1610 addCandidate(
1611 new ast::LogicalExpr{
1612 logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd },
1613 std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost );
1614 }
1615 }
1616 }
1617
1618 void Finder::postvisit( const ast::ConditionalExpr * conditionalExpr ) {
1619 // candidates for condition
1620 ast::ptr<ast::Expr> arg1 = createCondExpr( conditionalExpr->arg1 );
1621 CandidateFinder finder1( context, tenv );
1622 finder1.find( arg1, ResolveMode::withAdjustment() );
1623 if ( finder1.candidates.empty() ) return;
1624
1625 // candidates for true result
1626 // FIX ME: resolves and runs arg1 twice when arg2 is missing.
1627 ast::Expr const * arg2 = conditionalExpr->arg2;
1628 arg2 = arg2 ? arg2 : conditionalExpr->arg1.get();
1629 CandidateFinder finder2( context, tenv );
1630 finder2.allowVoid = true;
1631 finder2.find( arg2, ResolveMode::withAdjustment() );
1632 if ( finder2.candidates.empty() ) return;
1633
1634 // candidates for false result
1635 CandidateFinder finder3( context, tenv );
1636 finder3.allowVoid = true;
1637 finder3.find( conditionalExpr->arg3, ResolveMode::withAdjustment() );
1638 if ( finder3.candidates.empty() ) return;
1639
1640 reason.code = NoMatch;
1641
1642 for ( const CandidateRef & r1 : finder1.candidates ) {
1643 for ( const CandidateRef & r2 : finder2.candidates ) {
1644 for ( const CandidateRef & r3 : finder3.candidates ) {
1645 ast::TypeEnvironment env{ r1->env };
1646 env.simpleCombine( r2->env );
1647 env.simpleCombine( r3->env );
1648 ast::OpenVarSet open{ r1->open };
1649 mergeOpenVars( open, r2->open );
1650 mergeOpenVars( open, r3->open );
1651 ast::AssertionSet need;
1652 mergeAssertionSet( need, r1->need );
1653 mergeAssertionSet( need, r2->need );
1654 mergeAssertionSet( need, r3->need );
1655 ast::AssertionSet have;
1656
1657 // unify true and false results, then infer parameters to produce new
1658 // candidates
1659 ast::ptr< ast::Type > common;
1660 if (
1661 unify(
1662 r2->expr->result, r3->expr->result, env, need, have, open,
1663 common )
1664 ) {
1665 // generate typed expression
1666 ast::ConditionalExpr * newExpr = new ast::ConditionalExpr{
1667 conditionalExpr->location, r1->expr, r2->expr, r3->expr };
1668 newExpr->result = common ? common : r2->expr->result;
1669 // convert both options to result type
1670 Cost cost = r1->cost + r2->cost + r3->cost;
1671 newExpr->arg2 = computeExpressionConversionCost(
1672 newExpr->arg2, newExpr->result, symtab, env, cost );
1673 newExpr->arg3 = computeExpressionConversionCost(
1674 newExpr->arg3, newExpr->result, symtab, env, cost );
1675 // output candidate
1676 CandidateRef newCand = std::make_shared<Candidate>(
1677 newExpr, std::move( env ), std::move( open ), std::move( need ), cost );
1678 inferParameters( newCand, candidates );
1679 }
1680 }
1681 }
1682 }
1683 }
1684
1685 void Finder::postvisit( const ast::CommaExpr * commaExpr ) {
1686 ast::TypeEnvironment env{ tenv };
1687 ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, context, env );
1688
1689 CandidateFinder finder2( context, env );
1690 finder2.find( commaExpr->arg2, ResolveMode::withAdjustment() );
1691
1692 for ( const CandidateRef & r2 : finder2.candidates ) {
1693 addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } );
1694 }
1695 }
1696
1697 void Finder::postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) {
1698 addCandidate( ctorExpr, tenv );
1699 }
1700
1701 void Finder::postvisit( const ast::ConstructorExpr * ctorExpr ) {
1702 CandidateFinder finder( context, tenv );
1703 finder.allowVoid = true;
1704 finder.find( ctorExpr->callExpr, ResolveMode::withoutPrune() );
1705 for ( CandidateRef & r : finder.candidates ) {
1706 addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } );
1707 }
1708 }
1709
1710 void Finder::postvisit( const ast::RangeExpr * rangeExpr ) {
1711 // resolve low and high, accept candidates where low and high types unify
1712 CandidateFinder finder1( context, tenv );
1713 finder1.find( rangeExpr->low, ResolveMode::withAdjustment() );
1714 if ( finder1.candidates.empty() ) return;
1715
1716 CandidateFinder finder2( context, tenv );
1717 finder2.find( rangeExpr->high, ResolveMode::withAdjustment() );
1718 if ( finder2.candidates.empty() ) return;
1719
1720 reason.code = NoMatch;
1721
1722 for ( const CandidateRef & r1 : finder1.candidates ) {
1723 for ( const CandidateRef & r2 : finder2.candidates ) {
1724 ast::TypeEnvironment env{ r1->env };
1725 env.simpleCombine( r2->env );
1726 ast::OpenVarSet open{ r1->open };
1727 mergeOpenVars( open, r2->open );
1728 ast::AssertionSet need;
1729 mergeAssertionSet( need, r1->need );
1730 mergeAssertionSet( need, r2->need );
1731 ast::AssertionSet have;
1732
1733 ast::ptr< ast::Type > common;
1734 if (
1735 unify(
1736 r1->expr->result, r2->expr->result, env, need, have, open,
1737 common )
1738 ) {
1739 // generate new expression
1740 ast::RangeExpr * newExpr =
1741 new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr };
1742 newExpr->result = common ? common : r1->expr->result;
1743 // add candidate
1744 CandidateRef newCand = std::make_shared<Candidate>(
1745 newExpr, std::move( env ), std::move( open ), std::move( need ),
1746 r1->cost + r2->cost );
1747 inferParameters( newCand, candidates );
1748 }
1749 }
1750 }
1751 }
1752
1753 void Finder::postvisit( const ast::UntypedTupleExpr * tupleExpr ) {
1754 std::vector< CandidateFinder > subCandidates =
1755 selfFinder.findSubExprs( tupleExpr->exprs );
1756 std::vector< CandidateList > possibilities;
1757 combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) );
1758
1759 for ( const CandidateList & subs : possibilities ) {
1760 std::vector< ast::ptr< ast::Expr > > exprs;
1761 exprs.reserve( subs.size() );
1762 for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); }
1763
1764 ast::TypeEnvironment env;
1765 ast::OpenVarSet open;
1766 ast::AssertionSet need;
1767 for ( const CandidateRef & sub : subs ) {
1768 env.simpleCombine( sub->env );
1769 mergeOpenVars( open, sub->open );
1770 mergeAssertionSet( need, sub->need );
1771 }
1772
1773 addCandidate(
1774 new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) },
1775 std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) );
1776 }
1777 }
1778
1779 void Finder::postvisit( const ast::TupleExpr * tupleExpr ) {
1780 addCandidate( tupleExpr, tenv );
1781 }
1782
1783 void Finder::postvisit( const ast::TupleIndexExpr * tupleExpr ) {
1784 addCandidate( tupleExpr, tenv );
1785 }
1786
1787 void Finder::postvisit( const ast::TupleAssignExpr * tupleExpr ) {
1788 addCandidate( tupleExpr, tenv );
1789 }
1790
1791 void Finder::postvisit( const ast::UniqueExpr * unqExpr ) {
1792 CandidateFinder finder( context, tenv );
1793 finder.find( unqExpr->expr, ResolveMode::withAdjustment() );
1794 for ( CandidateRef & r : finder.candidates ) {
1795 // ensure that the the id is passed on so that the expressions are "linked"
1796 addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } );
1797 }
1798 }
1799
1800 void Finder::postvisit( const ast::StmtExpr * stmtExpr ) {
1801 addCandidate( resolveStmtExpr( stmtExpr, context ), tenv );
1802 }
1803
1804 void Finder::postvisit( const ast::UntypedInitExpr * initExpr ) {
1805 // handle each option like a cast
1806 CandidateList matches;
1807 PRINT(
1808 std::cerr << "untyped init expr: " << initExpr << std::endl;
1809 )
1810 // O(n^2) checks of d-types with e-types
1811 for ( const ast::InitAlternative & initAlt : initExpr->initAlts ) {
1812 // calculate target type
1813 const ast::Type * toType = resolveTypeof( initAlt.type, context );
1814 toType = adjustExprType( toType, tenv, symtab );
1815 // The call to find must occur inside this loop, otherwise polymorphic return
1816 // types are not bound to the initialization type, since return type variables are
1817 // only open for the duration of resolving the UntypedExpr.
1818 CandidateFinder finder( context, tenv, toType );
1819 finder.find( initExpr->expr, ResolveMode::withAdjustment() );
1820
1821 Cost minExprCost = Cost::infinity;
1822 Cost minCastCost = Cost::infinity;
1823 for ( CandidateRef & cand : finder.candidates ) {
1824 if (reason.code == NotFound) reason.code = NoMatch;
1825
1826 ast::TypeEnvironment env{ cand->env };
1827 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1828 ast::OpenVarSet open{ cand->open };
1829
1830 PRINT(
1831 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;
1832 )
1833
1834 // It is possible that a cast can throw away some values in a multiply-valued
1835 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of
1836 // the subexpression results that are cast directly. The candidate is invalid
1837 // if it has fewer results than there are types to cast to.
1838 int discardedValues = cand->expr->result->size() - toType->size();
1839 if ( discardedValues < 0 ) continue;
1840
1841 // unification run for side-effects
1842 ast::ptr<ast::Type> common;
1843 bool canUnify = unify( toType, cand->expr->result, env, need, have, open, common );
1844 (void) canUnify;
1845 Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1846 symtab, env );
1847 PRINT(
1848 Cost legacyCost = castCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1849 symtab, env );
1850 std::cerr << "Considering initialization:";
1851 std::cerr << std::endl << " FROM: " << cand->expr->result << std::endl;
1852 std::cerr << std::endl << " TO: " << toType << std::endl;
1853 std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed");
1854 std::cerr << std::endl << " Legacy cost " << legacyCost;
1855 std::cerr << std::endl << " New cost " << thisCost;
1856 std::cerr << std::endl;
1857 )
1858 if ( thisCost != Cost::infinity ) {
1859 // count one safe conversion for each value that is thrown away
1860 thisCost.incSafe( discardedValues );
1861 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1862 minExprCost = cand->cost;
1863 minCastCost = thisCost;
1864 matches.clear();
1865 }
1866 CandidateRef newCand = std::make_shared<Candidate>(
1867 new ast::InitExpr{
1868 initExpr->location,
1869 restructureCast( cand->expr, toType ),
1870 initAlt.designation },
1871 std::move(env), std::move( open ), std::move( need ), cand->cost + thisCost );
1872 // currently assertions are always resolved immediately so this should have no effect.
1873 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1874 // we may need to revisit the logic.
1875 inferParameters( newCand, matches );
1876 }
1877 }
1878 }
1879
1880 // select first on argument cost, then conversion cost
1881 // CandidateList minArgCost = findMinCost( matches );
1882 // promoteCvtCost( minArgCost );
1883 // candidates = findMinCost( minArgCost );
1884 candidates = std::move(matches);
1885 }
1886
1887 void Finder::postvisit( const ast::QualifiedNameExpr * expr ) {
1888 std::vector< ast::SymbolTable::IdData > declList = symtab.lookupId( expr->name );
1889 if ( declList.empty() ) return;
1890
1891 for ( ast::SymbolTable::IdData & data: declList ) {
1892 const ast::Type * t = data.id->get_type()->stripReferences();
1893 if ( const ast::EnumInstType * enumInstType =
1894 dynamic_cast<const ast::EnumInstType *>( t ) ) {
1895 if ( (enumInstType->base->name == expr->type_name)
1896 || (expr->type_decl && enumInstType->base->name == expr->type_decl->name) ) {
1897 Cost cost = Cost::zero;
1898 ast::Expr * newExpr = data.combine( expr->location, cost );
1899 CandidateRef newCand =
1900 std::make_shared<Candidate>(
1901 newExpr, copy( tenv ), ast::OpenVarSet{},
1902 ast::AssertionSet{}, Cost::zero, cost
1903 );
1904 if (newCand->expr->env) {
1905 newCand->env.add(*newCand->expr->env);
1906 auto mutExpr = newCand->expr.get_and_mutate();
1907 mutExpr->env = nullptr;
1908 newCand->expr = mutExpr;
1909 }
1910
1911 newCand->expr = ast::mutate_field(
1912 newCand->expr.get(), &ast::Expr::result,
1913 renameTyVars( newCand->expr->result ) );
1914 addAnonConversions( newCand );
1915 candidates.emplace_back( std::move( newCand ) );
1916 }
1917 }
1918 }
1919 }
1920 // size_t Finder::traceId = Stats::Heap::new_stacktrace_id("Finder");
1921 /// Prunes a list of candidates down to those that have the minimum conversion cost for a given
1922 /// return type. Skips ambiguous candidates.
1923
1924} // anonymous namespace
1925
1926bool CandidateFinder::pruneCandidates( CandidateList & candidates, CandidateList & out, std::vector<std::string> & errors ) {
1927 struct PruneStruct {
1928 CandidateRef candidate;
1929 bool ambiguous;
1930
1931 PruneStruct() = default;
1932 PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {}
1933 };
1934
1935 // find lowest-cost candidate for each type
1936 std::unordered_map< std::string, PruneStruct > selected;
1937 // attempt to skip satisfyAssertions on more expensive alternatives if better options have been found
1938 std::sort(candidates.begin(), candidates.end(), [](const CandidateRef & x, const CandidateRef & y){return x->cost < y->cost;});
1939 for ( CandidateRef & candidate : candidates ) {
1940 std::string mangleName;
1941 {
1942 ast::ptr< ast::Type > newType = candidate->expr->result;
1943 assertf(candidate->expr->result, "Result of expression %p for candidate is null", candidate->expr.get());
1944 candidate->env.apply( newType );
1945 mangleName = Mangle::mangle( newType );
1946 }
1947
1948 auto found = selected.find( mangleName );
1949 if (found != selected.end() && found->second.candidate->cost < candidate->cost) {
1950 PRINT(
1951 std::cerr << "cost " << candidate->cost << " loses to "
1952 << found->second.candidate->cost << std::endl;
1953 )
1954 continue;
1955 }
1956
1957 // xxx - when do satisfyAssertions produce more than 1 result?
1958 // this should only happen when initial result type contains
1959 // unbound type parameters, then it should never be pruned by
1960 // the previous step, since renameTyVars guarantees the mangled name
1961 // is unique.
1962 CandidateList satisfied;
1963 bool needRecomputeKey = false;
1964 if (candidate->need.empty()) {
1965 satisfied.emplace_back(candidate);
1966 }
1967 else {
1968 satisfyAssertions(candidate, context.symtab, satisfied, errors);
1969 needRecomputeKey = true;
1970 }
1971
1972 for (auto & newCand : satisfied) {
1973 // recomputes type key, if satisfyAssertions changed it
1974 if (needRecomputeKey)
1975 {
1976 ast::ptr< ast::Type > newType = newCand->expr->result;
1977 assertf(newCand->expr->result, "Result of expression %p for candidate is null", newCand->expr.get());
1978 newCand->env.apply( newType );
1979 mangleName = Mangle::mangle( newType );
1980 }
1981 auto found = selected.find( mangleName );
1982 if ( found != selected.end() ) {
1983 // tiebreaking by picking the lower cost on CURRENT expression
1984 // NOTE: this behavior is different from C semantics.
1985 // Specific remediations are performed for C operators at postvisit(UntypedExpr).
1986 // Further investigations may take place.
1987 if ( newCand->cost < found->second.candidate->cost
1988 || (newCand->cost == found->second.candidate->cost && newCand->cvtCost < found->second.candidate->cvtCost) ) {
1989 PRINT(
1990 std::cerr << "cost " << newCand->cost << " beats "
1991 << found->second.candidate->cost << std::endl;
1992 )
1993
1994 found->second = PruneStruct{ newCand };
1995 } else if ( newCand->cost == found->second.candidate->cost && newCand->cvtCost == found->second.candidate->cvtCost ) {
1996 // if one of the candidates contains a deleted identifier, can pick the other,
1997 // since deleted expressions should not be ambiguous if there is another option
1998 // that is at least as good
1999 if ( findDeletedExpr( newCand->expr ) ) {
2000 // do nothing
2001 PRINT( std::cerr << "candidate is deleted" << std::endl; )
2002 } else if ( findDeletedExpr( found->second.candidate->expr ) ) {
2003 PRINT( std::cerr << "current is deleted" << std::endl; )
2004 found->second = PruneStruct{ newCand };
2005 } else {
2006 PRINT( std::cerr << "marking ambiguous" << std::endl; )
2007 found->second.ambiguous = true;
2008 }
2009 } else {
2010 // xxx - can satisfyAssertions increase the cost?
2011 PRINT(
2012 std::cerr << "cost " << newCand->cost << " loses to "
2013 << found->second.candidate->cost << std::endl;
2014 )
2015 }
2016 } else {
2017 selected.emplace_hint( found, mangleName, newCand );
2018 }
2019 }
2020 }
2021
2022 // report unambiguous min-cost candidates
2023 // CandidateList out;
2024 for ( auto & target : selected ) {
2025 if ( target.second.ambiguous ) continue;
2026
2027 CandidateRef cand = target.second.candidate;
2028
2029 ast::ptr< ast::Type > newResult = cand->expr->result;
2030 cand->env.applyFree( newResult );
2031 cand->expr = ast::mutate_field(
2032 cand->expr.get(), &ast::Expr::result, std::move( newResult ) );
2033
2034 out.emplace_back( cand );
2035 }
2036 // if everything is lost in satisfyAssertions, report the error
2037 return !selected.empty();
2038}
2039
2040void CandidateFinder::find( const ast::Expr * expr, ResolveMode mode ) {
2041 // Find alternatives for expression
2042 ast::Pass<Finder> finder{ *this };
2043 expr->accept( finder );
2044
2045 if ( mode.failFast && candidates.empty() ) {
2046 switch(finder.core.reason.code) {
2047 case Finder::NotFound:
2048 { SemanticError( expr, "No alternatives for expression " ); break; }
2049 case Finder::NoMatch:
2050 { SemanticError( expr, "Invalid application of existing declaration(s) in expression " ); break; }
2051 case Finder::ArgsToFew:
2052 case Finder::ArgsToMany:
2053 case Finder::RetsToFew:
2054 case Finder::RetsToMany:
2055 case Finder::NoReason:
2056 default:
2057 { SemanticError( expr->location, "No reasonable alternatives for expression : reasons unkown" ); }
2058 }
2059 }
2060
2061 /*
2062 if ( mode.satisfyAssns || mode.prune ) {
2063 // trim candidates to just those where the assertions are satisfiable
2064 // - necessary pre-requisite to pruning
2065 CandidateList satisfied;
2066 std::vector< std::string > errors;
2067 for ( CandidateRef & candidate : candidates ) {
2068 satisfyAssertions( candidate, localSyms, satisfied, errors );
2069 }
2070
2071 // fail early if none such
2072 if ( mode.failFast && satisfied.empty() ) {
2073 std::ostringstream stream;
2074 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
2075 for ( const auto& err : errors ) {
2076 stream << err;
2077 }
2078 SemanticError( expr->location, stream.str() );
2079 }
2080
2081 // reset candidates
2082 candidates = move( satisfied );
2083 }
2084 */
2085
2086 // optimization: don't prune for NameExpr since it never has cost
2087 if ( mode.prune && !dynamic_cast<const ast::NameExpr *>(expr) ) {
2088 // trim candidates to single best one
2089 PRINT(
2090 std::cerr << "alternatives before prune:" << std::endl;
2091 print( std::cerr, candidates );
2092 )
2093
2094 CandidateList pruned;
2095 std::vector<std::string> errors;
2096 bool found = pruneCandidates( candidates, pruned, errors );
2097
2098 if ( mode.failFast && pruned.empty() ) {
2099 std::ostringstream stream;
2100 if (found) {
2101 CandidateList winners = findMinCost( candidates );
2102 stream << "Cannot choose between " << winners.size() << " alternatives for "
2103 "expression\n";
2104 ast::print( stream, expr );
2105 stream << " Alternatives are:\n";
2106 print( stream, winners, 1 );
2107 SemanticError( expr->location, stream.str() );
2108 }
2109 else {
2110 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
2111 for ( const auto& err : errors ) {
2112 stream << err;
2113 }
2114 SemanticError( expr->location, stream.str() );
2115 }
2116 }
2117
2118 auto oldsize = candidates.size();
2119 candidates = std::move( pruned );
2120
2121 PRINT(
2122 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;
2123 )
2124 PRINT(
2125 std::cerr << "there are " << candidates.size() << " alternatives after elimination"
2126 << std::endl;
2127 )
2128 }
2129
2130 // adjust types after pruning so that types substituted by pruneAlternatives are correctly
2131 // adjusted
2132 if ( mode.adjust ) {
2133 for ( CandidateRef & r : candidates ) {
2134 r->expr = ast::mutate_field(
2135 r->expr.get(), &ast::Expr::result,
2136 adjustExprType( r->expr->result, r->env, context.symtab ) );
2137 }
2138 }
2139
2140 // Central location to handle gcc extension keyword, etc. for all expressions
2141 for ( CandidateRef & r : candidates ) {
2142 if ( r->expr->extension != expr->extension ) {
2143 r->expr.get_and_mutate()->extension = expr->extension;
2144 }
2145 }
2146}
2147
2148std::vector< CandidateFinder > CandidateFinder::findSubExprs(
2149 const std::vector< ast::ptr< ast::Expr > > & xs
2150) {
2151 std::vector< CandidateFinder > out;
2152
2153 for ( const auto & x : xs ) {
2154 out.emplace_back( context, env );
2155 out.back().find( x, ResolveMode::withAdjustment() );
2156
2157 PRINT(
2158 std::cerr << "findSubExprs" << std::endl;
2159 print( std::cerr, out.back().candidates );
2160 )
2161 }
2162
2163 return out;
2164}
2165
2166const ast::Expr * referenceToRvalueConversion( const ast::Expr * expr, Cost & cost ) {
2167 if ( expr->result.as< ast::ReferenceType >() ) {
2168 // cast away reference from expr
2169 cost.incReference();
2170 return new ast::CastExpr{ expr, expr->result->stripReferences() };
2171 }
2172
2173 return expr;
2174}
2175
2176const ast::Expr * CandidateFinder::makeEnumOffsetCast( const ast::EnumInstType * src,
2177 const ast::EnumInstType * dst,
2178 const ast::Expr * expr,
2179 Cost minCost ) {
2180
2181 auto srcDecl = src->base;
2182 auto dstDecl = dst->base;
2183
2184 if (srcDecl->name == dstDecl->name) return expr;
2185
2186 for (auto& dstChild: dstDecl->inlinedDecl) {
2187 Cost c = castCost(src, dstChild, false, context.symtab, env);
2188 ast::CastExpr * castToDst;
2189 if (c<minCost) {
2190 unsigned offset = dstDecl->calChildOffset(dstChild.get());
2191 if (offset > 0) {
2192 auto untyped = ast::UntypedExpr::createCall(
2193 expr->location,
2194 "?+?",
2195 { new ast::CastExpr( expr, new ast::BasicType(ast::BasicKind::SignedInt) ),
2196 ast::ConstantExpr::from_int(expr->location, offset)});
2197 CandidateFinder finder(context, env);
2198 finder.find( untyped );
2199 CandidateList winners = findMinCost( finder.candidates );
2200 CandidateRef & choice = winners.front();
2201 choice->expr = new ast::CastExpr(expr->location, choice->expr, dstChild, ast::GeneratedFlag::ExplicitCast);
2202 castToDst = new ast::CastExpr(
2203 makeEnumOffsetCast( src, dstChild, choice->expr, minCost ),
2204 dst);
2205 } else {
2206 castToDst = new ast::CastExpr( expr, dst );
2207 }
2208 return castToDst;
2209 }
2210 }
2211 SemanticError(expr, src->base->name + " is not a subtype of " + dst->base->name);
2212 return nullptr;
2213}
2214
2215Cost computeConversionCost(
2216 const ast::Type * argType, const ast::Type * paramType, bool argIsLvalue,
2217 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env
2218) {
2219 PRINT(
2220 std::cerr << std::endl << "converting ";
2221 ast::print( std::cerr, argType, 2 );
2222 std::cerr << std::endl << " to ";
2223 ast::print( std::cerr, paramType, 2 );
2224 std::cerr << std::endl << "environment is: ";
2225 ast::print( std::cerr, env, 2 );
2226 std::cerr << std::endl;
2227 )
2228 Cost convCost = conversionCost( argType, paramType, argIsLvalue, symtab, env );
2229 PRINT(
2230 std::cerr << std::endl << "cost is " << convCost << std::endl;
2231 )
2232 if ( convCost == Cost::infinity ) return convCost;
2233 convCost.incPoly( polyCost( paramType, symtab, env ) + polyCost( argType, symtab, env ) );
2234 PRINT(
2235 std::cerr << "cost with polycost is " << convCost << std::endl;
2236 )
2237 return convCost;
2238}
2239
2240const ast::Expr * createCondExpr( const ast::Expr * expr ) {
2241 assert( expr );
2242 return new ast::CastExpr( expr->location,
2243 ast::UntypedExpr::createCall( expr->location,
2244 "?!=?",
2245 {
2246 expr,
2247 new ast::ConstantExpr( expr->location,
2248 new ast::ZeroType(), "0", std::make_optional( 0ull )
2249 ),
2250 }
2251 ),
2252 new ast::BasicType( ast::BasicKind::SignedInt )
2253 );
2254}
2255
2256} // namespace ResolvExpr
2257
2258// Local Variables: //
2259// tab-width: 4 //
2260// mode: c++ //
2261// compile-command: "make install" //
2262// End: //
Note: See TracBrowser for help on using the repository browser.