source: src/ResolvExpr/CandidateFinder.cpp@ 9235192c

Last change on this file since 9235192c was 64727bd, checked in by Andrew Beach <ajbeach@…>, 2 years ago

Did my best to reimplement all the improvements made to CandidateFinder.cpp that were lost in the recent merge.

  • Property mode set to 100644
File size: 74.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// CandidateFinder.cpp --
8//
9// Author : Aaron B. Moss
10// Created On : Wed Jun 5 14:30:00 2019
11// Last Modified By : Andrew Beach
12// Last Modified On : Wed Mar 16 11:58:00 2022
13// Update Count : 3
14//
15
16#include "CandidateFinder.hpp"
17
18#include <deque>
19#include <iterator> // for back_inserter
20#include <sstream>
21#include <string>
22#include <unordered_map>
23#include <vector>
24
25#include "AdjustExprType.hpp"
26#include "Candidate.hpp"
27#include "CastCost.hpp" // for castCost
28#include "CompilationState.h"
29#include "ConversionCost.h" // for conversionCast
30#include "Cost.h"
31#include "ExplodedArg.hpp"
32#include "PolyCost.hpp"
33#include "RenameVars.h" // for renameTyVars
34#include "Resolver.h"
35#include "ResolveTypeof.h"
36#include "SatisfyAssertions.hpp"
37#include "SpecCost.hpp"
38#include "typeops.h" // for combos
39#include "Unify.h"
40#include "WidenMode.h"
41#include "AST/Expr.hpp"
42#include "AST/Node.hpp"
43#include "AST/Pass.hpp"
44#include "AST/Print.hpp"
45#include "AST/SymbolTable.hpp"
46#include "AST/Type.hpp"
47#include "Common/utility.h" // for move, copy
48#include "SymTab/Mangler.h"
49#include "Tuples/Tuples.h" // for handleTupleAssignment
50#include "InitTweak/InitTweak.h" // for getPointerBase
51
52#include "Common/Stats/Counter.h"
53
54#define PRINT( text ) if ( resolvep ) { text }
55
56namespace ResolvExpr {
57
58/// Unique identifier for matching expression resolutions to their requesting expression
59UniqueId globalResnSlot = 0;
60
61namespace {
62 /// First index is which argument, second is which alternative, third is which exploded element
63 using ExplodedArgs_new = std::deque< std::vector< ExplodedArg > >;
64
65 /// Returns a list of alternatives with the minimum cost in the given list
66 CandidateList findMinCost( const CandidateList & candidates ) {
67 CandidateList out;
68 Cost minCost = Cost::infinity;
69 for ( const CandidateRef & r : candidates ) {
70 if ( r->cost < minCost ) {
71 minCost = r->cost;
72 out.clear();
73 out.emplace_back( r );
74 } else if ( r->cost == minCost ) {
75 out.emplace_back( r );
76 }
77 }
78 return out;
79 }
80
81 /// Computes conversion cost for a given expression to a given type
82 const ast::Expr * computeExpressionConversionCost(
83 const ast::Expr * arg, const ast::Type * paramType, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env, Cost & outCost
84 ) {
85 Cost convCost = computeConversionCost(
86 arg->result, paramType, arg->get_lvalue(), symtab, env );
87 outCost += convCost;
88
89 // If there is a non-zero conversion cost, ignoring poly cost, then the expression requires
90 // conversion. Ignore poly cost for now, since this requires resolution of the cast to
91 // infer parameters and this does not currently work for the reason stated below
92 Cost tmpCost = convCost;
93 tmpCost.incPoly( -tmpCost.get_polyCost() );
94 if ( tmpCost != Cost::zero ) {
95 ast::ptr< ast::Type > newType = paramType;
96 env.apply( newType );
97 return new ast::CastExpr{ arg, newType };
98
99 // xxx - *should* be able to resolve this cast, but at the moment pointers are not
100 // castable to zero_t, but are implicitly convertible. This is clearly inconsistent,
101 // once this is fixed it should be possible to resolve the cast.
102 // xxx - this isn't working, it appears because type1 (parameter) is seen as widenable,
103 // but it shouldn't be because this makes the conversion from DT* to DT* since
104 // commontype(zero_t, DT*) is DT*, rather than nothing
105
106 // CandidateFinder finder{ symtab, env };
107 // finder.find( arg, ResolvMode::withAdjustment() );
108 // assertf( finder.candidates.size() > 0,
109 // "Somehow castable expression failed to find alternatives." );
110 // assertf( finder.candidates.size() == 1,
111 // "Somehow got multiple alternatives for known cast expression." );
112 // return finder.candidates.front()->expr;
113 }
114
115 return arg;
116 }
117
118 /// Computes conversion cost for a given candidate
119 Cost computeApplicationConversionCost(
120 CandidateRef cand, const ast::SymbolTable & symtab
121 ) {
122 auto appExpr = cand->expr.strict_as< ast::ApplicationExpr >();
123 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
124 auto function = pointer->base.strict_as< ast::FunctionType >();
125
126 Cost convCost = Cost::zero;
127 const auto & params = function->params;
128 auto param = params.begin();
129 auto & args = appExpr->args;
130
131 for ( unsigned i = 0; i < args.size(); ++i ) {
132 const ast::Type * argType = args[i]->result;
133 PRINT(
134 std::cerr << "arg expression:" << std::endl;
135 ast::print( std::cerr, args[i], 2 );
136 std::cerr << "--- results are" << std::endl;
137 ast::print( std::cerr, argType, 2 );
138 )
139
140 if ( param == params.end() ) {
141 if ( function->isVarArgs ) {
142 convCost.incUnsafe();
143 PRINT( std::cerr << "end of params with varargs function: inc unsafe: "
144 << convCost << std::endl; ; )
145 // convert reference-typed expressions into value-typed expressions
146 cand->expr = ast::mutate_field_index(
147 appExpr, &ast::ApplicationExpr::args, i,
148 referenceToRvalueConversion( args[i], convCost ) );
149 continue;
150 } else return Cost::infinity;
151 }
152
153 if ( auto def = args[i].as< ast::DefaultArgExpr >() ) {
154 // Default arguments should be free - don't include conversion cost.
155 // Unwrap them here because they are not relevant to the rest of the system
156 cand->expr = ast::mutate_field_index(
157 appExpr, &ast::ApplicationExpr::args, i, def->expr );
158 ++param;
159 continue;
160 }
161
162 // mark conversion cost and also specialization cost of param type
163 // const ast::Type * paramType = (*param)->get_type();
164 cand->expr = ast::mutate_field_index(
165 appExpr, &ast::ApplicationExpr::args, i,
166 computeExpressionConversionCost(
167 args[i], *param, symtab, cand->env, convCost ) );
168 convCost.decSpec( specCost( *param ) );
169 ++param; // can't be in for-loop update because of the continue
170 }
171
172 if ( param != params.end() ) return Cost::infinity;
173
174 // specialization cost of return types can't be accounted for directly, it disables
175 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:
176 //
177 // forall(otype OS) {
178 // void ?|?(OS&, int); // with newline
179 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization
180 // }
181
182 // mark type variable and specialization cost of forall clause
183 convCost.incVar( function->forall.size() );
184 convCost.decSpec( function->assertions.size() );
185
186 return convCost;
187 }
188
189 void makeUnifiableVars(
190 const ast::FunctionType * type, ast::OpenVarSet & unifiableVars,
191 ast::AssertionSet & need
192 ) {
193 for ( auto & tyvar : type->forall ) {
194 unifiableVars[ *tyvar ] = ast::TypeData{ tyvar->base };
195 }
196 for ( auto & assn : type->assertions ) {
197 need[ assn ].isUsed = true;
198 }
199 }
200
201 /// Gets a default value from an initializer, nullptr if not present
202 const ast::ConstantExpr * getDefaultValue( const ast::Init * init ) {
203 if ( auto si = dynamic_cast< const ast::SingleInit * >( init ) ) {
204 if ( auto ce = si->value.as< ast::CastExpr >() ) {
205 return ce->arg.as< ast::ConstantExpr >();
206 } else {
207 return si->value.as< ast::ConstantExpr >();
208 }
209 }
210 return nullptr;
211 }
212
213 /// State to iteratively build a match of parameter expressions to arguments
214 struct ArgPack {
215 std::size_t parent; ///< Index of parent pack
216 ast::ptr< ast::Expr > expr; ///< The argument stored here
217 Cost cost; ///< The cost of this argument
218 ast::TypeEnvironment env; ///< Environment for this pack
219 ast::AssertionSet need; ///< Assertions outstanding for this pack
220 ast::AssertionSet have; ///< Assertions found for this pack
221 ast::OpenVarSet open; ///< Open variables for this pack
222 unsigned nextArg; ///< Index of next argument in arguments list
223 unsigned tupleStart; ///< Number of tuples that start at this index
224 unsigned nextExpl; ///< Index of next exploded element
225 unsigned explAlt; ///< Index of alternative for nextExpl > 0
226
227 ArgPack()
228 : parent( 0 ), expr(), cost( Cost::zero ), env(), need(), have(), open(), nextArg( 0 ),
229 tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
230
231 ArgPack(
232 const ast::TypeEnvironment & env, const ast::AssertionSet & need,
233 const ast::AssertionSet & have, const ast::OpenVarSet & open )
234 : parent( 0 ), expr(), cost( Cost::zero ), env( env ), need( need ), have( have ),
235 open( open ), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
236
237 ArgPack(
238 std::size_t parent, const ast::Expr * expr, ast::TypeEnvironment && env,
239 ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open,
240 unsigned nextArg, unsigned tupleStart = 0, Cost cost = Cost::zero,
241 unsigned nextExpl = 0, unsigned explAlt = 0 )
242 : parent(parent), expr( expr ), cost( cost ), env( std::move( env ) ), need( std::move( need ) ),
243 have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( tupleStart ),
244 nextExpl( nextExpl ), explAlt( explAlt ) {}
245
246 ArgPack(
247 const ArgPack & o, ast::TypeEnvironment && env, ast::AssertionSet && need,
248 ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, Cost added )
249 : parent( o.parent ), expr( o.expr ), cost( o.cost + added ), env( std::move( env ) ),
250 need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ),
251 tupleStart( o.tupleStart ), nextExpl( 0 ), explAlt( 0 ) {}
252
253 /// true if this pack is in the middle of an exploded argument
254 bool hasExpl() const { return nextExpl > 0; }
255
256 /// Gets the list of exploded candidates for this pack
257 const ExplodedArg & getExpl( const ExplodedArgs_new & args ) const {
258 return args[ nextArg-1 ][ explAlt ];
259 }
260
261 /// Ends a tuple expression, consolidating the appropriate args
262 void endTuple( const std::vector< ArgPack > & packs ) {
263 // add all expressions in tuple to list, summing cost
264 std::deque< const ast::Expr * > exprs;
265 const ArgPack * pack = this;
266 if ( expr ) { exprs.emplace_front( expr ); }
267 while ( pack->tupleStart == 0 ) {
268 pack = &packs[pack->parent];
269 exprs.emplace_front( pack->expr );
270 cost += pack->cost;
271 }
272 // reset pack to appropriate tuple
273 std::vector< ast::ptr< ast::Expr > > exprv( exprs.begin(), exprs.end() );
274 expr = new ast::TupleExpr{ expr->location, std::move( exprv ) };
275 tupleStart = pack->tupleStart - 1;
276 parent = pack->parent;
277 }
278 };
279
280 /// Instantiates an argument to match a parameter, returns false if no matching results left
281 bool instantiateArgument(
282 const CodeLocation & location,
283 const ast::Type * paramType, const ast::Init * init, const ExplodedArgs_new & args,
284 std::vector< ArgPack > & results, std::size_t & genStart, const ast::SymbolTable & symtab,
285 unsigned nTuples = 0
286 ) {
287 if ( auto tupleType = dynamic_cast< const ast::TupleType * >( paramType ) ) {
288 // paramType is a TupleType -- group args into a TupleExpr
289 ++nTuples;
290 for ( const ast::Type * type : *tupleType ) {
291 // xxx - dropping initializer changes behaviour from previous, but seems correct
292 // ^^^ need to handle the case where a tuple has a default argument
293 if ( ! instantiateArgument( location,
294 type, nullptr, args, results, genStart, symtab, nTuples ) ) return false;
295 nTuples = 0;
296 }
297 // re-constitute tuples for final generation
298 for ( auto i = genStart; i < results.size(); ++i ) {
299 results[i].endTuple( results );
300 }
301 return true;
302 } else if ( const ast::TypeInstType * ttype = Tuples::isTtype( paramType ) ) {
303 // paramType is a ttype, consumes all remaining arguments
304
305 // completed tuples; will be spliced to end of results to finish
306 std::vector< ArgPack > finalResults{};
307
308 // iterate until all results completed
309 std::size_t genEnd;
310 ++nTuples;
311 do {
312 genEnd = results.size();
313
314 // add another argument to results
315 for ( std::size_t i = genStart; i < genEnd; ++i ) {
316 unsigned nextArg = results[i].nextArg;
317
318 // use next element of exploded tuple if present
319 if ( results[i].hasExpl() ) {
320 const ExplodedArg & expl = results[i].getExpl( args );
321
322 unsigned nextExpl = results[i].nextExpl + 1;
323 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
324
325 results.emplace_back(
326 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
327 copy( results[i].need ), copy( results[i].have ),
328 copy( results[i].open ), nextArg, nTuples, Cost::zero, nextExpl,
329 results[i].explAlt );
330
331 continue;
332 }
333
334 // finish result when out of arguments
335 if ( nextArg >= args.size() ) {
336 ArgPack newResult{
337 results[i].env, results[i].need, results[i].have, results[i].open };
338 newResult.nextArg = nextArg;
339 const ast::Type * argType = nullptr;
340
341 if ( nTuples > 0 || ! results[i].expr ) {
342 // first iteration or no expression to clone,
343 // push empty tuple expression
344 newResult.parent = i;
345 newResult.expr = new ast::TupleExpr( location, {} );
346 argType = newResult.expr->result;
347 } else {
348 // clone result to collect tuple
349 newResult.parent = results[i].parent;
350 newResult.cost = results[i].cost;
351 newResult.tupleStart = results[i].tupleStart;
352 newResult.expr = results[i].expr;
353 argType = newResult.expr->result;
354
355 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {
356 // the case where a ttype value is passed directly is special,
357 // e.g. for argument forwarding purposes
358 // xxx - what if passing multiple arguments, last of which is
359 // ttype?
360 // xxx - what would happen if unify was changed so that unifying
361 // tuple
362 // types flattened both before unifying lists? then pass in
363 // TupleType (ttype) below.
364 --newResult.tupleStart;
365 } else {
366 // collapse leftover arguments into tuple
367 newResult.endTuple( results );
368 argType = newResult.expr->result;
369 }
370 }
371
372 // check unification for ttype before adding to final
373 if (
374 unify(
375 ttype, argType, newResult.env, newResult.need, newResult.have,
376 newResult.open )
377 ) {
378 finalResults.emplace_back( std::move( newResult ) );
379 }
380
381 continue;
382 }
383
384 // add each possible next argument
385 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
386 const ExplodedArg & expl = args[nextArg][j];
387
388 // fresh copies of parent parameters for this iteration
389 ast::TypeEnvironment env = results[i].env;
390 ast::OpenVarSet open = results[i].open;
391
392 env.addActual( expl.env, open );
393
394 // skip empty tuple arguments by (nearly) cloning parent into next gen
395 if ( expl.exprs.empty() ) {
396 results.emplace_back(
397 results[i], std::move( env ), copy( results[i].need ),
398 copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost );
399
400 continue;
401 }
402
403 // add new result
404 results.emplace_back(
405 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
406 copy( results[i].have ), std::move( open ), nextArg + 1, nTuples,
407 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
408 }
409 }
410
411 // reset for next round
412 genStart = genEnd;
413 nTuples = 0;
414 } while ( genEnd != results.size() );
415
416 // splice final results onto results
417 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {
418 results.emplace_back( std::move( finalResults[i] ) );
419 }
420 return ! finalResults.empty();
421 }
422
423 // iterate each current subresult
424 std::size_t genEnd = results.size();
425 for ( std::size_t i = genStart; i < genEnd; ++i ) {
426 unsigned nextArg = results[i].nextArg;
427
428 // use remainder of exploded tuple if present
429 if ( results[i].hasExpl() ) {
430 const ExplodedArg & expl = results[i].getExpl( args );
431 const ast::Expr * expr = expl.exprs[ results[i].nextExpl ];
432
433 ast::TypeEnvironment env = results[i].env;
434 ast::AssertionSet need = results[i].need, have = results[i].have;
435 ast::OpenVarSet open = results[i].open;
436
437 const ast::Type * argType = expr->result;
438
439 PRINT(
440 std::cerr << "param type is ";
441 ast::print( std::cerr, paramType );
442 std::cerr << std::endl << "arg type is ";
443 ast::print( std::cerr, argType );
444 std::cerr << std::endl;
445 )
446
447 if ( unify( paramType, argType, env, need, have, open ) ) {
448 unsigned nextExpl = results[i].nextExpl + 1;
449 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
450
451 results.emplace_back(
452 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg,
453 nTuples, Cost::zero, nextExpl, results[i].explAlt );
454 }
455
456 continue;
457 }
458
459 // use default initializers if out of arguments
460 if ( nextArg >= args.size() ) {
461 if ( const ast::ConstantExpr * cnst = getDefaultValue( init ) ) {
462 ast::TypeEnvironment env = results[i].env;
463 ast::AssertionSet need = results[i].need, have = results[i].have;
464 ast::OpenVarSet open = results[i].open;
465
466 if ( unify( paramType, cnst->result, env, need, have, open ) ) {
467 results.emplace_back(
468 i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ),
469 std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples );
470 }
471 }
472
473 continue;
474 }
475
476 // Check each possible next argument
477 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
478 const ExplodedArg & expl = args[nextArg][j];
479
480 // fresh copies of parent parameters for this iteration
481 ast::TypeEnvironment env = results[i].env;
482 ast::AssertionSet need = results[i].need, have = results[i].have;
483 ast::OpenVarSet open = results[i].open;
484
485 env.addActual( expl.env, open );
486
487 // skip empty tuple arguments by (nearly) cloning parent into next gen
488 if ( expl.exprs.empty() ) {
489 results.emplace_back(
490 results[i], std::move( env ), std::move( need ), std::move( have ), std::move( open ),
491 nextArg + 1, expl.cost );
492
493 continue;
494 }
495
496 // consider only first exploded arg
497 const ast::Expr * expr = expl.exprs.front();
498 const ast::Type * argType = expr->result;
499
500 PRINT(
501 std::cerr << "param type is ";
502 ast::print( std::cerr, paramType );
503 std::cerr << std::endl << "arg type is ";
504 ast::print( std::cerr, argType );
505 std::cerr << std::endl;
506 )
507
508 // attempt to unify types
509 if ( unify( paramType, argType, env, need, have, open ) ) {
510 // add new result
511 results.emplace_back(
512 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),
513 nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
514 }
515 }
516 }
517
518 // reset for next parameter
519 genStart = genEnd;
520
521 return genEnd != results.size(); // were any new results added?
522 }
523
524 /// Generate a cast expression from `arg` to `toType`
525 const ast::Expr * restructureCast(
526 ast::ptr< ast::Expr > & arg, const ast::Type * toType, ast::GeneratedFlag isGenerated = ast::GeneratedCast
527 ) {
528 if (
529 arg->result->size() > 1
530 && ! toType->isVoid()
531 && ! dynamic_cast< const ast::ReferenceType * >( toType )
532 ) {
533 // Argument is a tuple and the target type is neither void nor a reference. Cast each
534 // member of the tuple to its corresponding target type, producing the tuple of those
535 // cast expressions. If there are more components of the tuple than components in the
536 // target type, then excess components do not come out in the result expression (but
537 // UniqueExpr ensures that the side effects will still be produced)
538 if ( Tuples::maybeImpureIgnoreUnique( arg ) ) {
539 // expressions which may contain side effects require a single unique instance of
540 // the expression
541 arg = new ast::UniqueExpr{ arg->location, arg };
542 }
543 std::vector< ast::ptr< ast::Expr > > components;
544 for ( unsigned i = 0; i < toType->size(); ++i ) {
545 // cast each component
546 ast::ptr< ast::Expr > idx = new ast::TupleIndexExpr{ arg->location, arg, i };
547 components.emplace_back(
548 restructureCast( idx, toType->getComponent( i ), isGenerated ) );
549 }
550 return new ast::TupleExpr{ arg->location, std::move( components ) };
551 } else {
552 // handle normally
553 return new ast::CastExpr{ arg->location, arg, toType, isGenerated };
554 }
555 }
556
557 /// Gets the name from an untyped member expression (must be NameExpr)
558 const std::string & getMemberName( const ast::UntypedMemberExpr * memberExpr ) {
559 if ( memberExpr->member.as< ast::ConstantExpr >() ) {
560 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );
561 }
562
563 return memberExpr->member.strict_as< ast::NameExpr >()->name;
564 }
565
566 /// Actually visits expressions to find their candidate interpretations
567 class Finder final : public ast::WithShortCircuiting {
568 const ResolveContext & context;
569 const ast::SymbolTable & symtab;
570 public:
571 // static size_t traceId;
572 CandidateFinder & selfFinder;
573 CandidateList & candidates;
574 const ast::TypeEnvironment & tenv;
575 ast::ptr< ast::Type > & targetType;
576
577 enum Errors {
578 NotFound,
579 NoMatch,
580 ArgsToFew,
581 ArgsToMany,
582 RetsToFew,
583 RetsToMany,
584 NoReason
585 };
586
587 struct {
588 Errors code = NotFound;
589 } reason;
590
591 Finder( CandidateFinder & f )
592 : context( f.context ), symtab( context.symtab ), selfFinder( f ),
593 candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {}
594
595 void previsit( const ast::Node * ) { visit_children = false; }
596
597 /// Convenience to add candidate to list
598 template<typename... Args>
599 void addCandidate( Args &&... args ) {
600 candidates.emplace_back( new Candidate{ std::forward<Args>( args )... } );
601 reason.code = NoReason;
602 }
603
604 void postvisit( const ast::ApplicationExpr * applicationExpr ) {
605 addCandidate( applicationExpr, tenv );
606 }
607
608 /// Set up candidate assertions for inference
609 void inferParameters( CandidateRef & newCand, CandidateList & out );
610
611 /// Completes a function candidate with arguments located
612 void validateFunctionCandidate(
613 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
614 CandidateList & out );
615
616 /// Builds a list of candidates for a function, storing them in out
617 void makeFunctionCandidates(
618 const CodeLocation & location,
619 const CandidateRef & func, const ast::FunctionType * funcType,
620 const ExplodedArgs_new & args, CandidateList & out );
621
622 /// Adds implicit struct-conversions to the alternative list
623 void addAnonConversions( const CandidateRef & cand );
624
625 /// Adds aggregate member interpretations
626 void addAggMembers(
627 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
628 const Candidate & cand, const Cost & addedCost, const std::string & name
629 );
630
631 /// Adds tuple member interpretations
632 void addTupleMembers(
633 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
634 const Cost & addedCost, const ast::Expr * member
635 );
636
637 /// true if expression is an lvalue
638 static bool isLvalue( const ast::Expr * x ) {
639 return x->result && ( x->get_lvalue() || x->result.as< ast::ReferenceType >() );
640 }
641
642 void postvisit( const ast::UntypedExpr * untypedExpr );
643 void postvisit( const ast::VariableExpr * variableExpr );
644 void postvisit( const ast::ConstantExpr * constantExpr );
645 void postvisit( const ast::SizeofExpr * sizeofExpr );
646 void postvisit( const ast::AlignofExpr * alignofExpr );
647 void postvisit( const ast::AddressExpr * addressExpr );
648 void postvisit( const ast::LabelAddressExpr * labelExpr );
649 void postvisit( const ast::CastExpr * castExpr );
650 void postvisit( const ast::VirtualCastExpr * castExpr );
651 void postvisit( const ast::KeywordCastExpr * castExpr );
652 void postvisit( const ast::UntypedMemberExpr * memberExpr );
653 void postvisit( const ast::MemberExpr * memberExpr );
654 void postvisit( const ast::NameExpr * nameExpr );
655 void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr );
656 void postvisit( const ast::OffsetofExpr * offsetofExpr );
657 void postvisit( const ast::OffsetPackExpr * offsetPackExpr );
658 void postvisit( const ast::LogicalExpr * logicalExpr );
659 void postvisit( const ast::ConditionalExpr * conditionalExpr );
660 void postvisit( const ast::CommaExpr * commaExpr );
661 void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr );
662 void postvisit( const ast::ConstructorExpr * ctorExpr );
663 void postvisit( const ast::RangeExpr * rangeExpr );
664 void postvisit( const ast::UntypedTupleExpr * tupleExpr );
665 void postvisit( const ast::TupleExpr * tupleExpr );
666 void postvisit( const ast::TupleIndexExpr * tupleExpr );
667 void postvisit( const ast::TupleAssignExpr * tupleExpr );
668 void postvisit( const ast::UniqueExpr * unqExpr );
669 void postvisit( const ast::StmtExpr * stmtExpr );
670 void postvisit( const ast::UntypedInitExpr * initExpr );
671
672 void postvisit( const ast::InitExpr * ) {
673 assertf( false, "CandidateFinder should never see a resolved InitExpr." );
674 }
675
676 void postvisit( const ast::DeletedExpr * ) {
677 assertf( false, "CandidateFinder should never see a DeletedExpr." );
678 }
679
680 void postvisit( const ast::GenericExpr * ) {
681 assertf( false, "_Generic is not yet supported." );
682 }
683 };
684
685 /// Set up candidate assertions for inference
686 void Finder::inferParameters( CandidateRef & newCand, CandidateList & out ) {
687 // Set need bindings for any unbound assertions
688 UniqueId crntResnSlot = 0; // matching ID for this expression's assertions
689 for ( auto & assn : newCand->need ) {
690 // skip already-matched assertions
691 if ( assn.second.resnSlot != 0 ) continue;
692 // assign slot for expression if needed
693 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }
694 // fix slot to assertion
695 assn.second.resnSlot = crntResnSlot;
696 }
697 // pair slot to expression
698 if ( crntResnSlot != 0 ) {
699 newCand->expr.get_and_mutate()->inferred.resnSlots().emplace_back( crntResnSlot );
700 }
701
702 // add to output list; assertion satisfaction will occur later
703 out.emplace_back( newCand );
704 }
705
706 /// Completes a function candidate with arguments located
707 void Finder::validateFunctionCandidate(
708 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
709 CandidateList & out
710 ) {
711 ast::ApplicationExpr * appExpr =
712 new ast::ApplicationExpr{ func->expr->location, func->expr };
713 // sum cost and accumulate arguments
714 std::deque< const ast::Expr * > args;
715 Cost cost = func->cost;
716 const ArgPack * pack = &result;
717 while ( pack->expr ) {
718 args.emplace_front( pack->expr );
719 cost += pack->cost;
720 pack = &results[pack->parent];
721 }
722 std::vector< ast::ptr< ast::Expr > > vargs( args.begin(), args.end() );
723 appExpr->args = std::move( vargs );
724 // build and validate new candidate
725 auto newCand =
726 std::make_shared<Candidate>( appExpr, result.env, result.open, result.need, cost );
727 PRINT(
728 std::cerr << "instantiate function success: " << appExpr << std::endl;
729 std::cerr << "need assertions:" << std::endl;
730 ast::print( std::cerr, result.need, 2 );
731 )
732 inferParameters( newCand, out );
733 }
734
735 /// Builds a list of candidates for a function, storing them in out
736 void Finder::makeFunctionCandidates(
737 const CodeLocation & location,
738 const CandidateRef & func, const ast::FunctionType * funcType,
739 const ExplodedArgs_new & args, CandidateList & out
740 ) {
741 ast::OpenVarSet funcOpen;
742 ast::AssertionSet funcNeed, funcHave;
743 ast::TypeEnvironment funcEnv{ func->env };
744 makeUnifiableVars( funcType, funcOpen, funcNeed );
745 // add all type variables as open variables now so that those not used in the
746 // parameter list are still considered open
747 funcEnv.add( funcType->forall );
748
749 if ( targetType && ! targetType->isVoid() && ! funcType->returns.empty() ) {
750 // attempt to narrow based on expected target type
751 const ast::Type * returnType = funcType->returns.front();
752 if ( selfFinder.strictMode ) {
753 if ( ! unifyExact(
754 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, noWiden() ) // xxx - is no widening correct?
755 ) {
756 // unification failed, do not pursue this candidate
757 return;
758 }
759 }
760 else {
761 if ( ! unify(
762 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen )
763 ) {
764 // unification failed, do not pursue this candidate
765 return;
766 }
767 }
768 }
769
770 // iteratively build matches, one parameter at a time
771 std::vector< ArgPack > results;
772 results.emplace_back( funcEnv, funcNeed, funcHave, funcOpen );
773 std::size_t genStart = 0;
774
775 // xxx - how to handle default arg after change to ftype representation?
776 if (const ast::VariableExpr * varExpr = func->expr.as<ast::VariableExpr>()) {
777 if (const ast::FunctionDecl * funcDecl = varExpr->var.as<ast::FunctionDecl>()) {
778 // function may have default args only if directly calling by name
779 // must use types on candidate however, due to RenameVars substitution
780 auto nParams = funcType->params.size();
781
782 for (size_t i=0; i<nParams; ++i) {
783 auto obj = funcDecl->params[i].strict_as<ast::ObjectDecl>();
784 if ( !instantiateArgument( location,
785 funcType->params[i], obj->init, args, results, genStart, symtab)) return;
786 }
787 goto endMatch;
788 }
789 }
790 for ( const auto & param : funcType->params ) {
791 // Try adding the arguments corresponding to the current parameter to the existing
792 // matches
793 // no default args for indirect calls
794 if ( !instantiateArgument( location,
795 param, nullptr, args, results, genStart, symtab ) ) return;
796 }
797
798 endMatch:
799 if ( funcType->isVarArgs ) {
800 // append any unused arguments to vararg pack
801 std::size_t genEnd;
802 do {
803 genEnd = results.size();
804
805 // iterate results
806 for ( std::size_t i = genStart; i < genEnd; ++i ) {
807 unsigned nextArg = results[i].nextArg;
808
809 // use remainder of exploded tuple if present
810 if ( results[i].hasExpl() ) {
811 const ExplodedArg & expl = results[i].getExpl( args );
812
813 unsigned nextExpl = results[i].nextExpl + 1;
814 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
815
816 results.emplace_back(
817 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
818 copy( results[i].need ), copy( results[i].have ),
819 copy( results[i].open ), nextArg, 0, Cost::zero, nextExpl,
820 results[i].explAlt );
821
822 continue;
823 }
824
825 // finish result when out of arguments
826 if ( nextArg >= args.size() ) {
827 validateFunctionCandidate( func, results[i], results, out );
828
829 continue;
830 }
831
832 // add each possible next argument
833 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
834 const ExplodedArg & expl = args[nextArg][j];
835
836 // fresh copies of parent parameters for this iteration
837 ast::TypeEnvironment env = results[i].env;
838 ast::OpenVarSet open = results[i].open;
839
840 env.addActual( expl.env, open );
841
842 // skip empty tuple arguments by (nearly) cloning parent into next gen
843 if ( expl.exprs.empty() ) {
844 results.emplace_back(
845 results[i], std::move( env ), copy( results[i].need ),
846 copy( results[i].have ), std::move( open ), nextArg + 1,
847 expl.cost );
848
849 continue;
850 }
851
852 // add new result
853 results.emplace_back(
854 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
855 copy( results[i].have ), std::move( open ), nextArg + 1, 0, expl.cost,
856 expl.exprs.size() == 1 ? 0 : 1, j );
857 }
858 }
859
860 genStart = genEnd;
861 } while( genEnd != results.size() );
862 } else {
863 // filter out the results that don't use all the arguments
864 for ( std::size_t i = genStart; i < results.size(); ++i ) {
865 ArgPack & result = results[i];
866 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {
867 validateFunctionCandidate( func, result, results, out );
868 }
869 }
870 }
871 }
872
873 /// Adds implicit struct-conversions to the alternative list
874 void Finder::addAnonConversions( const CandidateRef & cand ) {
875 // adds anonymous member interpretations whenever an aggregate value type is seen.
876 // it's okay for the aggregate expression to have reference type -- cast it to the
877 // base type to treat the aggregate as the referenced value
878 ast::ptr< ast::Expr > aggrExpr( cand->expr );
879 ast::ptr< ast::Type > & aggrType = aggrExpr.get_and_mutate()->result;
880 cand->env.apply( aggrType );
881
882 if ( aggrType.as< ast::ReferenceType >() ) {
883 aggrExpr = new ast::CastExpr{ aggrExpr, aggrType->stripReferences() };
884 }
885
886 if ( auto structInst = aggrExpr->result.as< ast::StructInstType >() ) {
887 addAggMembers( structInst, aggrExpr, *cand, Cost::unsafe, "" );
888 } else if ( auto unionInst = aggrExpr->result.as< ast::UnionInstType >() ) {
889 addAggMembers( unionInst, aggrExpr, *cand, Cost::unsafe, "" );
890 }
891 }
892
893 /// Adds aggregate member interpretations
894 void Finder::addAggMembers(
895 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
896 const Candidate & cand, const Cost & addedCost, const std::string & name
897 ) {
898 for ( const ast::Decl * decl : aggrInst->lookup( name ) ) {
899 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( decl );
900 CandidateRef newCand = std::make_shared<Candidate>(
901 cand, new ast::MemberExpr{ expr->location, dwt, expr }, addedCost );
902 // add anonymous member interpretations whenever an aggregate value type is seen
903 // as a member expression
904 addAnonConversions( newCand );
905 candidates.emplace_back( std::move( newCand ) );
906 }
907 }
908
909 /// Adds tuple member interpretations
910 void Finder::addTupleMembers(
911 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
912 const Cost & addedCost, const ast::Expr * member
913 ) {
914 if ( auto constantExpr = dynamic_cast< const ast::ConstantExpr * >( member ) ) {
915 // get the value of the constant expression as an int, must be between 0 and the
916 // length of the tuple to have meaning
917 long long val = constantExpr->intValue();
918 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {
919 addCandidate(
920 cand, new ast::TupleIndexExpr{ expr->location, expr, (unsigned)val },
921 addedCost );
922 }
923 }
924 }
925
926 void Finder::postvisit( const ast::UntypedExpr * untypedExpr ) {
927 std::vector< CandidateFinder > argCandidates =
928 selfFinder.findSubExprs( untypedExpr->args );
929
930 // take care of possible tuple assignments
931 // if not tuple assignment, handled as normal function call
932 Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates );
933
934 CandidateFinder funcFinder( context, tenv );
935 if (auto nameExpr = untypedExpr->func.as<ast::NameExpr>()) {
936 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
937 if (kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS) {
938 assertf(!argCandidates.empty(), "special function call without argument");
939 for (auto & firstArgCand: argCandidates[0]) {
940 ast::ptr<ast::Type> argType = firstArgCand->expr->result;
941 firstArgCand->env.apply(argType);
942 // strip references
943 // xxx - is this correct?
944 while (argType.as<ast::ReferenceType>()) argType = argType.as<ast::ReferenceType>()->base;
945
946 // convert 1-tuple to plain type
947 if (auto tuple = argType.as<ast::TupleType>()) {
948 if (tuple->size() == 1) {
949 argType = tuple->types[0];
950 }
951 }
952
953 // if argType is an unbound type parameter, all special functions need to be searched.
954 if (isUnboundType(argType)) {
955 funcFinder.otypeKeys.clear();
956 break;
957 }
958
959 if (argType.as<ast::PointerType>()) funcFinder.otypeKeys.insert(Mangle::Encoding::pointer);
960 // else if (const ast::EnumInstType * enumInst = argType.as<ast::EnumInstType>()) {
961 // const ast::EnumDecl * enumDecl = enumInst->base; // Here
962 // if ( const ast::Type* enumType = enumDecl->base ) {
963 // // instance of enum (T) is a instance of type (T)
964 // funcFinder.otypeKeys.insert(Mangle::mangle(enumType, Mangle::NoGenericParams | Mangle::Type));
965 // } else {
966 // // instance of an untyped enum is techically int
967 // funcFinder.otypeKeys.insert(Mangle::mangle(enumDecl, Mangle::NoGenericParams | Mangle::Type));
968 // }
969 // }
970 else funcFinder.otypeKeys.insert(Mangle::mangle(argType, Mangle::NoGenericParams | Mangle::Type));
971 }
972 }
973 }
974 // if candidates are already produced, do not fail
975 // xxx - is it possible that handleTupleAssignment and main finder both produce candidates?
976 // this means there exists ctor/assign functions with a tuple as first parameter.
977 ResolvMode mode = {
978 true, // adjust
979 !untypedExpr->func.as<ast::NameExpr>(), // prune if not calling by name
980 selfFinder.candidates.empty() // failfast if other options are not found
981 };
982 funcFinder.find( untypedExpr->func, mode );
983 // short-circuit if no candidates
984 // if ( funcFinder.candidates.empty() ) return;
985
986 reason.code = NoMatch;
987
988 // find function operators
989 ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; // ??? why not ?{}
990 CandidateFinder opFinder( context, tenv );
991 // okay if there aren't any function operations
992 opFinder.find( opExpr, ResolvMode::withoutFailFast() );
993 PRINT(
994 std::cerr << "known function ops:" << std::endl;
995 print( std::cerr, opFinder.candidates, 1 );
996 )
997
998 // pre-explode arguments
999 ExplodedArgs_new argExpansions;
1000 for ( const CandidateFinder & args : argCandidates ) {
1001 argExpansions.emplace_back();
1002 auto & argE = argExpansions.back();
1003 for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); }
1004 }
1005
1006 // Find function matches
1007 CandidateList found;
1008 SemanticErrorException errors;
1009 for ( CandidateRef & func : funcFinder ) {
1010 try {
1011 PRINT(
1012 std::cerr << "working on alternative:" << std::endl;
1013 print( std::cerr, *func, 2 );
1014 )
1015
1016 // check if the type is a pointer to function
1017 const ast::Type * funcResult = func->expr->result->stripReferences();
1018 if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) {
1019 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1020 // if (!selfFinder.allowVoid && function->returns.empty()) continue;
1021 CandidateRef newFunc{ new Candidate{ *func } };
1022 newFunc->expr =
1023 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1024 makeFunctionCandidates( untypedExpr->location,
1025 newFunc, function, argExpansions, found );
1026 }
1027 } else if (
1028 auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult )
1029 ) {
1030 if ( const ast::EqvClass * clz = func->env.lookup( *inst ) ) {
1031 if ( auto function = clz->bound.as< ast::FunctionType >() ) {
1032 CandidateRef newFunc( new Candidate( *func ) );
1033 newFunc->expr =
1034 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1035 makeFunctionCandidates( untypedExpr->location,
1036 newFunc, function, argExpansions, found );
1037 }
1038 }
1039 }
1040 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1041 }
1042
1043 // Find matches on function operators `?()`
1044 if ( ! opFinder.candidates.empty() ) {
1045 // add exploded function alternatives to front of argument list
1046 std::vector< ExplodedArg > funcE;
1047 funcE.reserve( funcFinder.candidates.size() );
1048 for ( const CandidateRef & func : funcFinder ) {
1049 funcE.emplace_back( *func, symtab );
1050 }
1051 argExpansions.emplace_front( std::move( funcE ) );
1052
1053 for ( const CandidateRef & op : opFinder ) {
1054 try {
1055 // check if type is pointer-to-function
1056 const ast::Type * opResult = op->expr->result->stripReferences();
1057 if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) {
1058 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1059 CandidateRef newOp{ new Candidate{ *op} };
1060 newOp->expr =
1061 referenceToRvalueConversion( newOp->expr, newOp->cost );
1062 makeFunctionCandidates( untypedExpr->location,
1063 newOp, function, argExpansions, found );
1064 }
1065 }
1066 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1067 }
1068 }
1069
1070 // Implement SFINAE; resolution errors are only errors if there aren't any non-error
1071 // candidates
1072 if ( found.empty() && ! errors.isEmpty() ) { throw errors; }
1073
1074 // only keep the best matching intrinsic result to match C semantics (no unexpected narrowing/widening)
1075 // TODO: keep one for each set of argument candidates?
1076 Cost intrinsicCost = Cost::infinity;
1077 CandidateList intrinsicResult;
1078
1079 // Compute conversion costs
1080 for ( CandidateRef & withFunc : found ) {
1081 Cost cvtCost = computeApplicationConversionCost( withFunc, symtab );
1082
1083 PRINT(
1084 auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >();
1085 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
1086 auto function = pointer->base.strict_as< ast::FunctionType >();
1087
1088 std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl;
1089 std::cerr << "parameters are:" << std::endl;
1090 ast::printAll( std::cerr, function->params, 2 );
1091 std::cerr << "arguments are:" << std::endl;
1092 ast::printAll( std::cerr, appExpr->args, 2 );
1093 std::cerr << "bindings are:" << std::endl;
1094 ast::print( std::cerr, withFunc->env, 2 );
1095 std::cerr << "cost is: " << withFunc->cost << std::endl;
1096 std::cerr << "cost of conversion is:" << cvtCost << std::endl;
1097 )
1098
1099 if ( cvtCost != Cost::infinity ) {
1100 withFunc->cvtCost = cvtCost;
1101 withFunc->cost += cvtCost;
1102 auto func = withFunc->expr.strict_as<ast::ApplicationExpr>()->func.as<ast::VariableExpr>();
1103 if (func && func->var->linkage == ast::Linkage::Intrinsic) {
1104 if (withFunc->cost < intrinsicCost) {
1105 intrinsicResult.clear();
1106 intrinsicCost = withFunc->cost;
1107 }
1108 if (withFunc->cost == intrinsicCost) {
1109 intrinsicResult.emplace_back(std::move(withFunc));
1110 }
1111 }
1112 else {
1113 candidates.emplace_back( std::move( withFunc ) );
1114 }
1115 }
1116 }
1117 spliceBegin( candidates, intrinsicResult );
1118 found = std::move( candidates );
1119
1120 // use a new list so that candidates are not examined by addAnonConversions twice
1121 // CandidateList winners = findMinCost( found );
1122 // promoteCvtCost( winners );
1123
1124 // function may return a struct/union value, in which case we need to add candidates
1125 // for implicit conversions to each of the anonymous members, which must happen after
1126 // `findMinCost`, since anon conversions are never the cheapest
1127 for ( const CandidateRef & c : found ) {
1128 addAnonConversions( c );
1129 }
1130 // would this be too slow when we don't check cost anymore?
1131 spliceBegin( candidates, found );
1132
1133 if ( candidates.empty() && targetType && ! targetType->isVoid() && !selfFinder.strictMode ) {
1134 // If resolution is unsuccessful with a target type, try again without, since it
1135 // will sometimes succeed when it wouldn't with a target type binding.
1136 // For example:
1137 // forall( otype T ) T & ?[]( T *, ptrdiff_t );
1138 // const char * x = "hello world";
1139 // unsigned char ch = x[0];
1140 // Fails with simple return type binding (xxx -- check this!) as follows:
1141 // * T is bound to unsigned char
1142 // * (x: const char *) is unified with unsigned char *, which fails
1143 // xxx -- fix this better
1144 targetType = nullptr;
1145 postvisit( untypedExpr );
1146 }
1147 }
1148
1149 void Finder::postvisit( const ast::AddressExpr * addressExpr ) {
1150 CandidateFinder finder( context, tenv );
1151 finder.find( addressExpr->arg );
1152
1153 if ( finder.candidates.empty() ) return;
1154
1155 reason.code = NoMatch;
1156
1157 for ( CandidateRef & r : finder.candidates ) {
1158 if ( ! isLvalue( r->expr ) ) continue;
1159 addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } );
1160 }
1161 }
1162
1163 void Finder::postvisit( const ast::LabelAddressExpr * labelExpr ) {
1164 addCandidate( labelExpr, tenv );
1165 }
1166
1167 void Finder::postvisit( const ast::CastExpr * castExpr ) {
1168 ast::ptr< ast::Type > toType = castExpr->result;
1169 assert( toType );
1170 toType = resolveTypeof( toType, context );
1171 toType = adjustExprType( toType, tenv, symtab );
1172
1173 CandidateFinder finder( context, tenv, toType );
1174 if (toType->isVoid()) {
1175 finder.allowVoid = true;
1176 }
1177 if ( castExpr->kind == ast::CastExpr::Return ) {
1178 finder.strictMode = true;
1179 finder.find( castExpr->arg, ResolvMode::withAdjustment() );
1180
1181 // return casts are eliminated (merely selecting an overload, no actual operation)
1182 candidates = std::move(finder.candidates);
1183 }
1184 finder.find( castExpr->arg, ResolvMode::withAdjustment() );
1185
1186 if ( !finder.candidates.empty() ) reason.code = NoMatch;
1187
1188 CandidateList matches;
1189 Cost minExprCost = Cost::infinity;
1190 Cost minCastCost = Cost::infinity;
1191 for ( CandidateRef & cand : finder.candidates ) {
1192 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1193 ast::OpenVarSet open( cand->open );
1194
1195 cand->env.extractOpenVars( open );
1196
1197 // It is possible that a cast can throw away some values in a multiply-valued
1198 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of the
1199 // subexpression results that are cast directly. The candidate is invalid if it
1200 // has fewer results than there are types to cast to.
1201 int discardedValues = cand->expr->result->size() - toType->size();
1202 if ( discardedValues < 0 ) continue;
1203
1204 // unification run for side-effects
1205 unify( toType, cand->expr->result, cand->env, need, have, open );
1206 Cost thisCost =
1207 (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast)
1208 ? conversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env )
1209 : castCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env );
1210
1211 PRINT(
1212 std::cerr << "working on cast with result: " << toType << std::endl;
1213 std::cerr << "and expr type: " << cand->expr->result << std::endl;
1214 std::cerr << "env: " << cand->env << std::endl;
1215 )
1216 if ( thisCost != Cost::infinity ) {
1217 PRINT(
1218 std::cerr << "has finite cost." << std::endl;
1219 )
1220 // count one safe conversion for each value that is thrown away
1221 thisCost.incSafe( discardedValues );
1222 // select first on argument cost, then conversion cost
1223 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1224 minExprCost = cand->cost;
1225 minCastCost = thisCost;
1226 matches.clear();
1227
1228
1229 }
1230 // ambiguous case, still output candidates to print in error message
1231 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1232 CandidateRef newCand = std::make_shared<Candidate>(
1233 restructureCast( cand->expr, toType, castExpr->isGenerated ),
1234 copy( cand->env ), std::move( open ), std::move( need ), cand->cost + thisCost);
1235 // currently assertions are always resolved immediately so this should have no effect.
1236 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1237 // we may need to revisit the logic.
1238 inferParameters( newCand, matches );
1239 }
1240 // else skip, better alternatives found
1241
1242 }
1243 }
1244 candidates = std::move(matches);
1245
1246 //CandidateList minArgCost = findMinCost( matches );
1247 //promoteCvtCost( minArgCost );
1248 //candidates = findMinCost( minArgCost );
1249 }
1250
1251 void Finder::postvisit( const ast::VirtualCastExpr * castExpr ) {
1252 assertf( castExpr->result, "Implicit virtual cast targets not yet supported." );
1253 CandidateFinder finder( context, tenv );
1254 // don't prune here, all alternatives guaranteed to have same type
1255 finder.find( castExpr->arg, ResolvMode::withoutPrune() );
1256 for ( CandidateRef & r : finder.candidates ) {
1257 addCandidate(
1258 *r,
1259 new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } );
1260 }
1261 }
1262
1263 void Finder::postvisit( const ast::KeywordCastExpr * castExpr ) {
1264 const auto & loc = castExpr->location;
1265 assertf( castExpr->result, "Cast target should have been set in Validate." );
1266 auto ref = castExpr->result.strict_as<ast::ReferenceType>();
1267 auto inst = ref->base.strict_as<ast::StructInstType>();
1268 auto target = inst->base.get();
1269
1270 CandidateFinder finder( context, tenv );
1271
1272 auto pick_alternatives = [target, this](CandidateList & found, bool expect_ref) {
1273 for (auto & cand : found) {
1274 const ast::Type * expr = cand->expr->result.get();
1275 if (expect_ref) {
1276 auto res = dynamic_cast<const ast::ReferenceType*>(expr);
1277 if (!res) { continue; }
1278 expr = res->base.get();
1279 }
1280
1281 if (auto insttype = dynamic_cast<const ast::TypeInstType*>(expr)) {
1282 auto td = cand->env.lookup(*insttype);
1283 if (!td) { continue; }
1284 expr = td->bound.get();
1285 }
1286
1287 if (auto base = dynamic_cast<const ast::StructInstType*>(expr)) {
1288 if (base->base == target) {
1289 candidates.push_back( std::move(cand) );
1290 reason.code = NoReason;
1291 }
1292 }
1293 }
1294 };
1295
1296 try {
1297 // Attempt 1 : turn (thread&)X into (thread$&)X.__thrd
1298 // Clone is purely for memory management
1299 std::unique_ptr<const ast::Expr> tech1 { new ast::UntypedMemberExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.field), castExpr->arg) };
1300
1301 // don't prune here, since it's guaranteed all alternatives will have the same type
1302 finder.find( tech1.get(), ResolvMode::withoutPrune() );
1303 pick_alternatives(finder.candidates, false);
1304
1305 return;
1306 } catch(SemanticErrorException & ) {}
1307
1308 // Fallback : turn (thread&)X into (thread$&)get_thread(X)
1309 std::unique_ptr<const ast::Expr> fallback { ast::UntypedExpr::createDeref(loc, new ast::UntypedExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.getter), { castExpr->arg })) };
1310 // don't prune here, since it's guaranteed all alternatives will have the same type
1311 finder.find( fallback.get(), ResolvMode::withoutPrune() );
1312
1313 pick_alternatives(finder.candidates, true);
1314
1315 // Whatever happens here, we have no more fallbacks
1316 }
1317
1318 void Finder::postvisit( const ast::UntypedMemberExpr * memberExpr ) {
1319 CandidateFinder aggFinder( context, tenv );
1320 aggFinder.find( memberExpr->aggregate, ResolvMode::withAdjustment() );
1321 for ( CandidateRef & agg : aggFinder.candidates ) {
1322 // it's okay for the aggregate expression to have reference type -- cast it to the
1323 // base type to treat the aggregate as the referenced value
1324 Cost addedCost = Cost::zero;
1325 agg->expr = referenceToRvalueConversion( agg->expr, addedCost );
1326
1327 // find member of the given type
1328 if ( auto structInst = agg->expr->result.as< ast::StructInstType >() ) {
1329 addAggMembers(
1330 structInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1331 } else if ( auto unionInst = agg->expr->result.as< ast::UnionInstType >() ) {
1332 addAggMembers(
1333 unionInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1334 } else if ( auto tupleType = agg->expr->result.as< ast::TupleType >() ) {
1335 addTupleMembers( tupleType, agg->expr, *agg, addedCost, memberExpr->member );
1336 }
1337 }
1338 }
1339
1340 void Finder::postvisit( const ast::MemberExpr * memberExpr ) {
1341 addCandidate( memberExpr, tenv );
1342 }
1343
1344 void Finder::postvisit( const ast::NameExpr * nameExpr ) {
1345 std::vector< ast::SymbolTable::IdData > declList;
1346 if (!selfFinder.otypeKeys.empty()) {
1347 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
1348 assertf(kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS, "special lookup with non-special target: %s", nameExpr->name.c_str());
1349
1350 for (auto & otypeKey: selfFinder.otypeKeys) {
1351 auto result = symtab.specialLookupId(kind, otypeKey);
1352 declList.insert(declList.end(), std::make_move_iterator(result.begin()), std::make_move_iterator(result.end()));
1353 }
1354 } else {
1355 declList = symtab.lookupId( nameExpr->name );
1356 }
1357 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )
1358
1359 if ( declList.empty() ) return;
1360
1361 reason.code = NoMatch;
1362
1363 for ( auto & data : declList ) {
1364 Cost cost = Cost::zero;
1365 ast::Expr * newExpr = data.combine( nameExpr->location, cost );
1366
1367 CandidateRef newCand = std::make_shared<Candidate>(
1368 newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, Cost::zero,
1369 cost );
1370
1371 if (newCand->expr->env) {
1372 newCand->env.add(*newCand->expr->env);
1373 auto mutExpr = newCand->expr.get_and_mutate();
1374 mutExpr->env = nullptr;
1375 newCand->expr = mutExpr;
1376 }
1377
1378 PRINT(
1379 std::cerr << "decl is ";
1380 ast::print( std::cerr, data.id );
1381 std::cerr << std::endl;
1382 std::cerr << "newExpr is ";
1383 ast::print( std::cerr, newExpr );
1384 std::cerr << std::endl;
1385 )
1386 newCand->expr = ast::mutate_field(
1387 newCand->expr.get(), &ast::Expr::result,
1388 renameTyVars( newCand->expr->result ) );
1389 // add anonymous member interpretations whenever an aggregate value type is seen
1390 // as a name expression
1391 addAnonConversions( newCand );
1392 candidates.emplace_back( std::move( newCand ) );
1393 }
1394 }
1395
1396 void Finder::postvisit( const ast::VariableExpr * variableExpr ) {
1397 // not sufficient to just pass `variableExpr` here, type might have changed since
1398 // creation
1399 addCandidate(
1400 new ast::VariableExpr{ variableExpr->location, variableExpr->var }, tenv );
1401 }
1402
1403 void Finder::postvisit( const ast::ConstantExpr * constantExpr ) {
1404 addCandidate( constantExpr, tenv );
1405 }
1406
1407 void Finder::postvisit( const ast::SizeofExpr * sizeofExpr ) {
1408 if ( sizeofExpr->type ) {
1409 addCandidate(
1410 new ast::SizeofExpr{
1411 sizeofExpr->location, resolveTypeof( sizeofExpr->type, context ) },
1412 tenv );
1413 } else {
1414 // find all candidates for the argument to sizeof
1415 CandidateFinder finder( context, tenv );
1416 finder.find( sizeofExpr->expr );
1417 // find the lowest-cost candidate, otherwise ambiguous
1418 CandidateList winners = findMinCost( finder.candidates );
1419 if ( winners.size() != 1 ) {
1420 SemanticError(
1421 sizeofExpr->expr.get(), "Ambiguous expression in sizeof operand: " );
1422 }
1423 // return the lowest-cost candidate
1424 CandidateRef & choice = winners.front();
1425 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1426 choice->cost = Cost::zero;
1427 addCandidate( *choice, new ast::SizeofExpr{ sizeofExpr->location, choice->expr } );
1428 }
1429 }
1430
1431 void Finder::postvisit( const ast::AlignofExpr * alignofExpr ) {
1432 if ( alignofExpr->type ) {
1433 addCandidate(
1434 new ast::AlignofExpr{
1435 alignofExpr->location, resolveTypeof( alignofExpr->type, context ) },
1436 tenv );
1437 } else {
1438 // find all candidates for the argument to alignof
1439 CandidateFinder finder( context, tenv );
1440 finder.find( alignofExpr->expr );
1441 // find the lowest-cost candidate, otherwise ambiguous
1442 CandidateList winners = findMinCost( finder.candidates );
1443 if ( winners.size() != 1 ) {
1444 SemanticError(
1445 alignofExpr->expr.get(), "Ambiguous expression in alignof operand: " );
1446 }
1447 // return the lowest-cost candidate
1448 CandidateRef & choice = winners.front();
1449 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1450 choice->cost = Cost::zero;
1451 addCandidate(
1452 *choice, new ast::AlignofExpr{ alignofExpr->location, choice->expr } );
1453 }
1454 }
1455
1456 void Finder::postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) {
1457 const ast::BaseInstType * aggInst;
1458 if (( aggInst = offsetofExpr->type.as< ast::StructInstType >() )) ;
1459 else if (( aggInst = offsetofExpr->type.as< ast::UnionInstType >() )) ;
1460 else return;
1461
1462 for ( const ast::Decl * member : aggInst->lookup( offsetofExpr->member ) ) {
1463 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( member );
1464 addCandidate(
1465 new ast::OffsetofExpr{ offsetofExpr->location, aggInst, dwt }, tenv );
1466 }
1467 }
1468
1469 void Finder::postvisit( const ast::OffsetofExpr * offsetofExpr ) {
1470 addCandidate( offsetofExpr, tenv );
1471 }
1472
1473 void Finder::postvisit( const ast::OffsetPackExpr * offsetPackExpr ) {
1474 addCandidate( offsetPackExpr, tenv );
1475 }
1476
1477 void Finder::postvisit( const ast::LogicalExpr * logicalExpr ) {
1478 CandidateFinder finder1( context, tenv );
1479 finder1.find( logicalExpr->arg1, ResolvMode::withAdjustment() );
1480 if ( finder1.candidates.empty() ) return;
1481
1482 CandidateFinder finder2( context, tenv );
1483 finder2.find( logicalExpr->arg2, ResolvMode::withAdjustment() );
1484 if ( finder2.candidates.empty() ) return;
1485
1486 reason.code = NoMatch;
1487
1488 for ( const CandidateRef & r1 : finder1.candidates ) {
1489 for ( const CandidateRef & r2 : finder2.candidates ) {
1490 ast::TypeEnvironment env{ r1->env };
1491 env.simpleCombine( r2->env );
1492 ast::OpenVarSet open{ r1->open };
1493 mergeOpenVars( open, r2->open );
1494 ast::AssertionSet need;
1495 mergeAssertionSet( need, r1->need );
1496 mergeAssertionSet( need, r2->need );
1497
1498 addCandidate(
1499 new ast::LogicalExpr{
1500 logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd },
1501 std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost );
1502 }
1503 }
1504 }
1505
1506 void Finder::postvisit( const ast::ConditionalExpr * conditionalExpr ) {
1507 // candidates for condition
1508 CandidateFinder finder1( context, tenv );
1509 finder1.find( conditionalExpr->arg1, ResolvMode::withAdjustment() );
1510 if ( finder1.candidates.empty() ) return;
1511
1512 // candidates for true result
1513 CandidateFinder finder2( context, tenv );
1514 finder2.allowVoid = true;
1515 finder2.find( conditionalExpr->arg2, ResolvMode::withAdjustment() );
1516 if ( finder2.candidates.empty() ) return;
1517
1518 // candidates for false result
1519 CandidateFinder finder3( context, tenv );
1520 finder3.allowVoid = true;
1521 finder3.find( conditionalExpr->arg3, ResolvMode::withAdjustment() );
1522 if ( finder3.candidates.empty() ) return;
1523
1524 reason.code = NoMatch;
1525
1526 for ( const CandidateRef & r1 : finder1.candidates ) {
1527 for ( const CandidateRef & r2 : finder2.candidates ) {
1528 for ( const CandidateRef & r3 : finder3.candidates ) {
1529 ast::TypeEnvironment env{ r1->env };
1530 env.simpleCombine( r2->env );
1531 env.simpleCombine( r3->env );
1532 ast::OpenVarSet open{ r1->open };
1533 mergeOpenVars( open, r2->open );
1534 mergeOpenVars( open, r3->open );
1535 ast::AssertionSet need;
1536 mergeAssertionSet( need, r1->need );
1537 mergeAssertionSet( need, r2->need );
1538 mergeAssertionSet( need, r3->need );
1539 ast::AssertionSet have;
1540
1541 // unify true and false results, then infer parameters to produce new
1542 // candidates
1543 ast::ptr< ast::Type > common;
1544 if (
1545 unify(
1546 r2->expr->result, r3->expr->result, env, need, have, open,
1547 common )
1548 ) {
1549 // generate typed expression
1550 ast::ConditionalExpr * newExpr = new ast::ConditionalExpr{
1551 conditionalExpr->location, r1->expr, r2->expr, r3->expr };
1552 newExpr->result = common ? common : r2->expr->result;
1553 // convert both options to result type
1554 Cost cost = r1->cost + r2->cost + r3->cost;
1555 newExpr->arg2 = computeExpressionConversionCost(
1556 newExpr->arg2, newExpr->result, symtab, env, cost );
1557 newExpr->arg3 = computeExpressionConversionCost(
1558 newExpr->arg3, newExpr->result, symtab, env, cost );
1559 // output candidate
1560 CandidateRef newCand = std::make_shared<Candidate>(
1561 newExpr, std::move( env ), std::move( open ), std::move( need ), cost );
1562 inferParameters( newCand, candidates );
1563 }
1564 }
1565 }
1566 }
1567 }
1568
1569 void Finder::postvisit( const ast::CommaExpr * commaExpr ) {
1570 ast::TypeEnvironment env{ tenv };
1571 ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, context, env );
1572
1573 CandidateFinder finder2( context, env );
1574 finder2.find( commaExpr->arg2, ResolvMode::withAdjustment() );
1575
1576 for ( const CandidateRef & r2 : finder2.candidates ) {
1577 addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } );
1578 }
1579 }
1580
1581 void Finder::postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) {
1582 addCandidate( ctorExpr, tenv );
1583 }
1584
1585 void Finder::postvisit( const ast::ConstructorExpr * ctorExpr ) {
1586 CandidateFinder finder( context, tenv );
1587 finder.allowVoid = true;
1588 finder.find( ctorExpr->callExpr, ResolvMode::withoutPrune() );
1589 for ( CandidateRef & r : finder.candidates ) {
1590 addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } );
1591 }
1592 }
1593
1594 void Finder::postvisit( const ast::RangeExpr * rangeExpr ) {
1595 // resolve low and high, accept candidates where low and high types unify
1596 CandidateFinder finder1( context, tenv );
1597 finder1.find( rangeExpr->low, ResolvMode::withAdjustment() );
1598 if ( finder1.candidates.empty() ) return;
1599
1600 CandidateFinder finder2( context, tenv );
1601 finder2.find( rangeExpr->high, ResolvMode::withAdjustment() );
1602 if ( finder2.candidates.empty() ) return;
1603
1604 reason.code = NoMatch;
1605
1606 for ( const CandidateRef & r1 : finder1.candidates ) {
1607 for ( const CandidateRef & r2 : finder2.candidates ) {
1608 ast::TypeEnvironment env{ r1->env };
1609 env.simpleCombine( r2->env );
1610 ast::OpenVarSet open{ r1->open };
1611 mergeOpenVars( open, r2->open );
1612 ast::AssertionSet need;
1613 mergeAssertionSet( need, r1->need );
1614 mergeAssertionSet( need, r2->need );
1615 ast::AssertionSet have;
1616
1617 ast::ptr< ast::Type > common;
1618 if (
1619 unify(
1620 r1->expr->result, r2->expr->result, env, need, have, open,
1621 common )
1622 ) {
1623 // generate new expression
1624 ast::RangeExpr * newExpr =
1625 new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr };
1626 newExpr->result = common ? common : r1->expr->result;
1627 // add candidate
1628 CandidateRef newCand = std::make_shared<Candidate>(
1629 newExpr, std::move( env ), std::move( open ), std::move( need ),
1630 r1->cost + r2->cost );
1631 inferParameters( newCand, candidates );
1632 }
1633 }
1634 }
1635 }
1636
1637 void Finder::postvisit( const ast::UntypedTupleExpr * tupleExpr ) {
1638 std::vector< CandidateFinder > subCandidates =
1639 selfFinder.findSubExprs( tupleExpr->exprs );
1640 std::vector< CandidateList > possibilities;
1641 combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) );
1642
1643 for ( const CandidateList & subs : possibilities ) {
1644 std::vector< ast::ptr< ast::Expr > > exprs;
1645 exprs.reserve( subs.size() );
1646 for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); }
1647
1648 ast::TypeEnvironment env;
1649 ast::OpenVarSet open;
1650 ast::AssertionSet need;
1651 for ( const CandidateRef & sub : subs ) {
1652 env.simpleCombine( sub->env );
1653 mergeOpenVars( open, sub->open );
1654 mergeAssertionSet( need, sub->need );
1655 }
1656
1657 addCandidate(
1658 new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) },
1659 std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) );
1660 }
1661 }
1662
1663 void Finder::postvisit( const ast::TupleExpr * tupleExpr ) {
1664 addCandidate( tupleExpr, tenv );
1665 }
1666
1667 void Finder::postvisit( const ast::TupleIndexExpr * tupleExpr ) {
1668 addCandidate( tupleExpr, tenv );
1669 }
1670
1671 void Finder::postvisit( const ast::TupleAssignExpr * tupleExpr ) {
1672 addCandidate( tupleExpr, tenv );
1673 }
1674
1675 void Finder::postvisit( const ast::UniqueExpr * unqExpr ) {
1676 CandidateFinder finder( context, tenv );
1677 finder.find( unqExpr->expr, ResolvMode::withAdjustment() );
1678 for ( CandidateRef & r : finder.candidates ) {
1679 // ensure that the the id is passed on so that the expressions are "linked"
1680 addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } );
1681 }
1682 }
1683
1684 void Finder::postvisit( const ast::StmtExpr * stmtExpr ) {
1685 addCandidate( resolveStmtExpr( stmtExpr, context ), tenv );
1686 }
1687
1688 void Finder::postvisit( const ast::UntypedInitExpr * initExpr ) {
1689 // handle each option like a cast
1690 CandidateList matches;
1691 PRINT(
1692 std::cerr << "untyped init expr: " << initExpr << std::endl;
1693 )
1694 // O(n^2) checks of d-types with e-types
1695 for ( const ast::InitAlternative & initAlt : initExpr->initAlts ) {
1696 // calculate target type
1697 const ast::Type * toType = resolveTypeof( initAlt.type, context );
1698 toType = adjustExprType( toType, tenv, symtab );
1699 // The call to find must occur inside this loop, otherwise polymorphic return
1700 // types are not bound to the initialization type, since return type variables are
1701 // only open for the duration of resolving the UntypedExpr.
1702 CandidateFinder finder( context, tenv, toType );
1703 finder.find( initExpr->expr, ResolvMode::withAdjustment() );
1704
1705 Cost minExprCost = Cost::infinity;
1706 Cost minCastCost = Cost::infinity;
1707 for ( CandidateRef & cand : finder.candidates ) {
1708 if (reason.code == NotFound) reason.code = NoMatch;
1709
1710 ast::TypeEnvironment env{ cand->env };
1711 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1712 ast::OpenVarSet open{ cand->open };
1713
1714 PRINT(
1715 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;
1716 )
1717
1718 // It is possible that a cast can throw away some values in a multiply-valued
1719 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of
1720 // the subexpression results that are cast directly. The candidate is invalid
1721 // if it has fewer results than there are types to cast to.
1722 int discardedValues = cand->expr->result->size() - toType->size();
1723 if ( discardedValues < 0 ) continue;
1724
1725 // unification run for side-effects
1726 bool canUnify = unify( toType, cand->expr->result, env, need, have, open );
1727 (void) canUnify;
1728 Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1729 symtab, env );
1730 PRINT(
1731 Cost legacyCost = castCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1732 symtab, env );
1733 std::cerr << "Considering initialization:";
1734 std::cerr << std::endl << " FROM: " << cand->expr->result << std::endl;
1735 std::cerr << std::endl << " TO: " << toType << std::endl;
1736 std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed");
1737 std::cerr << std::endl << " Legacy cost " << legacyCost;
1738 std::cerr << std::endl << " New cost " << thisCost;
1739 std::cerr << std::endl;
1740 )
1741 if ( thisCost != Cost::infinity ) {
1742 // count one safe conversion for each value that is thrown away
1743 thisCost.incSafe( discardedValues );
1744 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1745 minExprCost = cand->cost;
1746 minCastCost = thisCost;
1747 matches.clear();
1748 }
1749 // ambiguous case, still output candidates to print in error message
1750 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1751 CandidateRef newCand = std::make_shared<Candidate>(
1752 new ast::InitExpr{
1753 initExpr->location,
1754 restructureCast( cand->expr, toType ),
1755 initAlt.designation },
1756 std::move(env), std::move( open ), std::move( need ), cand->cost + thisCost );
1757 // currently assertions are always resolved immediately so this should have no effect.
1758 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1759 // we may need to revisit the logic.
1760 inferParameters( newCand, matches );
1761 }
1762 }
1763 }
1764 }
1765
1766 // select first on argument cost, then conversion cost
1767 // CandidateList minArgCost = findMinCost( matches );
1768 // promoteCvtCost( minArgCost );
1769 // candidates = findMinCost( minArgCost );
1770 candidates = std::move(matches);
1771 }
1772
1773 // size_t Finder::traceId = Stats::Heap::new_stacktrace_id("Finder");
1774 /// Prunes a list of candidates down to those that have the minimum conversion cost for a given
1775 /// return type. Skips ambiguous candidates.
1776
1777} // anonymous namespace
1778
1779bool CandidateFinder::pruneCandidates( CandidateList & candidates, CandidateList & out, std::vector<std::string> & errors ) {
1780 struct PruneStruct {
1781 CandidateRef candidate;
1782 bool ambiguous;
1783
1784 PruneStruct() = default;
1785 PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {}
1786 };
1787
1788 // find lowest-cost candidate for each type
1789 std::unordered_map< std::string, PruneStruct > selected;
1790 // attempt to skip satisfyAssertions on more expensive alternatives if better options have been found
1791 std::sort(candidates.begin(), candidates.end(), [](const CandidateRef & x, const CandidateRef & y){return x->cost < y->cost;});
1792 for ( CandidateRef & candidate : candidates ) {
1793 std::string mangleName;
1794 {
1795 ast::ptr< ast::Type > newType = candidate->expr->result;
1796 assertf(candidate->expr->result, "Result of expression %p for candidate is null", candidate->expr.get());
1797 candidate->env.apply( newType );
1798 mangleName = Mangle::mangle( newType );
1799 }
1800
1801 auto found = selected.find( mangleName );
1802 if (found != selected.end() && found->second.candidate->cost < candidate->cost) {
1803 PRINT(
1804 std::cerr << "cost " << candidate->cost << " loses to "
1805 << found->second.candidate->cost << std::endl;
1806 )
1807 continue;
1808 }
1809
1810 // xxx - when do satisfyAssertions produce more than 1 result?
1811 // this should only happen when initial result type contains
1812 // unbound type parameters, then it should never be pruned by
1813 // the previous step, since renameTyVars guarantees the mangled name
1814 // is unique.
1815 CandidateList satisfied;
1816 bool needRecomputeKey = false;
1817 if (candidate->need.empty()) {
1818 satisfied.emplace_back(candidate);
1819 }
1820 else {
1821 satisfyAssertions(candidate, context.symtab, satisfied, errors);
1822 needRecomputeKey = true;
1823 }
1824
1825 for (auto & newCand : satisfied) {
1826 // recomputes type key, if satisfyAssertions changed it
1827 if (needRecomputeKey)
1828 {
1829 ast::ptr< ast::Type > newType = newCand->expr->result;
1830 assertf(newCand->expr->result, "Result of expression %p for candidate is null", newCand->expr.get());
1831 newCand->env.apply( newType );
1832 mangleName = Mangle::mangle( newType );
1833 }
1834 auto found = selected.find( mangleName );
1835 if ( found != selected.end() ) {
1836 // tiebreaking by picking the lower cost on CURRENT expression
1837 // NOTE: this behavior is different from C semantics.
1838 // Specific remediations are performed for C operators at postvisit(UntypedExpr).
1839 // Further investigations may take place.
1840 if ( newCand->cost < found->second.candidate->cost
1841 || (newCand->cost == found->second.candidate->cost && newCand->cvtCost < found->second.candidate->cvtCost) ) {
1842 PRINT(
1843 std::cerr << "cost " << newCand->cost << " beats "
1844 << found->second.candidate->cost << std::endl;
1845 )
1846
1847 found->second = PruneStruct{ newCand };
1848 } else if ( newCand->cost == found->second.candidate->cost && newCand->cvtCost == found->second.candidate->cvtCost ) {
1849 // if one of the candidates contains a deleted identifier, can pick the other,
1850 // since deleted expressions should not be ambiguous if there is another option
1851 // that is at least as good
1852 if ( findDeletedExpr( newCand->expr ) ) {
1853 // do nothing
1854 PRINT( std::cerr << "candidate is deleted" << std::endl; )
1855 } else if ( findDeletedExpr( found->second.candidate->expr ) ) {
1856 PRINT( std::cerr << "current is deleted" << std::endl; )
1857 found->second = PruneStruct{ newCand };
1858 } else {
1859 PRINT( std::cerr << "marking ambiguous" << std::endl; )
1860 found->second.ambiguous = true;
1861 }
1862 } else {
1863 // xxx - can satisfyAssertions increase the cost?
1864 PRINT(
1865 std::cerr << "cost " << newCand->cost << " loses to "
1866 << found->second.candidate->cost << std::endl;
1867 )
1868 }
1869 } else {
1870 selected.emplace_hint( found, mangleName, newCand );
1871 }
1872 }
1873 }
1874
1875 // report unambiguous min-cost candidates
1876 // CandidateList out;
1877 for ( auto & target : selected ) {
1878 if ( target.second.ambiguous ) continue;
1879
1880 CandidateRef cand = target.second.candidate;
1881
1882 ast::ptr< ast::Type > newResult = cand->expr->result;
1883 cand->env.applyFree( newResult );
1884 cand->expr = ast::mutate_field(
1885 cand->expr.get(), &ast::Expr::result, std::move( newResult ) );
1886
1887 out.emplace_back( cand );
1888 }
1889 // if everything is lost in satisfyAssertions, report the error
1890 return !selected.empty();
1891}
1892
1893void CandidateFinder::find( const ast::Expr * expr, ResolvMode mode ) {
1894 // Find alternatives for expression
1895 ast::Pass<Finder> finder{ *this };
1896 expr->accept( finder );
1897
1898 if ( mode.failFast && candidates.empty() ) {
1899 switch(finder.core.reason.code) {
1900 case Finder::NotFound:
1901 { SemanticError( expr, "No alternatives for expression " ); break; }
1902 case Finder::NoMatch:
1903 { SemanticError( expr, "Invalid application of existing declaration(s) in expression " ); break; }
1904 case Finder::ArgsToFew:
1905 case Finder::ArgsToMany:
1906 case Finder::RetsToFew:
1907 case Finder::RetsToMany:
1908 case Finder::NoReason:
1909 default:
1910 { SemanticError( expr->location, "No reasonable alternatives for expression : reasons unkown" ); }
1911 }
1912 }
1913
1914 /*
1915 if ( mode.satisfyAssns || mode.prune ) {
1916 // trim candidates to just those where the assertions are satisfiable
1917 // - necessary pre-requisite to pruning
1918 CandidateList satisfied;
1919 std::vector< std::string > errors;
1920 for ( CandidateRef & candidate : candidates ) {
1921 satisfyAssertions( candidate, localSyms, satisfied, errors );
1922 }
1923
1924 // fail early if none such
1925 if ( mode.failFast && satisfied.empty() ) {
1926 std::ostringstream stream;
1927 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
1928 for ( const auto& err : errors ) {
1929 stream << err;
1930 }
1931 SemanticError( expr->location, stream.str() );
1932 }
1933
1934 // reset candidates
1935 candidates = move( satisfied );
1936 }
1937 */
1938
1939 // optimization: don't prune for NameExpr since it never has cost
1940 if ( mode.prune && !dynamic_cast<const ast::NameExpr *>(expr) ) {
1941 // trim candidates to single best one
1942 PRINT(
1943 std::cerr << "alternatives before prune:" << std::endl;
1944 print( std::cerr, candidates );
1945 )
1946
1947 CandidateList pruned;
1948 std::vector<std::string> errors;
1949 bool found = pruneCandidates( candidates, pruned, errors );
1950
1951 if ( mode.failFast && pruned.empty() ) {
1952 std::ostringstream stream;
1953 if (found) {
1954 CandidateList winners = findMinCost( candidates );
1955 stream << "Cannot choose between " << winners.size() << " alternatives for "
1956 "expression\n";
1957 ast::print( stream, expr );
1958 stream << " Alternatives are:\n";
1959 print( stream, winners, 1 );
1960 SemanticError( expr->location, stream.str() );
1961 }
1962 else {
1963 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
1964 for ( const auto& err : errors ) {
1965 stream << err;
1966 }
1967 SemanticError( expr->location, stream.str() );
1968 }
1969 }
1970
1971 auto oldsize = candidates.size();
1972 candidates = std::move( pruned );
1973
1974 PRINT(
1975 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;
1976 )
1977 PRINT(
1978 std::cerr << "there are " << candidates.size() << " alternatives after elimination"
1979 << std::endl;
1980 )
1981 }
1982
1983 // adjust types after pruning so that types substituted by pruneAlternatives are correctly
1984 // adjusted
1985 if ( mode.adjust ) {
1986 for ( CandidateRef & r : candidates ) {
1987 r->expr = ast::mutate_field(
1988 r->expr.get(), &ast::Expr::result,
1989 adjustExprType( r->expr->result, r->env, context.symtab ) );
1990 }
1991 }
1992
1993 // Central location to handle gcc extension keyword, etc. for all expressions
1994 for ( CandidateRef & r : candidates ) {
1995 if ( r->expr->extension != expr->extension ) {
1996 r->expr.get_and_mutate()->extension = expr->extension;
1997 }
1998 }
1999}
2000
2001std::vector< CandidateFinder > CandidateFinder::findSubExprs(
2002 const std::vector< ast::ptr< ast::Expr > > & xs
2003) {
2004 std::vector< CandidateFinder > out;
2005
2006 for ( const auto & x : xs ) {
2007 out.emplace_back( context, env );
2008 out.back().find( x, ResolvMode::withAdjustment() );
2009
2010 PRINT(
2011 std::cerr << "findSubExprs" << std::endl;
2012 print( std::cerr, out.back().candidates );
2013 )
2014 }
2015
2016 return out;
2017}
2018
2019const ast::Expr * referenceToRvalueConversion( const ast::Expr * expr, Cost & cost ) {
2020 if ( expr->result.as< ast::ReferenceType >() ) {
2021 // cast away reference from expr
2022 cost.incReference();
2023 return new ast::CastExpr{ expr, expr->result->stripReferences() };
2024 }
2025
2026 return expr;
2027}
2028
2029Cost computeConversionCost(
2030 const ast::Type * argType, const ast::Type * paramType, bool argIsLvalue,
2031 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env
2032) {
2033 PRINT(
2034 std::cerr << std::endl << "converting ";
2035 ast::print( std::cerr, argType, 2 );
2036 std::cerr << std::endl << " to ";
2037 ast::print( std::cerr, paramType, 2 );
2038 std::cerr << std::endl << "environment is: ";
2039 ast::print( std::cerr, env, 2 );
2040 std::cerr << std::endl;
2041 )
2042 Cost convCost = conversionCost( argType, paramType, argIsLvalue, symtab, env );
2043 PRINT(
2044 std::cerr << std::endl << "cost is " << convCost << std::endl;
2045 )
2046 if ( convCost == Cost::infinity ) return convCost;
2047 convCost.incPoly( polyCost( paramType, symtab, env ) + polyCost( argType, symtab, env ) );
2048 PRINT(
2049 std::cerr << "cost with polycost is " << convCost << std::endl;
2050 )
2051 return convCost;
2052}
2053
2054} // namespace ResolvExpr
2055
2056// Local Variables: //
2057// tab-width: 4 //
2058// mode: c++ //
2059// compile-command: "make install" //
2060// End: //
Note: See TracBrowser for help on using the repository browser.