source: src/ResolvExpr/CandidateFinder.cpp@ 3267041

Last change on this file since 3267041 was 4a89b52, checked in by Andrew Beach <ajbeach@…>, 22 months ago

Renamed ResolvMode to ResolveMode. This is less consistent with the namespace, but is more consistent with almost everything else.

  • Property mode set to 100644
File size: 74.7 KB
RevLine 
[99d4584]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// CandidateFinder.cpp --
8//
9// Author : Aaron B. Moss
10// Created On : Wed Jun 5 14:30:00 2019
[cf32116]11// Last Modified By : Andrew Beach
[39d8950]12// Last Modified On : Wed Mar 16 11:58:00 2022
13// Update Count : 3
[99d4584]14//
15
16#include "CandidateFinder.hpp"
17
[432ce7a]18#include <deque>
[4b7cce6]19#include <iterator> // for back_inserter
[396037d]20#include <sstream>
[d57e349]21#include <string>
22#include <unordered_map>
[432ce7a]23#include <vector>
[396037d]24
[5bf3976]25#include "AdjustExprType.hpp"
[396037d]26#include "Candidate.hpp"
[64727bd]27#include "CastCost.hpp" // for castCost
[396037d]28#include "CompilationState.h"
[64727bd]29#include "ConversionCost.h" // for conversionCast
[d57e349]30#include "Cost.h"
[432ce7a]31#include "ExplodedArg.hpp"
[64727bd]32#include "PolyCost.hpp"
[898ae07]33#include "RenameVars.h" // for renameTyVars
[d57e349]34#include "Resolver.h"
[c8e4d2f8]35#include "ResolveTypeof.h"
[396037d]36#include "SatisfyAssertions.hpp"
[64727bd]37#include "SpecCost.hpp"
38#include "typeops.h" // for combos
[4b7cce6]39#include "Unify.h"
[64727bd]40#include "WidenMode.h"
[99d4584]41#include "AST/Expr.hpp"
[396037d]42#include "AST/Node.hpp"
43#include "AST/Pass.hpp"
[d57e349]44#include "AST/Print.hpp"
[4b7cce6]45#include "AST/SymbolTable.hpp"
[432ce7a]46#include "AST/Type.hpp"
[c1ed2ee]47#include "Common/utility.h" // for move, copy
[d57e349]48#include "SymTab/Mangler.h"
[432ce7a]49#include "Tuples/Tuples.h" // for handleTupleAssignment
[e5c3811]50#include "InitTweak/InitTweak.h" // for getPointerBase
51
52#include "Common/Stats/Counter.h"
[396037d]53
54#define PRINT( text ) if ( resolvep ) { text }
[99d4584]55
56namespace ResolvExpr {
57
[9d5089e]58/// Unique identifier for matching expression resolutions to their requesting expression
[fa761c2]59ast::UniqueId globalResnSlot = 0;
[396037d]60
[9d5089e]61namespace {
[432ce7a]62 /// First index is which argument, second is which alternative, third is which exploded element
[0bd3faf]63 using ExplodedArgs = std::deque< std::vector< ExplodedArg > >;
[432ce7a]64
65 /// Returns a list of alternatives with the minimum cost in the given list
66 CandidateList findMinCost( const CandidateList & candidates ) {
67 CandidateList out;
68 Cost minCost = Cost::infinity;
69 for ( const CandidateRef & r : candidates ) {
70 if ( r->cost < minCost ) {
71 minCost = r->cost;
72 out.clear();
73 out.emplace_back( r );
74 } else if ( r->cost == minCost ) {
75 out.emplace_back( r );
76 }
77 }
78 return out;
79 }
80
[9d5089e]81 /// Computes conversion cost for a given expression to a given type
[2890212]82 const ast::Expr * computeExpressionConversionCost(
83 const ast::Expr * arg, const ast::Type * paramType, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env, Cost & outCost
[9d5089e]84 ) {
[cf32116]85 Cost convCost = computeConversionCost(
86 arg->result, paramType, arg->get_lvalue(), symtab, env );
[9d5089e]87 outCost += convCost;
88
[2890212]89 // If there is a non-zero conversion cost, ignoring poly cost, then the expression requires
90 // conversion. Ignore poly cost for now, since this requires resolution of the cast to
[9d5089e]91 // infer parameters and this does not currently work for the reason stated below
92 Cost tmpCost = convCost;
93 tmpCost.incPoly( -tmpCost.get_polyCost() );
94 if ( tmpCost != Cost::zero ) {
95 ast::ptr< ast::Type > newType = paramType;
96 env.apply( newType );
[b8524ca]97 return new ast::CastExpr{ arg, newType };
[9d5089e]98
[2890212]99 // xxx - *should* be able to resolve this cast, but at the moment pointers are not
100 // castable to zero_t, but are implicitly convertible. This is clearly inconsistent,
[9d5089e]101 // once this is fixed it should be possible to resolve the cast.
[2890212]102 // xxx - this isn't working, it appears because type1 (parameter) is seen as widenable,
103 // but it shouldn't be because this makes the conversion from DT* to DT* since
[9d5089e]104 // commontype(zero_t, DT*) is DT*, rather than nothing
105
106 // CandidateFinder finder{ symtab, env };
[4a89b52]107 // finder.find( arg, ResolveMode::withAdjustment() );
[2890212]108 // assertf( finder.candidates.size() > 0,
[9d5089e]109 // "Somehow castable expression failed to find alternatives." );
[2890212]110 // assertf( finder.candidates.size() == 1,
[9d5089e]111 // "Somehow got multiple alternatives for known cast expression." );
112 // return finder.candidates.front()->expr;
113 }
114
115 return arg;
116 }
117
[432ce7a]118 /// Computes conversion cost for a given candidate
[2890212]119 Cost computeApplicationConversionCost(
120 CandidateRef cand, const ast::SymbolTable & symtab
[432ce7a]121 ) {
[9d5089e]122 auto appExpr = cand->expr.strict_as< ast::ApplicationExpr >();
123 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
124 auto function = pointer->base.strict_as< ast::FunctionType >();
125
126 Cost convCost = Cost::zero;
127 const auto & params = function->params;
128 auto param = params.begin();
129 auto & args = appExpr->args;
130
131 for ( unsigned i = 0; i < args.size(); ++i ) {
132 const ast::Type * argType = args[i]->result;
133 PRINT(
134 std::cerr << "arg expression:" << std::endl;
135 ast::print( std::cerr, args[i], 2 );
136 std::cerr << "--- results are" << std::endl;
137 ast::print( std::cerr, argType, 2 );
138 )
139
140 if ( param == params.end() ) {
141 if ( function->isVarArgs ) {
142 convCost.incUnsafe();
[2890212]143 PRINT( std::cerr << "end of params with varargs function: inc unsafe: "
[9d5089e]144 << convCost << std::endl; ; )
145 // convert reference-typed expressions into value-typed expressions
[2890212]146 cand->expr = ast::mutate_field_index(
147 appExpr, &ast::ApplicationExpr::args, i,
[9d5089e]148 referenceToRvalueConversion( args[i], convCost ) );
149 continue;
150 } else return Cost::infinity;
151 }
152
153 if ( auto def = args[i].as< ast::DefaultArgExpr >() ) {
154 // Default arguments should be free - don't include conversion cost.
155 // Unwrap them here because they are not relevant to the rest of the system
[2890212]156 cand->expr = ast::mutate_field_index(
[9d5089e]157 appExpr, &ast::ApplicationExpr::args, i, def->expr );
158 ++param;
159 continue;
160 }
161
162 // mark conversion cost and also specialization cost of param type
[954c954]163 // const ast::Type * paramType = (*param)->get_type();
[2890212]164 cand->expr = ast::mutate_field_index(
165 appExpr, &ast::ApplicationExpr::args, i,
166 computeExpressionConversionCost(
[954c954]167 args[i], *param, symtab, cand->env, convCost ) );
168 convCost.decSpec( specCost( *param ) );
[9d5089e]169 ++param; // can't be in for-loop update because of the continue
170 }
171
172 if ( param != params.end() ) return Cost::infinity;
173
[2890212]174 // specialization cost of return types can't be accounted for directly, it disables
[9d5089e]175 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:
176 //
177 // forall(otype OS) {
178 // void ?|?(OS&, int); // with newline
179 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization
180 // }
181
182 // mark type variable and specialization cost of forall clause
183 convCost.incVar( function->forall.size() );
[3e5dd913]184 convCost.decSpec( function->assertions.size() );
[9d5089e]185
186 return convCost;
187 }
188
[2890212]189 void makeUnifiableVars(
[361bf01]190 const ast::FunctionType * type, ast::OpenVarSet & unifiableVars,
[2890212]191 ast::AssertionSet & need
[9d5089e]192 ) {
[3e5dd913]193 for ( auto & tyvar : type->forall ) {
[93c10de]194 unifiableVars[ *tyvar ] = ast::TypeData{ tyvar->base };
[3e5dd913]195 }
196 for ( auto & assn : type->assertions ) {
197 need[ assn ].isUsed = true;
[9d5089e]198 }
199 }
200
201 /// Gets a default value from an initializer, nullptr if not present
202 const ast::ConstantExpr * getDefaultValue( const ast::Init * init ) {
203 if ( auto si = dynamic_cast< const ast::SingleInit * >( init ) ) {
204 if ( auto ce = si->value.as< ast::CastExpr >() ) {
205 return ce->arg.as< ast::ConstantExpr >();
206 } else {
207 return si->value.as< ast::ConstantExpr >();
208 }
209 }
210 return nullptr;
211 }
212
213 /// State to iteratively build a match of parameter expressions to arguments
214 struct ArgPack {
215 std::size_t parent; ///< Index of parent pack
216 ast::ptr< ast::Expr > expr; ///< The argument stored here
217 Cost cost; ///< The cost of this argument
218 ast::TypeEnvironment env; ///< Environment for this pack
219 ast::AssertionSet need; ///< Assertions outstanding for this pack
220 ast::AssertionSet have; ///< Assertions found for this pack
221 ast::OpenVarSet open; ///< Open variables for this pack
222 unsigned nextArg; ///< Index of next argument in arguments list
223 unsigned tupleStart; ///< Number of tuples that start at this index
224 unsigned nextExpl; ///< Index of next exploded element
225 unsigned explAlt; ///< Index of alternative for nextExpl > 0
226
227 ArgPack()
[2890212]228 : parent( 0 ), expr(), cost( Cost::zero ), env(), need(), have(), open(), nextArg( 0 ),
[9d5089e]229 tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
[2890212]230
231 ArgPack(
232 const ast::TypeEnvironment & env, const ast::AssertionSet & need,
[9d5089e]233 const ast::AssertionSet & have, const ast::OpenVarSet & open )
[2890212]234 : parent( 0 ), expr(), cost( Cost::zero ), env( env ), need( need ), have( have ),
[9d5089e]235 open( open ), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
[2890212]236
[9d5089e]237 ArgPack(
[2890212]238 std::size_t parent, const ast::Expr * expr, ast::TypeEnvironment && env,
239 ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open,
240 unsigned nextArg, unsigned tupleStart = 0, Cost cost = Cost::zero,
[9d5089e]241 unsigned nextExpl = 0, unsigned explAlt = 0 )
[09f34a84]242 : parent(parent), expr( expr ), cost( cost ), env( std::move( env ) ), need( std::move( need ) ),
243 have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( tupleStart ),
[9d5089e]244 nextExpl( nextExpl ), explAlt( explAlt ) {}
[2890212]245
[9d5089e]246 ArgPack(
[2890212]247 const ArgPack & o, ast::TypeEnvironment && env, ast::AssertionSet && need,
[9d5089e]248 ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, Cost added )
[09f34a84]249 : parent( o.parent ), expr( o.expr ), cost( o.cost + added ), env( std::move( env ) ),
250 need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ),
[9d5089e]251 tupleStart( o.tupleStart ), nextExpl( 0 ), explAlt( 0 ) {}
[2890212]252
[9d5089e]253 /// true if this pack is in the middle of an exploded argument
254 bool hasExpl() const { return nextExpl > 0; }
255
256 /// Gets the list of exploded candidates for this pack
[0bd3faf]257 const ExplodedArg & getExpl( const ExplodedArgs & args ) const {
[9d5089e]258 return args[ nextArg-1 ][ explAlt ];
259 }
[2890212]260
[9d5089e]261 /// Ends a tuple expression, consolidating the appropriate args
262 void endTuple( const std::vector< ArgPack > & packs ) {
263 // add all expressions in tuple to list, summing cost
264 std::deque< const ast::Expr * > exprs;
265 const ArgPack * pack = this;
266 if ( expr ) { exprs.emplace_front( expr ); }
267 while ( pack->tupleStart == 0 ) {
268 pack = &packs[pack->parent];
269 exprs.emplace_front( pack->expr );
270 cost += pack->cost;
271 }
272 // reset pack to appropriate tuple
273 std::vector< ast::ptr< ast::Expr > > exprv( exprs.begin(), exprs.end() );
[09f34a84]274 expr = new ast::TupleExpr{ expr->location, std::move( exprv ) };
[9d5089e]275 tupleStart = pack->tupleStart - 1;
276 parent = pack->parent;
277 }
278 };
279
280 /// Instantiates an argument to match a parameter, returns false if no matching results left
[2890212]281 bool instantiateArgument(
[b96b1c0]282 const CodeLocation & location,
[0bd3faf]283 const ast::Type * paramType, const ast::Init * init, const ExplodedArgs & args,
[2890212]284 std::vector< ArgPack > & results, std::size_t & genStart, const ast::SymbolTable & symtab,
285 unsigned nTuples = 0
[9d5089e]286 ) {
287 if ( auto tupleType = dynamic_cast< const ast::TupleType * >( paramType ) ) {
288 // paramType is a TupleType -- group args into a TupleExpr
289 ++nTuples;
290 for ( const ast::Type * type : *tupleType ) {
291 // xxx - dropping initializer changes behaviour from previous, but seems correct
292 // ^^^ need to handle the case where a tuple has a default argument
[b96b1c0]293 if ( ! instantiateArgument( location,
[9d5089e]294 type, nullptr, args, results, genStart, symtab, nTuples ) ) return false;
295 nTuples = 0;
296 }
297 // re-constitute tuples for final generation
298 for ( auto i = genStart; i < results.size(); ++i ) {
299 results[i].endTuple( results );
300 }
301 return true;
302 } else if ( const ast::TypeInstType * ttype = Tuples::isTtype( paramType ) ) {
303 // paramType is a ttype, consumes all remaining arguments
[2890212]304
[9d5089e]305 // completed tuples; will be spliced to end of results to finish
306 std::vector< ArgPack > finalResults{};
307
308 // iterate until all results completed
309 std::size_t genEnd;
310 ++nTuples;
311 do {
312 genEnd = results.size();
313
314 // add another argument to results
315 for ( std::size_t i = genStart; i < genEnd; ++i ) {
316 unsigned nextArg = results[i].nextArg;
[2890212]317
[9d5089e]318 // use next element of exploded tuple if present
319 if ( results[i].hasExpl() ) {
320 const ExplodedArg & expl = results[i].getExpl( args );
321
322 unsigned nextExpl = results[i].nextExpl + 1;
323 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
324
325 results.emplace_back(
326 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
[2890212]327 copy( results[i].need ), copy( results[i].have ),
[9d5089e]328 copy( results[i].open ), nextArg, nTuples, Cost::zero, nextExpl,
329 results[i].explAlt );
330
331 continue;
332 }
333
334 // finish result when out of arguments
335 if ( nextArg >= args.size() ) {
336 ArgPack newResult{
337 results[i].env, results[i].need, results[i].have, results[i].open };
338 newResult.nextArg = nextArg;
339 const ast::Type * argType = nullptr;
340
341 if ( nTuples > 0 || ! results[i].expr ) {
342 // first iteration or no expression to clone,
343 // push empty tuple expression
344 newResult.parent = i;
[b96b1c0]345 newResult.expr = new ast::TupleExpr( location, {} );
[9d5089e]346 argType = newResult.expr->result;
347 } else {
348 // clone result to collect tuple
349 newResult.parent = results[i].parent;
350 newResult.cost = results[i].cost;
351 newResult.tupleStart = results[i].tupleStart;
352 newResult.expr = results[i].expr;
353 argType = newResult.expr->result;
354
355 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {
356 // the case where a ttype value is passed directly is special,
357 // e.g. for argument forwarding purposes
358 // xxx - what if passing multiple arguments, last of which is
359 // ttype?
360 // xxx - what would happen if unify was changed so that unifying
361 // tuple
362 // types flattened both before unifying lists? then pass in
363 // TupleType (ttype) below.
364 --newResult.tupleStart;
365 } else {
366 // collapse leftover arguments into tuple
367 newResult.endTuple( results );
368 argType = newResult.expr->result;
369 }
370 }
371
372 // check unification for ttype before adding to final
[2890212]373 if (
374 unify(
[9d5089e]375 ttype, argType, newResult.env, newResult.need, newResult.have,
[251ce80]376 newResult.open )
[9d5089e]377 ) {
[09f34a84]378 finalResults.emplace_back( std::move( newResult ) );
[9d5089e]379 }
380
381 continue;
382 }
383
384 // add each possible next argument
385 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
386 const ExplodedArg & expl = args[nextArg][j];
387
388 // fresh copies of parent parameters for this iteration
389 ast::TypeEnvironment env = results[i].env;
390 ast::OpenVarSet open = results[i].open;
391
392 env.addActual( expl.env, open );
393
394 // skip empty tuple arguments by (nearly) cloning parent into next gen
395 if ( expl.exprs.empty() ) {
396 results.emplace_back(
[09f34a84]397 results[i], std::move( env ), copy( results[i].need ),
398 copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost );
[2890212]399
[9d5089e]400 continue;
401 }
402
403 // add new result
404 results.emplace_back(
[09f34a84]405 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
406 copy( results[i].have ), std::move( open ), nextArg + 1, nTuples,
[9d5089e]407 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
408 }
409 }
410
411 // reset for next round
412 genStart = genEnd;
413 nTuples = 0;
414 } while ( genEnd != results.size() );
415
416 // splice final results onto results
417 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {
[09f34a84]418 results.emplace_back( std::move( finalResults[i] ) );
[9d5089e]419 }
420 return ! finalResults.empty();
421 }
422
423 // iterate each current subresult
424 std::size_t genEnd = results.size();
425 for ( std::size_t i = genStart; i < genEnd; ++i ) {
426 unsigned nextArg = results[i].nextArg;
427
428 // use remainder of exploded tuple if present
429 if ( results[i].hasExpl() ) {
430 const ExplodedArg & expl = results[i].getExpl( args );
431 const ast::Expr * expr = expl.exprs[ results[i].nextExpl ];
432
433 ast::TypeEnvironment env = results[i].env;
434 ast::AssertionSet need = results[i].need, have = results[i].have;
435 ast::OpenVarSet open = results[i].open;
436
437 const ast::Type * argType = expr->result;
438
439 PRINT(
440 std::cerr << "param type is ";
441 ast::print( std::cerr, paramType );
442 std::cerr << std::endl << "arg type is ";
443 ast::print( std::cerr, argType );
444 std::cerr << std::endl;
445 )
446
[251ce80]447 if ( unify( paramType, argType, env, need, have, open ) ) {
[9d5089e]448 unsigned nextExpl = results[i].nextExpl + 1;
449 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
450
451 results.emplace_back(
[09f34a84]452 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg,
[9d5089e]453 nTuples, Cost::zero, nextExpl, results[i].explAlt );
454 }
455
456 continue;
457 }
458
459 // use default initializers if out of arguments
460 if ( nextArg >= args.size() ) {
461 if ( const ast::ConstantExpr * cnst = getDefaultValue( init ) ) {
462 ast::TypeEnvironment env = results[i].env;
463 ast::AssertionSet need = results[i].need, have = results[i].have;
464 ast::OpenVarSet open = results[i].open;
465
[251ce80]466 if ( unify( paramType, cnst->result, env, need, have, open ) ) {
[9d5089e]467 results.emplace_back(
[09f34a84]468 i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ),
469 std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples );
[9d5089e]470 }
471 }
472
473 continue;
474 }
475
476 // Check each possible next argument
477 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
478 const ExplodedArg & expl = args[nextArg][j];
479
480 // fresh copies of parent parameters for this iteration
481 ast::TypeEnvironment env = results[i].env;
482 ast::AssertionSet need = results[i].need, have = results[i].have;
483 ast::OpenVarSet open = results[i].open;
484
485 env.addActual( expl.env, open );
486
487 // skip empty tuple arguments by (nearly) cloning parent into next gen
488 if ( expl.exprs.empty() ) {
489 results.emplace_back(
[09f34a84]490 results[i], std::move( env ), std::move( need ), std::move( have ), std::move( open ),
[9d5089e]491 nextArg + 1, expl.cost );
[2890212]492
[9d5089e]493 continue;
494 }
495
496 // consider only first exploded arg
497 const ast::Expr * expr = expl.exprs.front();
498 const ast::Type * argType = expr->result;
499
500 PRINT(
501 std::cerr << "param type is ";
502 ast::print( std::cerr, paramType );
503 std::cerr << std::endl << "arg type is ";
504 ast::print( std::cerr, argType );
505 std::cerr << std::endl;
506 )
507
508 // attempt to unify types
[251ce80]509 if ( unify( paramType, argType, env, need, have, open ) ) {
[9d5089e]510 // add new result
511 results.emplace_back(
[09f34a84]512 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),
[9d5089e]513 nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
514 }
515 }
516 }
517
518 // reset for next parameter
519 genStart = genEnd;
520
[e0e9a0b]521 return genEnd != results.size(); // were any new results added?
[432ce7a]522 }
523
[c8e4d2f8]524 /// Generate a cast expression from `arg` to `toType`
[2890212]525 const ast::Expr * restructureCast(
[17a0ede2]526 ast::ptr< ast::Expr > & arg, const ast::Type * toType, ast::GeneratedFlag isGenerated = ast::GeneratedCast
[898ae07]527 ) {
[2890212]528 if (
529 arg->result->size() > 1
530 && ! toType->isVoid()
531 && ! dynamic_cast< const ast::ReferenceType * >( toType )
[898ae07]532 ) {
[2890212]533 // Argument is a tuple and the target type is neither void nor a reference. Cast each
534 // member of the tuple to its corresponding target type, producing the tuple of those
535 // cast expressions. If there are more components of the tuple than components in the
536 // target type, then excess components do not come out in the result expression (but
[898ae07]537 // UniqueExpr ensures that the side effects will still be produced)
538 if ( Tuples::maybeImpureIgnoreUnique( arg ) ) {
[2890212]539 // expressions which may contain side effects require a single unique instance of
[898ae07]540 // the expression
541 arg = new ast::UniqueExpr{ arg->location, arg };
542 }
543 std::vector< ast::ptr< ast::Expr > > components;
544 for ( unsigned i = 0; i < toType->size(); ++i ) {
545 // cast each component
546 ast::ptr< ast::Expr > idx = new ast::TupleIndexExpr{ arg->location, arg, i };
[2890212]547 components.emplace_back(
[898ae07]548 restructureCast( idx, toType->getComponent( i ), isGenerated ) );
549 }
[09f34a84]550 return new ast::TupleExpr{ arg->location, std::move( components ) };
[898ae07]551 } else {
552 // handle normally
553 return new ast::CastExpr{ arg->location, arg, toType, isGenerated };
554 }
555 }
556
557 /// Gets the name from an untyped member expression (must be NameExpr)
558 const std::string & getMemberName( const ast::UntypedMemberExpr * memberExpr ) {
559 if ( memberExpr->member.as< ast::ConstantExpr >() ) {
560 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );
561 }
562
563 return memberExpr->member.strict_as< ast::NameExpr >()->name;
[c8e4d2f8]564 }
565
[396037d]566 /// Actually visits expressions to find their candidate interpretations
[9ea38de]567 class Finder final : public ast::WithShortCircuiting {
[39d8950]568 const ResolveContext & context;
[396037d]569 const ast::SymbolTable & symtab;
[9ea38de]570 public:
[943bfad]571 // static size_t traceId;
[9ea38de]572 CandidateFinder & selfFinder;
[396037d]573 CandidateList & candidates;
574 const ast::TypeEnvironment & tenv;
575 ast::ptr< ast::Type > & targetType;
576
[71d6bd8]577 enum Errors {
578 NotFound,
579 NoMatch,
580 ArgsToFew,
581 ArgsToMany,
582 RetsToFew,
583 RetsToMany,
584 NoReason
585 };
586
587 struct {
588 Errors code = NotFound;
589 } reason;
590
[396037d]591 Finder( CandidateFinder & f )
[39d8950]592 : context( f.context ), symtab( context.symtab ), selfFinder( f ),
593 candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {}
[2890212]594
[4b7cce6]595 void previsit( const ast::Node * ) { visit_children = false; }
596
597 /// Convenience to add candidate to list
598 template<typename... Args>
599 void addCandidate( Args &&... args ) {
600 candidates.emplace_back( new Candidate{ std::forward<Args>( args )... } );
[71d6bd8]601 reason.code = NoReason;
[4b7cce6]602 }
603
604 void postvisit( const ast::ApplicationExpr * applicationExpr ) {
605 addCandidate( applicationExpr, tenv );
606 }
607
[9d5089e]608 /// Set up candidate assertions for inference
[64727bd]609 void inferParameters( CandidateRef & newCand, CandidateList & out );
[9d5089e]610
611 /// Completes a function candidate with arguments located
[2890212]612 void validateFunctionCandidate(
613 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
[64727bd]614 CandidateList & out );
[9d5089e]615
[432ce7a]616 /// Builds a list of candidates for a function, storing them in out
617 void makeFunctionCandidates(
[b96b1c0]618 const CodeLocation & location,
[2890212]619 const CandidateRef & func, const ast::FunctionType * funcType,
[0bd3faf]620 const ExplodedArgs & args, CandidateList & out );
[9d5089e]621
[64727bd]622 /// Adds implicit struct-conversions to the alternative list
623 void addAnonConversions( const CandidateRef & cand );
624
625 /// Adds aggregate member interpretations
626 void addAggMembers(
627 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
628 const Candidate & cand, const Cost & addedCost, const std::string & name
629 );
630
631 /// Adds tuple member interpretations
632 void addTupleMembers(
633 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
634 const Cost & addedCost, const ast::Expr * member
635 );
636
637 /// true if expression is an lvalue
638 static bool isLvalue( const ast::Expr * x ) {
639 return x->result && ( x->get_lvalue() || x->result.as< ast::ReferenceType >() );
640 }
641
642 void postvisit( const ast::UntypedExpr * untypedExpr );
643 void postvisit( const ast::VariableExpr * variableExpr );
644 void postvisit( const ast::ConstantExpr * constantExpr );
645 void postvisit( const ast::SizeofExpr * sizeofExpr );
646 void postvisit( const ast::AlignofExpr * alignofExpr );
647 void postvisit( const ast::AddressExpr * addressExpr );
648 void postvisit( const ast::LabelAddressExpr * labelExpr );
649 void postvisit( const ast::CastExpr * castExpr );
650 void postvisit( const ast::VirtualCastExpr * castExpr );
651 void postvisit( const ast::KeywordCastExpr * castExpr );
652 void postvisit( const ast::UntypedMemberExpr * memberExpr );
653 void postvisit( const ast::MemberExpr * memberExpr );
654 void postvisit( const ast::NameExpr * nameExpr );
655 void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr );
656 void postvisit( const ast::OffsetofExpr * offsetofExpr );
657 void postvisit( const ast::OffsetPackExpr * offsetPackExpr );
658 void postvisit( const ast::LogicalExpr * logicalExpr );
659 void postvisit( const ast::ConditionalExpr * conditionalExpr );
660 void postvisit( const ast::CommaExpr * commaExpr );
661 void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr );
662 void postvisit( const ast::ConstructorExpr * ctorExpr );
663 void postvisit( const ast::RangeExpr * rangeExpr );
664 void postvisit( const ast::UntypedTupleExpr * tupleExpr );
665 void postvisit( const ast::TupleExpr * tupleExpr );
666 void postvisit( const ast::TupleIndexExpr * tupleExpr );
667 void postvisit( const ast::TupleAssignExpr * tupleExpr );
668 void postvisit( const ast::UniqueExpr * unqExpr );
669 void postvisit( const ast::StmtExpr * stmtExpr );
670 void postvisit( const ast::UntypedInitExpr * initExpr );
671
672 void postvisit( const ast::InitExpr * ) {
673 assertf( false, "CandidateFinder should never see a resolved InitExpr." );
674 }
675
676 void postvisit( const ast::DeletedExpr * ) {
677 assertf( false, "CandidateFinder should never see a DeletedExpr." );
678 }
679
680 void postvisit( const ast::GenericExpr * ) {
681 assertf( false, "_Generic is not yet supported." );
682 }
683 };
684
685 /// Set up candidate assertions for inference
686 void Finder::inferParameters( CandidateRef & newCand, CandidateList & out ) {
687 // Set need bindings for any unbound assertions
[fa761c2]688 ast::UniqueId crntResnSlot = 0; // matching ID for this expression's assertions
[64727bd]689 for ( auto & assn : newCand->need ) {
690 // skip already-matched assertions
691 if ( assn.second.resnSlot != 0 ) continue;
692 // assign slot for expression if needed
693 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }
694 // fix slot to assertion
695 assn.second.resnSlot = crntResnSlot;
696 }
697 // pair slot to expression
698 if ( crntResnSlot != 0 ) {
699 newCand->expr.get_and_mutate()->inferred.resnSlots().emplace_back( crntResnSlot );
700 }
701
702 // add to output list; assertion satisfaction will occur later
703 out.emplace_back( newCand );
704 }
705
706 /// Completes a function candidate with arguments located
707 void Finder::validateFunctionCandidate(
708 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
709 CandidateList & out
710 ) {
711 ast::ApplicationExpr * appExpr =
712 new ast::ApplicationExpr{ func->expr->location, func->expr };
713 // sum cost and accumulate arguments
714 std::deque< const ast::Expr * > args;
715 Cost cost = func->cost;
716 const ArgPack * pack = &result;
717 while ( pack->expr ) {
718 args.emplace_front( pack->expr );
719 cost += pack->cost;
720 pack = &results[pack->parent];
721 }
722 std::vector< ast::ptr< ast::Expr > > vargs( args.begin(), args.end() );
723 appExpr->args = std::move( vargs );
724 // build and validate new candidate
725 auto newCand =
726 std::make_shared<Candidate>( appExpr, result.env, result.open, result.need, cost );
727 PRINT(
728 std::cerr << "instantiate function success: " << appExpr << std::endl;
729 std::cerr << "need assertions:" << std::endl;
730 ast::print( std::cerr, result.need, 2 );
731 )
732 inferParameters( newCand, out );
733 }
734
735 /// Builds a list of candidates for a function, storing them in out
736 void Finder::makeFunctionCandidates(
737 const CodeLocation & location,
738 const CandidateRef & func, const ast::FunctionType * funcType,
[0bd3faf]739 const ExplodedArgs & args, CandidateList & out
[64727bd]740 ) {
741 ast::OpenVarSet funcOpen;
742 ast::AssertionSet funcNeed, funcHave;
743 ast::TypeEnvironment funcEnv{ func->env };
744 makeUnifiableVars( funcType, funcOpen, funcNeed );
745 // add all type variables as open variables now so that those not used in the
746 // parameter list are still considered open
747 funcEnv.add( funcType->forall );
748
749 if ( targetType && ! targetType->isVoid() && ! funcType->returns.empty() ) {
750 // attempt to narrow based on expected target type
751 const ast::Type * returnType = funcType->returns.front();
752 if ( selfFinder.strictMode ) {
[2908f08]753 if ( !unifyExact(
[64727bd]754 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, noWiden() ) // xxx - is no widening correct?
755 ) {
756 // unification failed, do not pursue this candidate
757 return;
[954c954]758 }
[2908f08]759 } else {
760 if ( !unify(
[64727bd]761 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen )
762 ) {
763 // unification failed, do not pursue this candidate
764 return;
765 }
[9d5089e]766 }
[64727bd]767 }
[9d5089e]768
[64727bd]769 // iteratively build matches, one parameter at a time
770 std::vector< ArgPack > results;
771 results.emplace_back( funcEnv, funcNeed, funcHave, funcOpen );
772 std::size_t genStart = 0;
[9d5089e]773
[64727bd]774 // xxx - how to handle default arg after change to ftype representation?
775 if (const ast::VariableExpr * varExpr = func->expr.as<ast::VariableExpr>()) {
776 if (const ast::FunctionDecl * funcDecl = varExpr->var.as<ast::FunctionDecl>()) {
777 // function may have default args only if directly calling by name
778 // must use types on candidate however, due to RenameVars substitution
779 auto nParams = funcType->params.size();
[9d5089e]780
[64727bd]781 for (size_t i=0; i<nParams; ++i) {
782 auto obj = funcDecl->params[i].strict_as<ast::ObjectDecl>();
783 if ( !instantiateArgument( location,
784 funcType->params[i], obj->init, args, results, genStart, symtab)) return;
785 }
786 goto endMatch;
787 }
788 }
789 for ( const auto & param : funcType->params ) {
790 // Try adding the arguments corresponding to the current parameter to the existing
791 // matches
792 // no default args for indirect calls
793 if ( !instantiateArgument( location,
794 param, nullptr, args, results, genStart, symtab ) ) return;
795 }
[9d5089e]796
[64727bd]797 endMatch:
798 if ( funcType->isVarArgs ) {
799 // append any unused arguments to vararg pack
800 std::size_t genEnd;
801 do {
802 genEnd = results.size();
[9d5089e]803
[64727bd]804 // iterate results
805 for ( std::size_t i = genStart; i < genEnd; ++i ) {
806 unsigned nextArg = results[i].nextArg;
[9d5089e]807
[64727bd]808 // use remainder of exploded tuple if present
809 if ( results[i].hasExpl() ) {
810 const ExplodedArg & expl = results[i].getExpl( args );
[9d5089e]811
[64727bd]812 unsigned nextExpl = results[i].nextExpl + 1;
813 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
[9d5089e]814
[64727bd]815 results.emplace_back(
816 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
817 copy( results[i].need ), copy( results[i].have ),
818 copy( results[i].open ), nextArg, 0, Cost::zero, nextExpl,
819 results[i].explAlt );
820
821 continue;
822 }
[9d5089e]823
[64727bd]824 // finish result when out of arguments
825 if ( nextArg >= args.size() ) {
826 validateFunctionCandidate( func, results[i], results, out );
[9d5089e]827
[64727bd]828 continue;
829 }
[9d5089e]830
[64727bd]831 // add each possible next argument
832 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
833 const ExplodedArg & expl = args[nextArg][j];
[9d5089e]834
[64727bd]835 // fresh copies of parent parameters for this iteration
836 ast::TypeEnvironment env = results[i].env;
837 ast::OpenVarSet open = results[i].open;
[9d5089e]838
[64727bd]839 env.addActual( expl.env, open );
[9d5089e]840
[64727bd]841 // skip empty tuple arguments by (nearly) cloning parent into next gen
842 if ( expl.exprs.empty() ) {
[9d5089e]843 results.emplace_back(
[64727bd]844 results[i], std::move( env ), copy( results[i].need ),
845 copy( results[i].have ), std::move( open ), nextArg + 1,
846 expl.cost );
847
848 continue;
[9d5089e]849 }
850
[64727bd]851 // add new result
852 results.emplace_back(
853 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
854 copy( results[i].have ), std::move( open ), nextArg + 1, 0, expl.cost,
855 expl.exprs.size() == 1 ? 0 : 1, j );
[9d5089e]856 }
857 }
[64727bd]858
859 genStart = genEnd;
860 } while( genEnd != results.size() );
861 } else {
862 // filter out the results that don't use all the arguments
863 for ( std::size_t i = genStart; i < results.size(); ++i ) {
864 ArgPack & result = results[i];
865 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {
866 validateFunctionCandidate( func, result, results, out );
867 }
[9d5089e]868 }
[4b7cce6]869 }
[64727bd]870 }
[4b7cce6]871
[64727bd]872 /// Adds implicit struct-conversions to the alternative list
873 void Finder::addAnonConversions( const CandidateRef & cand ) {
874 // adds anonymous member interpretations whenever an aggregate value type is seen.
875 // it's okay for the aggregate expression to have reference type -- cast it to the
876 // base type to treat the aggregate as the referenced value
877 ast::ptr< ast::Expr > aggrExpr( cand->expr );
878 ast::ptr< ast::Type > & aggrType = aggrExpr.get_and_mutate()->result;
879 cand->env.apply( aggrType );
[2890212]880
[64727bd]881 if ( aggrType.as< ast::ReferenceType >() ) {
882 aggrExpr = new ast::CastExpr{ aggrExpr, aggrType->stripReferences() };
883 }
[c8e4d2f8]884
[64727bd]885 if ( auto structInst = aggrExpr->result.as< ast::StructInstType >() ) {
886 addAggMembers( structInst, aggrExpr, *cand, Cost::unsafe, "" );
887 } else if ( auto unionInst = aggrExpr->result.as< ast::UnionInstType >() ) {
888 addAggMembers( unionInst, aggrExpr, *cand, Cost::unsafe, "" );
[c8e4d2f8]889 }
[64727bd]890 }
[c8e4d2f8]891
[64727bd]892 /// Adds aggregate member interpretations
893 void Finder::addAggMembers(
894 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
895 const Candidate & cand, const Cost & addedCost, const std::string & name
896 ) {
897 for ( const ast::Decl * decl : aggrInst->lookup( name ) ) {
898 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( decl );
899 CandidateRef newCand = std::make_shared<Candidate>(
900 cand, new ast::MemberExpr{ expr->location, dwt, expr }, addedCost );
901 // add anonymous member interpretations whenever an aggregate value type is seen
902 // as a member expression
903 addAnonConversions( newCand );
904 candidates.emplace_back( std::move( newCand ) );
[432ce7a]905 }
[64727bd]906 }
[432ce7a]907
[64727bd]908 /// Adds tuple member interpretations
909 void Finder::addTupleMembers(
910 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
911 const Cost & addedCost, const ast::Expr * member
912 ) {
913 if ( auto constantExpr = dynamic_cast< const ast::ConstantExpr * >( member ) ) {
914 // get the value of the constant expression as an int, must be between 0 and the
915 // length of the tuple to have meaning
916 long long val = constantExpr->intValue();
917 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {
918 addCandidate(
919 cand, new ast::TupleIndexExpr{ expr->location, expr, (unsigned)val },
920 addedCost );
[898ae07]921 }
922 }
[64727bd]923 }
[898ae07]924
[64727bd]925 void Finder::postvisit( const ast::UntypedExpr * untypedExpr ) {
926 std::vector< CandidateFinder > argCandidates =
927 selfFinder.findSubExprs( untypedExpr->args );
928
929 // take care of possible tuple assignments
930 // if not tuple assignment, handled as normal function call
931 Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates );
932
933 CandidateFinder funcFinder( context, tenv );
934 if (auto nameExpr = untypedExpr->func.as<ast::NameExpr>()) {
935 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
936 if (kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS) {
937 assertf(!argCandidates.empty(), "special function call without argument");
938 for (auto & firstArgCand: argCandidates[0]) {
939 ast::ptr<ast::Type> argType = firstArgCand->expr->result;
940 firstArgCand->env.apply(argType);
941 // strip references
942 // xxx - is this correct?
943 while (argType.as<ast::ReferenceType>()) argType = argType.as<ast::ReferenceType>()->base;
944
945 // convert 1-tuple to plain type
946 if (auto tuple = argType.as<ast::TupleType>()) {
947 if (tuple->size() == 1) {
948 argType = tuple->types[0];
[e5c3811]949 }
[64727bd]950 }
[e5c3811]951
[64727bd]952 // if argType is an unbound type parameter, all special functions need to be searched.
953 if (isUnboundType(argType)) {
954 funcFinder.otypeKeys.clear();
955 break;
[e5c3811]956 }
[64727bd]957
958 if (argType.as<ast::PointerType>()) funcFinder.otypeKeys.insert(Mangle::Encoding::pointer);
959 // else if (const ast::EnumInstType * enumInst = argType.as<ast::EnumInstType>()) {
960 // const ast::EnumDecl * enumDecl = enumInst->base; // Here
961 // if ( const ast::Type* enumType = enumDecl->base ) {
962 // // instance of enum (T) is a instance of type (T)
963 // funcFinder.otypeKeys.insert(Mangle::mangle(enumType, Mangle::NoGenericParams | Mangle::Type));
964 // } else {
965 // // instance of an untyped enum is techically int
966 // funcFinder.otypeKeys.insert(Mangle::mangle(enumDecl, Mangle::NoGenericParams | Mangle::Type));
967 // }
968 // }
969 else funcFinder.otypeKeys.insert(Mangle::mangle(argType, Mangle::NoGenericParams | Mangle::Type));
[e5c3811]970 }
971 }
[64727bd]972 }
973 // if candidates are already produced, do not fail
974 // xxx - is it possible that handleTupleAssignment and main finder both produce candidates?
975 // this means there exists ctor/assign functions with a tuple as first parameter.
[4a89b52]976 ResolveMode mode = {
[64727bd]977 true, // adjust
978 !untypedExpr->func.as<ast::NameExpr>(), // prune if not calling by name
979 selfFinder.candidates.empty() // failfast if other options are not found
980 };
981 funcFinder.find( untypedExpr->func, mode );
982 // short-circuit if no candidates
983 // if ( funcFinder.candidates.empty() ) return;
[432ce7a]984
[64727bd]985 reason.code = NoMatch;
[432ce7a]986
[64727bd]987 // find function operators
988 ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; // ??? why not ?{}
989 CandidateFinder opFinder( context, tenv );
990 // okay if there aren't any function operations
[4a89b52]991 opFinder.find( opExpr, ResolveMode::withoutFailFast() );
[64727bd]992 PRINT(
993 std::cerr << "known function ops:" << std::endl;
994 print( std::cerr, opFinder.candidates, 1 );
995 )
[432ce7a]996
[64727bd]997 // pre-explode arguments
[0bd3faf]998 ExplodedArgs argExpansions;
[64727bd]999 for ( const CandidateFinder & args : argCandidates ) {
1000 argExpansions.emplace_back();
1001 auto & argE = argExpansions.back();
1002 for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); }
1003 }
1004
1005 // Find function matches
1006 CandidateList found;
1007 SemanticErrorException errors;
1008 for ( CandidateRef & func : funcFinder ) {
1009 try {
1010 PRINT(
1011 std::cerr << "working on alternative:" << std::endl;
1012 print( std::cerr, *func, 2 );
1013 )
1014
1015 // check if the type is a pointer to function
1016 const ast::Type * funcResult = func->expr->result->stripReferences();
1017 if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) {
1018 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1019 // if (!selfFinder.allowVoid && function->returns.empty()) continue;
1020 CandidateRef newFunc{ new Candidate{ *func } };
1021 newFunc->expr =
1022 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1023 makeFunctionCandidates( untypedExpr->location,
1024 newFunc, function, argExpansions, found );
1025 }
1026 } else if (
1027 auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult )
1028 ) {
1029 if ( const ast::EqvClass * clz = func->env.lookup( *inst ) ) {
1030 if ( auto function = clz->bound.as< ast::FunctionType >() ) {
1031 CandidateRef newFunc( new Candidate( *func ) );
[2890212]1032 newFunc->expr =
[432ce7a]1033 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
[b96b1c0]1034 makeFunctionCandidates( untypedExpr->location,
1035 newFunc, function, argExpansions, found );
[432ce7a]1036 }
1037 }
[64727bd]1038 }
1039 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1040 }
1041
1042 // Find matches on function operators `?()`
1043 if ( ! opFinder.candidates.empty() ) {
1044 // add exploded function alternatives to front of argument list
1045 std::vector< ExplodedArg > funcE;
1046 funcE.reserve( funcFinder.candidates.size() );
1047 for ( const CandidateRef & func : funcFinder ) {
1048 funcE.emplace_back( *func, symtab );
[432ce7a]1049 }
[64727bd]1050 argExpansions.emplace_front( std::move( funcE ) );
[432ce7a]1051
[64727bd]1052 for ( const CandidateRef & op : opFinder ) {
1053 try {
1054 // check if type is pointer-to-function
1055 const ast::Type * opResult = op->expr->result->stripReferences();
1056 if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) {
1057 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1058 CandidateRef newOp{ new Candidate{ *op} };
1059 newOp->expr =
1060 referenceToRvalueConversion( newOp->expr, newOp->cost );
1061 makeFunctionCandidates( untypedExpr->location,
1062 newOp, function, argExpansions, found );
[432ce7a]1063 }
[64727bd]1064 }
1065 } catch ( SemanticErrorException & e ) { errors.append( e ); }
[432ce7a]1066 }
[64727bd]1067 }
[432ce7a]1068
[64727bd]1069 // Implement SFINAE; resolution errors are only errors if there aren't any non-error
1070 // candidates
1071 if ( found.empty() && ! errors.isEmpty() ) { throw errors; }
[432ce7a]1072
[64727bd]1073 // only keep the best matching intrinsic result to match C semantics (no unexpected narrowing/widening)
1074 // TODO: keep one for each set of argument candidates?
1075 Cost intrinsicCost = Cost::infinity;
1076 CandidateList intrinsicResult;
[46da46b]1077
[64727bd]1078 // Compute conversion costs
1079 for ( CandidateRef & withFunc : found ) {
1080 Cost cvtCost = computeApplicationConversionCost( withFunc, symtab );
[432ce7a]1081
[64727bd]1082 PRINT(
1083 auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >();
1084 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
1085 auto function = pointer->base.strict_as< ast::FunctionType >();
1086
1087 std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl;
1088 std::cerr << "parameters are:" << std::endl;
1089 ast::printAll( std::cerr, function->params, 2 );
1090 std::cerr << "arguments are:" << std::endl;
1091 ast::printAll( std::cerr, appExpr->args, 2 );
1092 std::cerr << "bindings are:" << std::endl;
1093 ast::print( std::cerr, withFunc->env, 2 );
1094 std::cerr << "cost is: " << withFunc->cost << std::endl;
1095 std::cerr << "cost of conversion is:" << cvtCost << std::endl;
1096 )
[432ce7a]1097
[64727bd]1098 if ( cvtCost != Cost::infinity ) {
1099 withFunc->cvtCost = cvtCost;
1100 withFunc->cost += cvtCost;
1101 auto func = withFunc->expr.strict_as<ast::ApplicationExpr>()->func.as<ast::VariableExpr>();
1102 if (func && func->var->linkage == ast::Linkage::Intrinsic) {
1103 if (withFunc->cost < intrinsicCost) {
1104 intrinsicResult.clear();
1105 intrinsicCost = withFunc->cost;
1106 }
1107 if (withFunc->cost == intrinsicCost) {
1108 intrinsicResult.emplace_back(std::move(withFunc));
[46da46b]1109 }
[2908f08]1110 } else {
[64727bd]1111 candidates.emplace_back( std::move( withFunc ) );
1112 }
[432ce7a]1113 }
1114 }
[64727bd]1115 spliceBegin( candidates, intrinsicResult );
1116 found = std::move( candidates );
1117
1118 // use a new list so that candidates are not examined by addAnonConversions twice
1119 // CandidateList winners = findMinCost( found );
1120 // promoteCvtCost( winners );
1121
1122 // function may return a struct/union value, in which case we need to add candidates
1123 // for implicit conversions to each of the anonymous members, which must happen after
1124 // `findMinCost`, since anon conversions are never the cheapest
1125 for ( const CandidateRef & c : found ) {
1126 addAnonConversions( c );
1127 }
1128 // would this be too slow when we don't check cost anymore?
1129 spliceBegin( candidates, found );
1130
1131 if ( candidates.empty() && targetType && ! targetType->isVoid() && !selfFinder.strictMode ) {
1132 // If resolution is unsuccessful with a target type, try again without, since it
1133 // will sometimes succeed when it wouldn't with a target type binding.
1134 // For example:
1135 // forall( otype T ) T & ?[]( T *, ptrdiff_t );
1136 // const char * x = "hello world";
1137 // unsigned char ch = x[0];
1138 // Fails with simple return type binding (xxx -- check this!) as follows:
1139 // * T is bound to unsigned char
1140 // * (x: const char *) is unified with unsigned char *, which fails
1141 // xxx -- fix this better
1142 targetType = nullptr;
1143 postvisit( untypedExpr );
[4b7cce6]1144 }
[64727bd]1145 }
[4b7cce6]1146
[64727bd]1147 void Finder::postvisit( const ast::AddressExpr * addressExpr ) {
1148 CandidateFinder finder( context, tenv );
1149 finder.find( addressExpr->arg );
[71d6bd8]1150
[64727bd]1151 if ( finder.candidates.empty() ) return;
[71d6bd8]1152
[64727bd]1153 reason.code = NoMatch;
[4b7cce6]1154
[64727bd]1155 for ( CandidateRef & r : finder.candidates ) {
[2908f08]1156 if ( !isLvalue( r->expr ) ) continue;
[64727bd]1157 addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } );
[4b7cce6]1158 }
[64727bd]1159 }
[4b7cce6]1160
[64727bd]1161 void Finder::postvisit( const ast::LabelAddressExpr * labelExpr ) {
1162 addCandidate( labelExpr, tenv );
1163 }
[c8e4d2f8]1164
[64727bd]1165 void Finder::postvisit( const ast::CastExpr * castExpr ) {
1166 ast::ptr< ast::Type > toType = castExpr->result;
1167 assert( toType );
1168 toType = resolveTypeof( toType, context );
1169 toType = adjustExprType( toType, tenv, symtab );
[46da46b]1170
[64727bd]1171 CandidateFinder finder( context, tenv, toType );
1172 if (toType->isVoid()) {
1173 finder.allowVoid = true;
1174 }
1175 if ( castExpr->kind == ast::CastExpr::Return ) {
1176 finder.strictMode = true;
[4a89b52]1177 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
[c8e4d2f8]1178
[64727bd]1179 // return casts are eliminated (merely selecting an overload, no actual operation)
1180 candidates = std::move(finder.candidates);
1181 }
[4a89b52]1182 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
[71d6bd8]1183
[64727bd]1184 if ( !finder.candidates.empty() ) reason.code = NoMatch;
[c8e4d2f8]1185
[64727bd]1186 CandidateList matches;
1187 Cost minExprCost = Cost::infinity;
1188 Cost minCastCost = Cost::infinity;
1189 for ( CandidateRef & cand : finder.candidates ) {
1190 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1191 ast::OpenVarSet open( cand->open );
[c8e4d2f8]1192
[64727bd]1193 cand->env.extractOpenVars( open );
[c8e4d2f8]1194
[64727bd]1195 // It is possible that a cast can throw away some values in a multiply-valued
1196 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of the
1197 // subexpression results that are cast directly. The candidate is invalid if it
1198 // has fewer results than there are types to cast to.
1199 int discardedValues = cand->expr->result->size() - toType->size();
1200 if ( discardedValues < 0 ) continue;
[bb87dd0]1201
[64727bd]1202 // unification run for side-effects
1203 unify( toType, cand->expr->result, cand->env, need, have, open );
1204 Cost thisCost =
1205 (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast)
1206 ? conversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env )
1207 : castCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env );
1208
1209 PRINT(
1210 std::cerr << "working on cast with result: " << toType << std::endl;
1211 std::cerr << "and expr type: " << cand->expr->result << std::endl;
1212 std::cerr << "env: " << cand->env << std::endl;
1213 )
1214 if ( thisCost != Cost::infinity ) {
[c8e4d2f8]1215 PRINT(
[64727bd]1216 std::cerr << "has finite cost." << std::endl;
[c8e4d2f8]1217 )
[64727bd]1218 // count one safe conversion for each value that is thrown away
1219 thisCost.incSafe( discardedValues );
1220 // select first on argument cost, then conversion cost
1221 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1222 minExprCost = cand->cost;
1223 minCastCost = thisCost;
1224 matches.clear();
[46da46b]1225
1226
[c8e4d2f8]1227 }
[64727bd]1228 // ambiguous case, still output candidates to print in error message
1229 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1230 CandidateRef newCand = std::make_shared<Candidate>(
1231 restructureCast( cand->expr, toType, castExpr->isGenerated ),
1232 copy( cand->env ), std::move( open ), std::move( need ), cand->cost + thisCost);
1233 // currently assertions are always resolved immediately so this should have no effect.
1234 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1235 // we may need to revisit the logic.
1236 inferParameters( newCand, matches );
1237 }
1238 // else skip, better alternatives found
[4b7cce6]1239
1240 }
1241 }
[64727bd]1242 candidates = std::move(matches);
[4b7cce6]1243
[64727bd]1244 //CandidateList minArgCost = findMinCost( matches );
1245 //promoteCvtCost( minArgCost );
1246 //candidates = findMinCost( minArgCost );
1247 }
[4ef08f7]1248
[64727bd]1249 void Finder::postvisit( const ast::VirtualCastExpr * castExpr ) {
1250 assertf( castExpr->result, "Implicit virtual cast targets not yet supported." );
1251 CandidateFinder finder( context, tenv );
1252 // don't prune here, all alternatives guaranteed to have same type
[4a89b52]1253 finder.find( castExpr->arg, ResolveMode::withoutPrune() );
[64727bd]1254 for ( CandidateRef & r : finder.candidates ) {
1255 addCandidate(
1256 *r,
1257 new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } );
1258 }
1259 }
[4ef08f7]1260
[64727bd]1261 void Finder::postvisit( const ast::KeywordCastExpr * castExpr ) {
1262 const auto & loc = castExpr->location;
1263 assertf( castExpr->result, "Cast target should have been set in Validate." );
1264 auto ref = castExpr->result.strict_as<ast::ReferenceType>();
1265 auto inst = ref->base.strict_as<ast::StructInstType>();
1266 auto target = inst->base.get();
1267
1268 CandidateFinder finder( context, tenv );
1269
1270 auto pick_alternatives = [target, this](CandidateList & found, bool expect_ref) {
1271 for (auto & cand : found) {
1272 const ast::Type * expr = cand->expr->result.get();
1273 if (expect_ref) {
1274 auto res = dynamic_cast<const ast::ReferenceType*>(expr);
1275 if (!res) { continue; }
1276 expr = res->base.get();
1277 }
[4ef08f7]1278
[64727bd]1279 if (auto insttype = dynamic_cast<const ast::TypeInstType*>(expr)) {
1280 auto td = cand->env.lookup(*insttype);
1281 if (!td) { continue; }
1282 expr = td->bound.get();
1283 }
[4ef08f7]1284
[64727bd]1285 if (auto base = dynamic_cast<const ast::StructInstType*>(expr)) {
1286 if (base->base == target) {
1287 candidates.push_back( std::move(cand) );
1288 reason.code = NoReason;
[4ef08f7]1289 }
1290 }
[64727bd]1291 }
1292 };
[4ef08f7]1293
[64727bd]1294 try {
1295 // Attempt 1 : turn (thread&)X into (thread$&)X.__thrd
1296 // Clone is purely for memory management
1297 std::unique_ptr<const ast::Expr> tech1 { new ast::UntypedMemberExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.field), castExpr->arg) };
[4ef08f7]1298
[64727bd]1299 // don't prune here, since it's guaranteed all alternatives will have the same type
[4a89b52]1300 finder.find( tech1.get(), ResolveMode::withoutPrune() );
[64727bd]1301 pick_alternatives(finder.candidates, false);
[4ef08f7]1302
[64727bd]1303 return;
1304 } catch(SemanticErrorException & ) {}
[4ef08f7]1305
[64727bd]1306 // Fallback : turn (thread&)X into (thread$&)get_thread(X)
1307 std::unique_ptr<const ast::Expr> fallback { ast::UntypedExpr::createDeref(loc, new ast::UntypedExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.getter), { castExpr->arg })) };
1308 // don't prune here, since it's guaranteed all alternatives will have the same type
[4a89b52]1309 finder.find( fallback.get(), ResolveMode::withoutPrune() );
[64727bd]1310
1311 pick_alternatives(finder.candidates, true);
1312
1313 // Whatever happens here, we have no more fallbacks
1314 }
1315
1316 void Finder::postvisit( const ast::UntypedMemberExpr * memberExpr ) {
1317 CandidateFinder aggFinder( context, tenv );
[4a89b52]1318 aggFinder.find( memberExpr->aggregate, ResolveMode::withAdjustment() );
[64727bd]1319 for ( CandidateRef & agg : aggFinder.candidates ) {
1320 // it's okay for the aggregate expression to have reference type -- cast it to the
1321 // base type to treat the aggregate as the referenced value
1322 Cost addedCost = Cost::zero;
1323 agg->expr = referenceToRvalueConversion( agg->expr, addedCost );
1324
1325 // find member of the given type
1326 if ( auto structInst = agg->expr->result.as< ast::StructInstType >() ) {
1327 addAggMembers(
1328 structInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1329 } else if ( auto unionInst = agg->expr->result.as< ast::UnionInstType >() ) {
1330 addAggMembers(
1331 unionInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1332 } else if ( auto tupleType = agg->expr->result.as< ast::TupleType >() ) {
1333 addTupleMembers( tupleType, agg->expr, *agg, addedCost, memberExpr->member );
[898ae07]1334 }
[4b7cce6]1335 }
[64727bd]1336 }
[4b7cce6]1337
[64727bd]1338 void Finder::postvisit( const ast::MemberExpr * memberExpr ) {
1339 addCandidate( memberExpr, tenv );
1340 }
[4b7cce6]1341
[64727bd]1342 void Finder::postvisit( const ast::NameExpr * nameExpr ) {
1343 std::vector< ast::SymbolTable::IdData > declList;
1344 if (!selfFinder.otypeKeys.empty()) {
1345 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
1346 assertf(kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS, "special lookup with non-special target: %s", nameExpr->name.c_str());
[e5c3811]1347
[64727bd]1348 for (auto & otypeKey: selfFinder.otypeKeys) {
1349 auto result = symtab.specialLookupId(kind, otypeKey);
1350 declList.insert(declList.end(), std::make_move_iterator(result.begin()), std::make_move_iterator(result.end()));
[e5c3811]1351 }
[64727bd]1352 } else {
1353 declList = symtab.lookupId( nameExpr->name );
1354 }
1355 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )
[71d6bd8]1356
[64727bd]1357 if ( declList.empty() ) return;
[71d6bd8]1358
[64727bd]1359 reason.code = NoMatch;
[898ae07]1360
[64727bd]1361 for ( auto & data : declList ) {
1362 Cost cost = Cost::zero;
1363 ast::Expr * newExpr = data.combine( nameExpr->location, cost );
[9e23b446]1364
[64727bd]1365 CandidateRef newCand = std::make_shared<Candidate>(
1366 newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, Cost::zero,
1367 cost );
[9e23b446]1368
[64727bd]1369 if (newCand->expr->env) {
1370 newCand->env.add(*newCand->expr->env);
1371 auto mutExpr = newCand->expr.get_and_mutate();
1372 mutExpr->env = nullptr;
1373 newCand->expr = mutExpr;
[898ae07]1374 }
[4b7cce6]1375
[64727bd]1376 PRINT(
1377 std::cerr << "decl is ";
1378 ast::print( std::cerr, data.id );
1379 std::cerr << std::endl;
1380 std::cerr << "newExpr is ";
1381 ast::print( std::cerr, newExpr );
1382 std::cerr << std::endl;
1383 )
1384 newCand->expr = ast::mutate_field(
1385 newCand->expr.get(), &ast::Expr::result,
1386 renameTyVars( newCand->expr->result ) );
1387 // add anonymous member interpretations whenever an aggregate value type is seen
1388 // as a name expression
1389 addAnonConversions( newCand );
1390 candidates.emplace_back( std::move( newCand ) );
[4b7cce6]1391 }
[64727bd]1392 }
[4b7cce6]1393
[64727bd]1394 void Finder::postvisit( const ast::VariableExpr * variableExpr ) {
1395 // not sufficient to just pass `variableExpr` here, type might have changed since
1396 // creation
1397 addCandidate(
1398 new ast::VariableExpr{ variableExpr->location, variableExpr->var }, tenv );
1399 }
[4b7cce6]1400
[64727bd]1401 void Finder::postvisit( const ast::ConstantExpr * constantExpr ) {
1402 addCandidate( constantExpr, tenv );
1403 }
[4b7cce6]1404
[64727bd]1405 void Finder::postvisit( const ast::SizeofExpr * sizeofExpr ) {
1406 if ( sizeofExpr->type ) {
1407 addCandidate(
1408 new ast::SizeofExpr{
1409 sizeofExpr->location, resolveTypeof( sizeofExpr->type, context ) },
1410 tenv );
1411 } else {
1412 // find all candidates for the argument to sizeof
1413 CandidateFinder finder( context, tenv );
1414 finder.find( sizeofExpr->expr );
1415 // find the lowest-cost candidate, otherwise ambiguous
1416 CandidateList winners = findMinCost( finder.candidates );
1417 if ( winners.size() != 1 ) {
1418 SemanticError(
1419 sizeofExpr->expr.get(), "Ambiguous expression in sizeof operand: " );
[898ae07]1420 }
[64727bd]1421 // return the lowest-cost candidate
1422 CandidateRef & choice = winners.front();
1423 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1424 choice->cost = Cost::zero;
1425 addCandidate( *choice, new ast::SizeofExpr{ sizeofExpr->location, choice->expr } );
[4b7cce6]1426 }
[64727bd]1427 }
[4b7cce6]1428
[64727bd]1429 void Finder::postvisit( const ast::AlignofExpr * alignofExpr ) {
1430 if ( alignofExpr->type ) {
1431 addCandidate(
1432 new ast::AlignofExpr{
1433 alignofExpr->location, resolveTypeof( alignofExpr->type, context ) },
1434 tenv );
1435 } else {
1436 // find all candidates for the argument to alignof
1437 CandidateFinder finder( context, tenv );
1438 finder.find( alignofExpr->expr );
1439 // find the lowest-cost candidate, otherwise ambiguous
1440 CandidateList winners = findMinCost( finder.candidates );
1441 if ( winners.size() != 1 ) {
1442 SemanticError(
1443 alignofExpr->expr.get(), "Ambiguous expression in alignof operand: " );
[898ae07]1444 }
[64727bd]1445 // return the lowest-cost candidate
1446 CandidateRef & choice = winners.front();
1447 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1448 choice->cost = Cost::zero;
1449 addCandidate(
1450 *choice, new ast::AlignofExpr{ alignofExpr->location, choice->expr } );
[4b7cce6]1451 }
[64727bd]1452 }
[4b7cce6]1453
[64727bd]1454 void Finder::postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) {
1455 const ast::BaseInstType * aggInst;
1456 if (( aggInst = offsetofExpr->type.as< ast::StructInstType >() )) ;
1457 else if (( aggInst = offsetofExpr->type.as< ast::UnionInstType >() )) ;
1458 else return;
[4b7cce6]1459
[64727bd]1460 for ( const ast::Decl * member : aggInst->lookup( offsetofExpr->member ) ) {
1461 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( member );
1462 addCandidate(
1463 new ast::OffsetofExpr{ offsetofExpr->location, aggInst, dwt }, tenv );
[4b7cce6]1464 }
[64727bd]1465 }
[4b7cce6]1466
[64727bd]1467 void Finder::postvisit( const ast::OffsetofExpr * offsetofExpr ) {
1468 addCandidate( offsetofExpr, tenv );
1469 }
[4b7cce6]1470
[64727bd]1471 void Finder::postvisit( const ast::OffsetPackExpr * offsetPackExpr ) {
1472 addCandidate( offsetPackExpr, tenv );
1473 }
[71d6bd8]1474
[64727bd]1475 void Finder::postvisit( const ast::LogicalExpr * logicalExpr ) {
1476 CandidateFinder finder1( context, tenv );
[4a89b52]1477 finder1.find( logicalExpr->arg1, ResolveMode::withAdjustment() );
[64727bd]1478 if ( finder1.candidates.empty() ) return;
[4b7cce6]1479
[64727bd]1480 CandidateFinder finder2( context, tenv );
[4a89b52]1481 finder2.find( logicalExpr->arg2, ResolveMode::withAdjustment() );
[64727bd]1482 if ( finder2.candidates.empty() ) return;
[4b7cce6]1483
[64727bd]1484 reason.code = NoMatch;
[4b7cce6]1485
[64727bd]1486 for ( const CandidateRef & r1 : finder1.candidates ) {
[4b7cce6]1487 for ( const CandidateRef & r2 : finder2.candidates ) {
[64727bd]1488 ast::TypeEnvironment env{ r1->env };
1489 env.simpleCombine( r2->env );
1490 ast::OpenVarSet open{ r1->open };
1491 mergeOpenVars( open, r2->open );
1492 ast::AssertionSet need;
1493 mergeAssertionSet( need, r1->need );
1494 mergeAssertionSet( need, r2->need );
[4b7cce6]1495
[64727bd]1496 addCandidate(
1497 new ast::LogicalExpr{
1498 logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd },
1499 std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost );
[4b7cce6]1500 }
1501 }
[64727bd]1502 }
1503
1504 void Finder::postvisit( const ast::ConditionalExpr * conditionalExpr ) {
1505 // candidates for condition
1506 CandidateFinder finder1( context, tenv );
[4a89b52]1507 finder1.find( conditionalExpr->arg1, ResolveMode::withAdjustment() );
[64727bd]1508 if ( finder1.candidates.empty() ) return;
[4b7cce6]1509
[64727bd]1510 // candidates for true result
1511 CandidateFinder finder2( context, tenv );
1512 finder2.allowVoid = true;
[4a89b52]1513 finder2.find( conditionalExpr->arg2, ResolveMode::withAdjustment() );
[64727bd]1514 if ( finder2.candidates.empty() ) return;
[4b7cce6]1515
[64727bd]1516 // candidates for false result
1517 CandidateFinder finder3( context, tenv );
1518 finder3.allowVoid = true;
[4a89b52]1519 finder3.find( conditionalExpr->arg3, ResolveMode::withAdjustment() );
[64727bd]1520 if ( finder3.candidates.empty() ) return;
[4b7cce6]1521
[64727bd]1522 reason.code = NoMatch;
[71d6bd8]1523
[64727bd]1524 for ( const CandidateRef & r1 : finder1.candidates ) {
1525 for ( const CandidateRef & r2 : finder2.candidates ) {
1526 for ( const CandidateRef & r3 : finder3.candidates ) {
[4b7cce6]1527 ast::TypeEnvironment env{ r1->env };
1528 env.simpleCombine( r2->env );
[64727bd]1529 env.simpleCombine( r3->env );
[4b7cce6]1530 ast::OpenVarSet open{ r1->open };
1531 mergeOpenVars( open, r2->open );
[64727bd]1532 mergeOpenVars( open, r3->open );
[4b7cce6]1533 ast::AssertionSet need;
1534 mergeAssertionSet( need, r1->need );
1535 mergeAssertionSet( need, r2->need );
[64727bd]1536 mergeAssertionSet( need, r3->need );
[4b7cce6]1537 ast::AssertionSet have;
1538
[64727bd]1539 // unify true and false results, then infer parameters to produce new
1540 // candidates
[4b7cce6]1541 ast::ptr< ast::Type > common;
[2890212]1542 if (
1543 unify(
[64727bd]1544 r2->expr->result, r3->expr->result, env, need, have, open,
[2890212]1545 common )
[4b7cce6]1546 ) {
[64727bd]1547 // generate typed expression
1548 ast::ConditionalExpr * newExpr = new ast::ConditionalExpr{
1549 conditionalExpr->location, r1->expr, r2->expr, r3->expr };
1550 newExpr->result = common ? common : r2->expr->result;
1551 // convert both options to result type
1552 Cost cost = r1->cost + r2->cost + r3->cost;
1553 newExpr->arg2 = computeExpressionConversionCost(
1554 newExpr->arg2, newExpr->result, symtab, env, cost );
1555 newExpr->arg3 = computeExpressionConversionCost(
1556 newExpr->arg3, newExpr->result, symtab, env, cost );
1557 // output candidate
[898ae07]1558 CandidateRef newCand = std::make_shared<Candidate>(
[64727bd]1559 newExpr, std::move( env ), std::move( open ), std::move( need ), cost );
[898ae07]1560 inferParameters( newCand, candidates );
[4b7cce6]1561 }
1562 }
1563 }
1564 }
[64727bd]1565 }
[4b7cce6]1566
[64727bd]1567 void Finder::postvisit( const ast::CommaExpr * commaExpr ) {
1568 ast::TypeEnvironment env{ tenv };
1569 ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, context, env );
[4b7cce6]1570
[64727bd]1571 CandidateFinder finder2( context, env );
[4a89b52]1572 finder2.find( commaExpr->arg2, ResolveMode::withAdjustment() );
[4b7cce6]1573
[64727bd]1574 for ( const CandidateRef & r2 : finder2.candidates ) {
1575 addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } );
[4b7cce6]1576 }
[64727bd]1577 }
[4b7cce6]1578
[64727bd]1579 void Finder::postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) {
1580 addCandidate( ctorExpr, tenv );
1581 }
[4b7cce6]1582
[64727bd]1583 void Finder::postvisit( const ast::ConstructorExpr * ctorExpr ) {
1584 CandidateFinder finder( context, tenv );
1585 finder.allowVoid = true;
[4a89b52]1586 finder.find( ctorExpr->callExpr, ResolveMode::withoutPrune() );
[64727bd]1587 for ( CandidateRef & r : finder.candidates ) {
1588 addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } );
[4b7cce6]1589 }
[64727bd]1590 }
1591
1592 void Finder::postvisit( const ast::RangeExpr * rangeExpr ) {
1593 // resolve low and high, accept candidates where low and high types unify
1594 CandidateFinder finder1( context, tenv );
[4a89b52]1595 finder1.find( rangeExpr->low, ResolveMode::withAdjustment() );
[64727bd]1596 if ( finder1.candidates.empty() ) return;
1597
1598 CandidateFinder finder2( context, tenv );
[4a89b52]1599 finder2.find( rangeExpr->high, ResolveMode::withAdjustment() );
[64727bd]1600 if ( finder2.candidates.empty() ) return;
1601
1602 reason.code = NoMatch;
[4b7cce6]1603
[64727bd]1604 for ( const CandidateRef & r1 : finder1.candidates ) {
1605 for ( const CandidateRef & r2 : finder2.candidates ) {
1606 ast::TypeEnvironment env{ r1->env };
1607 env.simpleCombine( r2->env );
1608 ast::OpenVarSet open{ r1->open };
1609 mergeOpenVars( open, r2->open );
1610 ast::AssertionSet need;
1611 mergeAssertionSet( need, r1->need );
1612 mergeAssertionSet( need, r2->need );
1613 ast::AssertionSet have;
1614
1615 ast::ptr< ast::Type > common;
1616 if (
1617 unify(
1618 r1->expr->result, r2->expr->result, env, need, have, open,
1619 common )
1620 ) {
1621 // generate new expression
1622 ast::RangeExpr * newExpr =
1623 new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr };
1624 newExpr->result = common ? common : r1->expr->result;
1625 // add candidate
1626 CandidateRef newCand = std::make_shared<Candidate>(
1627 newExpr, std::move( env ), std::move( open ), std::move( need ),
1628 r1->cost + r2->cost );
1629 inferParameters( newCand, candidates );
1630 }
1631 }
[4b7cce6]1632 }
[64727bd]1633 }
[4b7cce6]1634
[64727bd]1635 void Finder::postvisit( const ast::UntypedTupleExpr * tupleExpr ) {
1636 std::vector< CandidateFinder > subCandidates =
1637 selfFinder.findSubExprs( tupleExpr->exprs );
1638 std::vector< CandidateList > possibilities;
1639 combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) );
1640
1641 for ( const CandidateList & subs : possibilities ) {
1642 std::vector< ast::ptr< ast::Expr > > exprs;
1643 exprs.reserve( subs.size() );
1644 for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); }
1645
1646 ast::TypeEnvironment env;
1647 ast::OpenVarSet open;
1648 ast::AssertionSet need;
1649 for ( const CandidateRef & sub : subs ) {
1650 env.simpleCombine( sub->env );
1651 mergeOpenVars( open, sub->open );
1652 mergeAssertionSet( need, sub->need );
[4b7cce6]1653 }
[64727bd]1654
1655 addCandidate(
1656 new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) },
1657 std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) );
[4b7cce6]1658 }
[64727bd]1659 }
1660
1661 void Finder::postvisit( const ast::TupleExpr * tupleExpr ) {
1662 addCandidate( tupleExpr, tenv );
1663 }
1664
1665 void Finder::postvisit( const ast::TupleIndexExpr * tupleExpr ) {
1666 addCandidate( tupleExpr, tenv );
1667 }
1668
1669 void Finder::postvisit( const ast::TupleAssignExpr * tupleExpr ) {
1670 addCandidate( tupleExpr, tenv );
1671 }
[4b7cce6]1672
[64727bd]1673 void Finder::postvisit( const ast::UniqueExpr * unqExpr ) {
1674 CandidateFinder finder( context, tenv );
[4a89b52]1675 finder.find( unqExpr->expr, ResolveMode::withAdjustment() );
[64727bd]1676 for ( CandidateRef & r : finder.candidates ) {
1677 // ensure that the the id is passed on so that the expressions are "linked"
1678 addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } );
[4b7cce6]1679 }
[64727bd]1680 }
[4b7cce6]1681
[64727bd]1682 void Finder::postvisit( const ast::StmtExpr * stmtExpr ) {
1683 addCandidate( resolveStmtExpr( stmtExpr, context ), tenv );
1684 }
[17a0ede2]1685
[64727bd]1686 void Finder::postvisit( const ast::UntypedInitExpr * initExpr ) {
1687 // handle each option like a cast
1688 CandidateList matches;
1689 PRINT(
1690 std::cerr << "untyped init expr: " << initExpr << std::endl;
1691 )
1692 // O(n^2) checks of d-types with e-types
1693 for ( const ast::InitAlternative & initAlt : initExpr->initAlts ) {
1694 // calculate target type
1695 const ast::Type * toType = resolveTypeof( initAlt.type, context );
1696 toType = adjustExprType( toType, tenv, symtab );
1697 // The call to find must occur inside this loop, otherwise polymorphic return
1698 // types are not bound to the initialization type, since return type variables are
1699 // only open for the duration of resolving the UntypedExpr.
1700 CandidateFinder finder( context, tenv, toType );
[4a89b52]1701 finder.find( initExpr->expr, ResolveMode::withAdjustment() );
[64727bd]1702
1703 Cost minExprCost = Cost::infinity;
1704 Cost minCastCost = Cost::infinity;
1705 for ( CandidateRef & cand : finder.candidates ) {
1706 if (reason.code == NotFound) reason.code = NoMatch;
1707
1708 ast::TypeEnvironment env{ cand->env };
1709 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1710 ast::OpenVarSet open{ cand->open };
1711
1712 PRINT(
1713 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;
1714 )
1715
1716 // It is possible that a cast can throw away some values in a multiply-valued
1717 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of
1718 // the subexpression results that are cast directly. The candidate is invalid
1719 // if it has fewer results than there are types to cast to.
1720 int discardedValues = cand->expr->result->size() - toType->size();
1721 if ( discardedValues < 0 ) continue;
[17a0ede2]1722
[64727bd]1723 // unification run for side-effects
1724 bool canUnify = unify( toType, cand->expr->result, env, need, have, open );
1725 (void) canUnify;
1726 Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1727 symtab, env );
1728 PRINT(
1729 Cost legacyCost = castCost( cand->expr->result, toType, cand->expr->get_lvalue(),
[bb87dd0]1730 symtab, env );
[64727bd]1731 std::cerr << "Considering initialization:";
1732 std::cerr << std::endl << " FROM: " << cand->expr->result << std::endl;
1733 std::cerr << std::endl << " TO: " << toType << std::endl;
1734 std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed");
1735 std::cerr << std::endl << " Legacy cost " << legacyCost;
1736 std::cerr << std::endl << " New cost " << thisCost;
1737 std::cerr << std::endl;
1738 )
1739 if ( thisCost != Cost::infinity ) {
1740 // count one safe conversion for each value that is thrown away
1741 thisCost.incSafe( discardedValues );
1742 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1743 minExprCost = cand->cost;
1744 minCastCost = thisCost;
1745 matches.clear();
1746 }
1747 // ambiguous case, still output candidates to print in error message
1748 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1749 CandidateRef newCand = std::make_shared<Candidate>(
[2890212]1750 new ast::InitExpr{
[64727bd]1751 initExpr->location,
1752 restructureCast( cand->expr, toType ),
[2890212]1753 initAlt.designation },
[46da46b]1754 std::move(env), std::move( open ), std::move( need ), cand->cost + thisCost );
[64727bd]1755 // currently assertions are always resolved immediately so this should have no effect.
1756 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1757 // we may need to revisit the logic.
1758 inferParameters( newCand, matches );
[17a0ede2]1759 }
1760 }
1761 }
[4b7cce6]1762 }
1763
[64727bd]1764 // select first on argument cost, then conversion cost
1765 // CandidateList minArgCost = findMinCost( matches );
1766 // promoteCvtCost( minArgCost );
1767 // candidates = findMinCost( minArgCost );
1768 candidates = std::move(matches);
1769 }
[396037d]1770
[0d070ca]1771 // size_t Finder::traceId = Stats::Heap::new_stacktrace_id("Finder");
[2890212]1772 /// Prunes a list of candidates down to those that have the minimum conversion cost for a given
[396037d]1773 /// return type. Skips ambiguous candidates.
[d57e349]1774
[1389810]1775} // anonymous namespace
[d57e349]1776
[1389810]1777bool CandidateFinder::pruneCandidates( CandidateList & candidates, CandidateList & out, std::vector<std::string> & errors ) {
1778 struct PruneStruct {
1779 CandidateRef candidate;
1780 bool ambiguous;
1781
1782 PruneStruct() = default;
1783 PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {}
1784 };
1785
1786 // find lowest-cost candidate for each type
1787 std::unordered_map< std::string, PruneStruct > selected;
1788 // attempt to skip satisfyAssertions on more expensive alternatives if better options have been found
1789 std::sort(candidates.begin(), candidates.end(), [](const CandidateRef & x, const CandidateRef & y){return x->cost < y->cost;});
1790 for ( CandidateRef & candidate : candidates ) {
1791 std::string mangleName;
1792 {
1793 ast::ptr< ast::Type > newType = candidate->expr->result;
1794 assertf(candidate->expr->result, "Result of expression %p for candidate is null", candidate->expr.get());
1795 candidate->env.apply( newType );
1796 mangleName = Mangle::mangle( newType );
1797 }
1798
1799 auto found = selected.find( mangleName );
1800 if (found != selected.end() && found->second.candidate->cost < candidate->cost) {
1801 PRINT(
1802 std::cerr << "cost " << candidate->cost << " loses to "
1803 << found->second.candidate->cost << std::endl;
1804 )
1805 continue;
1806 }
1807
1808 // xxx - when do satisfyAssertions produce more than 1 result?
1809 // this should only happen when initial result type contains
1810 // unbound type parameters, then it should never be pruned by
1811 // the previous step, since renameTyVars guarantees the mangled name
1812 // is unique.
1813 CandidateList satisfied;
[e3282fe]1814 bool needRecomputeKey = false;
1815 if (candidate->need.empty()) {
1816 satisfied.emplace_back(candidate);
1817 }
1818 else {
[39d8950]1819 satisfyAssertions(candidate, context.symtab, satisfied, errors);
[e3282fe]1820 needRecomputeKey = true;
1821 }
[1389810]1822
1823 for (auto & newCand : satisfied) {
1824 // recomputes type key, if satisfyAssertions changed it
[e3282fe]1825 if (needRecomputeKey)
[d57e349]1826 {
[1389810]1827 ast::ptr< ast::Type > newType = newCand->expr->result;
1828 assertf(newCand->expr->result, "Result of expression %p for candidate is null", newCand->expr.get());
1829 newCand->env.apply( newType );
[d57e349]1830 mangleName = Mangle::mangle( newType );
1831 }
1832 auto found = selected.find( mangleName );
1833 if ( found != selected.end() ) {
[46da46b]1834 // tiebreaking by picking the lower cost on CURRENT expression
1835 // NOTE: this behavior is different from C semantics.
1836 // Specific remediations are performed for C operators at postvisit(UntypedExpr).
1837 // Further investigations may take place.
1838 if ( newCand->cost < found->second.candidate->cost
1839 || (newCand->cost == found->second.candidate->cost && newCand->cvtCost < found->second.candidate->cvtCost) ) {
[d57e349]1840 PRINT(
[1389810]1841 std::cerr << "cost " << newCand->cost << " beats "
[d57e349]1842 << found->second.candidate->cost << std::endl;
1843 )
1844
[1389810]1845 found->second = PruneStruct{ newCand };
[64727bd]1846 } else if ( newCand->cost == found->second.candidate->cost && newCand->cvtCost == found->second.candidate->cvtCost ) {
[2890212]1847 // if one of the candidates contains a deleted identifier, can pick the other,
1848 // since deleted expressions should not be ambiguous if there is another option
[d57e349]1849 // that is at least as good
[1389810]1850 if ( findDeletedExpr( newCand->expr ) ) {
[d57e349]1851 // do nothing
1852 PRINT( std::cerr << "candidate is deleted" << std::endl; )
1853 } else if ( findDeletedExpr( found->second.candidate->expr ) ) {
1854 PRINT( std::cerr << "current is deleted" << std::endl; )
[1389810]1855 found->second = PruneStruct{ newCand };
[d57e349]1856 } else {
1857 PRINT( std::cerr << "marking ambiguous" << std::endl; )
1858 found->second.ambiguous = true;
1859 }
[943bfad]1860 } else {
[1389810]1861 // xxx - can satisfyAssertions increase the cost?
[d57e349]1862 PRINT(
[1389810]1863 std::cerr << "cost " << newCand->cost << " loses to "
[d57e349]1864 << found->second.candidate->cost << std::endl;
[943bfad]1865 )
[d57e349]1866 }
1867 } else {
[1389810]1868 selected.emplace_hint( found, mangleName, newCand );
[d57e349]1869 }
1870 }
[1389810]1871 }
[d57e349]1872
[1389810]1873 // report unambiguous min-cost candidates
1874 // CandidateList out;
1875 for ( auto & target : selected ) {
1876 if ( target.second.ambiguous ) continue;
[d57e349]1877
[1389810]1878 CandidateRef cand = target.second.candidate;
[2890212]1879
[1389810]1880 ast::ptr< ast::Type > newResult = cand->expr->result;
1881 cand->env.applyFree( newResult );
1882 cand->expr = ast::mutate_field(
[09f34a84]1883 cand->expr.get(), &ast::Expr::result, std::move( newResult ) );
[2890212]1884
[1389810]1885 out.emplace_back( cand );
[d57e349]1886 }
[1389810]1887 // if everything is lost in satisfyAssertions, report the error
1888 return !selected.empty();
1889}
[396037d]1890
[4a89b52]1891void CandidateFinder::find( const ast::Expr * expr, ResolveMode mode ) {
[396037d]1892 // Find alternatives for expression
1893 ast::Pass<Finder> finder{ *this };
1894 expr->accept( finder );
1895
1896 if ( mode.failFast && candidates.empty() ) {
[7ff3e522]1897 switch(finder.core.reason.code) {
[71d6bd8]1898 case Finder::NotFound:
1899 { SemanticError( expr, "No alternatives for expression " ); break; }
1900 case Finder::NoMatch:
1901 { SemanticError( expr, "Invalid application of existing declaration(s) in expression " ); break; }
1902 case Finder::ArgsToFew:
1903 case Finder::ArgsToMany:
1904 case Finder::RetsToFew:
1905 case Finder::RetsToMany:
1906 case Finder::NoReason:
1907 default:
1908 { SemanticError( expr->location, "No reasonable alternatives for expression : reasons unkown" ); }
1909 }
[396037d]1910 }
1911
[1389810]1912 /*
[396037d]1913 if ( mode.satisfyAssns || mode.prune ) {
1914 // trim candidates to just those where the assertions are satisfiable
1915 // - necessary pre-requisite to pruning
1916 CandidateList satisfied;
1917 std::vector< std::string > errors;
[b69233ac]1918 for ( CandidateRef & candidate : candidates ) {
[9ea38de]1919 satisfyAssertions( candidate, localSyms, satisfied, errors );
[396037d]1920 }
1921
1922 // fail early if none such
1923 if ( mode.failFast && satisfied.empty() ) {
1924 std::ostringstream stream;
1925 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
1926 for ( const auto& err : errors ) {
1927 stream << err;
1928 }
1929 SemanticError( expr->location, stream.str() );
1930 }
1931
1932 // reset candidates
[9d5089e]1933 candidates = move( satisfied );
[396037d]1934 }
[1389810]1935 */
[396037d]1936
[46da46b]1937 // optimization: don't prune for NameExpr since it never has cost
[64727bd]1938 if ( mode.prune && !dynamic_cast<const ast::NameExpr *>(expr) ) {
[396037d]1939 // trim candidates to single best one
1940 PRINT(
1941 std::cerr << "alternatives before prune:" << std::endl;
1942 print( std::cerr, candidates );
1943 )
1944
[1389810]1945 CandidateList pruned;
1946 std::vector<std::string> errors;
1947 bool found = pruneCandidates( candidates, pruned, errors );
[2890212]1948
[396037d]1949 if ( mode.failFast && pruned.empty() ) {
1950 std::ostringstream stream;
[943bfad]1951 if (found) {
[1389810]1952 CandidateList winners = findMinCost( candidates );
1953 stream << "Cannot choose between " << winners.size() << " alternatives for "
1954 "expression\n";
1955 ast::print( stream, expr );
1956 stream << " Alternatives are:\n";
1957 print( stream, winners, 1 );
1958 SemanticError( expr->location, stream.str() );
1959 }
1960 else {
1961 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
1962 for ( const auto& err : errors ) {
1963 stream << err;
1964 }
1965 SemanticError( expr->location, stream.str() );
1966 }
[396037d]1967 }
[d57e349]1968
1969 auto oldsize = candidates.size();
[09f34a84]1970 candidates = std::move( pruned );
[d57e349]1971
1972 PRINT(
1973 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;
1974 )
1975 PRINT(
[2890212]1976 std::cerr << "there are " << candidates.size() << " alternatives after elimination"
[d57e349]1977 << std::endl;
1978 )
[396037d]1979 }
1980
[2890212]1981 // adjust types after pruning so that types substituted by pruneAlternatives are correctly
[d57e349]1982 // adjusted
1983 if ( mode.adjust ) {
1984 for ( CandidateRef & r : candidates ) {
[2890212]1985 r->expr = ast::mutate_field(
1986 r->expr.get(), &ast::Expr::result,
[39d8950]1987 adjustExprType( r->expr->result, r->env, context.symtab ) );
[d57e349]1988 }
1989 }
1990
1991 // Central location to handle gcc extension keyword, etc. for all expressions
1992 for ( CandidateRef & r : candidates ) {
1993 if ( r->expr->extension != expr->extension ) {
1994 r->expr.get_and_mutate()->extension = expr->extension;
1995 }
1996 }
[99d4584]1997}
1998
[2890212]1999std::vector< CandidateFinder > CandidateFinder::findSubExprs(
2000 const std::vector< ast::ptr< ast::Expr > > & xs
[2773ab8]2001) {
2002 std::vector< CandidateFinder > out;
2003
[396037d]2004 for ( const auto & x : xs ) {
[39d8950]2005 out.emplace_back( context, env );
[4a89b52]2006 out.back().find( x, ResolveMode::withAdjustment() );
[2890212]2007
[396037d]2008 PRINT(
2009 std::cerr << "findSubExprs" << std::endl;
2010 print( std::cerr, out.back().candidates );
2011 )
2012 }
[2773ab8]2013
2014 return out;
2015}
2016
[64727bd]2017const ast::Expr * referenceToRvalueConversion( const ast::Expr * expr, Cost & cost ) {
2018 if ( expr->result.as< ast::ReferenceType >() ) {
2019 // cast away reference from expr
2020 cost.incReference();
2021 return new ast::CastExpr{ expr, expr->result->stripReferences() };
2022 }
2023
2024 return expr;
2025}
2026
2027Cost computeConversionCost(
2028 const ast::Type * argType, const ast::Type * paramType, bool argIsLvalue,
2029 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env
2030) {
2031 PRINT(
2032 std::cerr << std::endl << "converting ";
2033 ast::print( std::cerr, argType, 2 );
2034 std::cerr << std::endl << " to ";
2035 ast::print( std::cerr, paramType, 2 );
2036 std::cerr << std::endl << "environment is: ";
2037 ast::print( std::cerr, env, 2 );
2038 std::cerr << std::endl;
2039 )
2040 Cost convCost = conversionCost( argType, paramType, argIsLvalue, symtab, env );
2041 PRINT(
2042 std::cerr << std::endl << "cost is " << convCost << std::endl;
2043 )
2044 if ( convCost == Cost::infinity ) return convCost;
2045 convCost.incPoly( polyCost( paramType, symtab, env ) + polyCost( argType, symtab, env ) );
2046 PRINT(
2047 std::cerr << "cost with polycost is " << convCost << std::endl;
2048 )
2049 return convCost;
2050}
2051
[99d4584]2052} // namespace ResolvExpr
2053
2054// Local Variables: //
2055// tab-width: 4 //
2056// mode: c++ //
2057// compile-command: "make install" //
2058// End: //
Note: See TracBrowser for help on using the repository browser.