source: src/ResolvExpr/AlternativeFinder.cc@ 6be3b7d6

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 6be3b7d6 was c1ed2ee, checked in by Aaron Moss <a3moss@…>, 6 years ago

Continued resolver porting

  • mostly initialization and validation
  • added move() and copy() to utility.h
  • Property mode set to 100644
File size: 71.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// AlternativeFinder.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sat May 16 23:52:08 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Nov 1 21:00:56 2018
13// Update Count : 35
14//
15
16#include <algorithm> // for copy
17#include <cassert> // for strict_dynamic_cast, assert, assertf
18#include <cstddef> // for size_t
19#include <iostream> // for operator<<, cerr, ostream, endl
20#include <iterator> // for back_insert_iterator, back_inserter
21#include <list> // for _List_iterator, list, _List_const_...
22#include <map> // for _Rb_tree_iterator, map, _Rb_tree_c...
23#include <memory> // for allocator_traits<>::value_type, unique_ptr
24#include <utility> // for pair
25#include <vector> // for vector
26
27#include "CompilationState.h" // for resolvep
28#include "Alternative.h" // for AltList, Alternative
29#include "AlternativeFinder.h"
30#include "AST/Expr.hpp"
31#include "AST/SymbolTable.hpp"
32#include "AST/Type.hpp"
33#include "Common/SemanticError.h" // for SemanticError
34#include "Common/utility.h" // for deleteAll, printAll, CodeLocation
35#include "Cost.h" // for Cost, Cost::zero, operator<<, Cost...
36#include "ExplodedActual.h" // for ExplodedActual
37#include "InitTweak/InitTweak.h" // for getFunctionName
38#include "RenameVars.h" // for RenameVars, global_renamer
39#include "ResolveAssertions.h" // for resolveAssertions
40#include "ResolveTypeof.h" // for resolveTypeof
41#include "Resolver.h" // for resolveStmtExpr
42#include "SymTab/Indexer.h" // for Indexer
43#include "SymTab/Mangler.h" // for Mangler
44#include "SymTab/Validate.h" // for validateType
45#include "SynTree/Constant.h" // for Constant
46#include "SynTree/Declaration.h" // for DeclarationWithType, TypeDecl, Dec...
47#include "SynTree/Expression.h" // for Expression, CastExpr, NameExpr
48#include "SynTree/Initializer.h" // for SingleInit, operator<<, Designation
49#include "SynTree/SynTree.h" // for UniqueId
50#include "SynTree/Type.h" // for Type, FunctionType, PointerType
51#include "Tuples/Explode.h" // for explode
52#include "Tuples/Tuples.h" // for isTtype, handleTupleAssignment
53#include "Unify.h" // for unify
54#include "typeops.h" // for adjustExprType, polyCost, castCost
55
56#define PRINT( text ) if ( resolvep ) { text }
57//#define DEBUG_COST
58
59namespace ResolvExpr {
60 struct AlternativeFinder::Finder : public WithShortCircuiting {
61 Finder( AlternativeFinder & altFinder ) : altFinder( altFinder ), indexer( altFinder.indexer ), alternatives( altFinder.alternatives ), env( altFinder.env ), targetType( altFinder.targetType ) {}
62
63 void previsit( BaseSyntaxNode * ) { visit_children = false; }
64
65 void postvisit( ApplicationExpr * applicationExpr );
66 void postvisit( UntypedExpr * untypedExpr );
67 void postvisit( AddressExpr * addressExpr );
68 void postvisit( LabelAddressExpr * labelExpr );
69 void postvisit( CastExpr * castExpr );
70 void postvisit( VirtualCastExpr * castExpr );
71 void postvisit( UntypedMemberExpr * memberExpr );
72 void postvisit( MemberExpr * memberExpr );
73 void postvisit( NameExpr * variableExpr );
74 void postvisit( VariableExpr * variableExpr );
75 void postvisit( ConstantExpr * constantExpr );
76 void postvisit( SizeofExpr * sizeofExpr );
77 void postvisit( AlignofExpr * alignofExpr );
78 void postvisit( UntypedOffsetofExpr * offsetofExpr );
79 void postvisit( OffsetofExpr * offsetofExpr );
80 void postvisit( OffsetPackExpr * offsetPackExpr );
81 void postvisit( AttrExpr * attrExpr );
82 void postvisit( LogicalExpr * logicalExpr );
83 void postvisit( ConditionalExpr * conditionalExpr );
84 void postvisit( CommaExpr * commaExpr );
85 void postvisit( ImplicitCopyCtorExpr * impCpCtorExpr );
86 void postvisit( ConstructorExpr * ctorExpr );
87 void postvisit( RangeExpr * rangeExpr );
88 void postvisit( UntypedTupleExpr * tupleExpr );
89 void postvisit( TupleExpr * tupleExpr );
90 void postvisit( TupleIndexExpr * tupleExpr );
91 void postvisit( TupleAssignExpr * tupleExpr );
92 void postvisit( UniqueExpr * unqExpr );
93 void postvisit( StmtExpr * stmtExpr );
94 void postvisit( UntypedInitExpr * initExpr );
95 void postvisit( InitExpr * initExpr );
96 void postvisit( DeletedExpr * delExpr );
97 void postvisit( GenericExpr * genExpr );
98
99 /// Adds alternatives for anonymous members
100 void addAnonConversions( const Alternative & alt );
101 /// Adds alternatives for member expressions, given the aggregate, conversion cost for that aggregate, and name of the member
102 template< typename StructOrUnionType > void addAggMembers( StructOrUnionType *aggInst, Expression *expr, const Alternative &alt, const Cost &newCost, const std::string & name );
103 /// Adds alternatives for member expressions where the left side has tuple type
104 void addTupleMembers( TupleType *tupleType, Expression *expr, const Alternative &alt, const Cost &newCost, Expression *member );
105 /// Adds alternatives for offsetof expressions, given the base type and name of the member
106 template< typename StructOrUnionType > void addOffsetof( StructOrUnionType *aggInst, const std::string &name );
107 /// Takes a final result and checks if its assertions can be satisfied
108 template<typename OutputIterator>
109 void validateFunctionAlternative( const Alternative &func, ArgPack& result, const std::vector<ArgPack>& results, OutputIterator out );
110 /// Finds matching alternatives for a function, given a set of arguments
111 template<typename OutputIterator>
112 void makeFunctionAlternatives( const Alternative &func, FunctionType *funcType, const ExplodedArgs_old& args, OutputIterator out );
113 /// Sets up parameter inference for an output alternative
114 template< typename OutputIterator >
115 void inferParameters( Alternative &newAlt, OutputIterator out );
116 private:
117 AlternativeFinder & altFinder;
118 const SymTab::Indexer &indexer;
119 AltList & alternatives;
120 const TypeEnvironment &env;
121 Type *& targetType;
122 };
123
124 Cost sumCost( const AltList &in ) {
125 Cost total = Cost::zero;
126 for ( AltList::const_iterator i = in.begin(); i != in.end(); ++i ) {
127 total += i->cost;
128 }
129 return total;
130 }
131
132 void printAlts( const AltList &list, std::ostream &os, unsigned int indentAmt ) {
133 Indenter indent = { indentAmt };
134 for ( AltList::const_iterator i = list.begin(); i != list.end(); ++i ) {
135 i->print( os, indent );
136 os << std::endl;
137 }
138 }
139
140 namespace {
141 void makeExprList( const AltList &in, std::list< Expression* > &out ) {
142 for ( AltList::const_iterator i = in.begin(); i != in.end(); ++i ) {
143 out.push_back( i->expr->clone() );
144 }
145 }
146
147 struct PruneStruct {
148 bool isAmbiguous;
149 AltList::iterator candidate;
150 PruneStruct() {}
151 PruneStruct( AltList::iterator candidate ): isAmbiguous( false ), candidate( candidate ) {}
152 };
153
154 /// Prunes a list of alternatives down to those that have the minimum conversion cost for a given return type; skips ambiguous interpretations
155 template< typename InputIterator, typename OutputIterator >
156 void pruneAlternatives( InputIterator begin, InputIterator end, OutputIterator out ) {
157 // select the alternatives that have the minimum conversion cost for a particular set of result types
158 std::map< std::string, PruneStruct > selected;
159 for ( AltList::iterator candidate = begin; candidate != end; ++candidate ) {
160 PruneStruct current( candidate );
161 std::string mangleName;
162 {
163 Type * newType = candidate->expr->get_result()->clone();
164 candidate->env.apply( newType );
165 mangleName = SymTab::Mangler::mangle( newType );
166 delete newType;
167 }
168 std::map< std::string, PruneStruct >::iterator mapPlace = selected.find( mangleName );
169 if ( mapPlace != selected.end() ) {
170 if ( candidate->cost < mapPlace->second.candidate->cost ) {
171 PRINT(
172 std::cerr << "cost " << candidate->cost << " beats " << mapPlace->second.candidate->cost << std::endl;
173 )
174 selected[ mangleName ] = current;
175 } else if ( candidate->cost == mapPlace->second.candidate->cost ) {
176 // if one of the candidates contains a deleted identifier, can pick the other, since
177 // deleted expressions should not be ambiguous if there is another option that is at least as good
178 if ( findDeletedExpr( candidate->expr ) ) {
179 // do nothing
180 PRINT( std::cerr << "candidate is deleted" << std::endl; )
181 } else if ( findDeletedExpr( mapPlace->second.candidate->expr ) ) {
182 PRINT( std::cerr << "current is deleted" << std::endl; )
183 selected[ mangleName ] = current;
184 } else {
185 PRINT(
186 std::cerr << "marking ambiguous" << std::endl;
187 )
188 mapPlace->second.isAmbiguous = true;
189 }
190 } else {
191 PRINT(
192 std::cerr << "cost " << candidate->cost << " loses to " << mapPlace->second.candidate->cost << std::endl;
193 )
194 }
195 } else {
196 selected[ mangleName ] = current;
197 }
198 }
199
200 // accept the alternatives that were unambiguous
201 for ( std::map< std::string, PruneStruct >::iterator target = selected.begin(); target != selected.end(); ++target ) {
202 if ( ! target->second.isAmbiguous ) {
203 Alternative &alt = *target->second.candidate;
204 alt.env.applyFree( alt.expr->get_result() );
205 *out++ = alt;
206 }
207 }
208 }
209
210 void renameTypes( Expression *expr ) {
211 renameTyVars( expr->result );
212 }
213 } // namespace
214
215 void referenceToRvalueConversion( Expression *& expr, Cost & cost ) {
216 if ( dynamic_cast< ReferenceType * >( expr->get_result() ) ) {
217 // cast away reference from expr
218 expr = new CastExpr( expr, expr->get_result()->stripReferences()->clone() );
219 cost.incReference();
220 }
221 }
222
223 template< typename InputIterator, typename OutputIterator >
224 void AlternativeFinder::findSubExprs( InputIterator begin, InputIterator end, OutputIterator out ) {
225 while ( begin != end ) {
226 AlternativeFinder finder( indexer, env );
227 finder.findWithAdjustment( *begin );
228 // XXX either this
229 //Designators::fixDesignations( finder, (*begin++)->get_argName() );
230 // or XXX this
231 begin++;
232 PRINT(
233 std::cerr << "findSubExprs" << std::endl;
234 printAlts( finder.alternatives, std::cerr );
235 )
236 *out++ = finder;
237 }
238 }
239
240 AlternativeFinder::AlternativeFinder( const SymTab::Indexer &indexer, const TypeEnvironment &env )
241 : indexer( indexer ), env( env ) {
242 }
243
244 void AlternativeFinder::find( Expression *expr, ResolvMode mode ) {
245 PassVisitor<Finder> finder( *this );
246 expr->accept( finder );
247 if ( mode.failFast && alternatives.empty() ) {
248 PRINT(
249 std::cerr << "No reasonable alternatives for expression " << expr << std::endl;
250 )
251 SemanticError( expr, "No reasonable alternatives for expression " );
252 }
253 if ( mode.satisfyAssns || mode.prune ) {
254 // trim candidates just to those where the assertions resolve
255 // - necessary pre-requisite to pruning
256 AltList candidates;
257 std::list<std::string> errors;
258 for ( unsigned i = 0; i < alternatives.size(); ++i ) {
259 resolveAssertions( alternatives[i], indexer, candidates, errors );
260 }
261 // fail early if none such
262 if ( mode.failFast && candidates.empty() ) {
263 std::ostringstream stream;
264 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
265 // << "Alternatives with failing assertions are:\n";
266 // printAlts( alternatives, stream, 1 );
267 for ( const auto& err : errors ) {
268 stream << err;
269 }
270 SemanticError( expr->location, stream.str() );
271 }
272 // reset alternatives
273 alternatives = std::move( candidates );
274 }
275 if ( mode.prune ) {
276 auto oldsize = alternatives.size();
277 PRINT(
278 std::cerr << "alternatives before prune:" << std::endl;
279 printAlts( alternatives, std::cerr );
280 )
281 AltList pruned;
282 pruneAlternatives( alternatives.begin(), alternatives.end(), back_inserter( pruned ) );
283 if ( mode.failFast && pruned.empty() ) {
284 std::ostringstream stream;
285 AltList winners;
286 findMinCost( alternatives.begin(), alternatives.end(), back_inserter( winners ) );
287 stream << "Cannot choose between " << winners.size() << " alternatives for expression\n";
288 expr->print( stream );
289 stream << " Alternatives are:\n";
290 printAlts( winners, stream, 1 );
291 SemanticError( expr->location, stream.str() );
292 }
293 alternatives = move(pruned);
294 PRINT(
295 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;
296 )
297 PRINT(
298 std::cerr << "there are " << alternatives.size() << " alternatives after elimination" << std::endl;
299 )
300 }
301 // adjust types after pruning so that types substituted by pruneAlternatives are correctly adjusted
302 if ( mode.adjust ) {
303 for ( Alternative& i : alternatives ) {
304 adjustExprType( i.expr->get_result(), i.env, indexer );
305 }
306 }
307
308 // Central location to handle gcc extension keyword, etc. for all expression types.
309 for ( Alternative &iter: alternatives ) {
310 iter.expr->set_extension( expr->get_extension() );
311 iter.expr->location = expr->location;
312 } // for
313 }
314
315 void AlternativeFinder::findWithAdjustment( Expression *expr ) {
316 find( expr, ResolvMode::withAdjustment() );
317 }
318
319 void AlternativeFinder::findWithoutPrune( Expression * expr ) {
320 find( expr, ResolvMode::withoutPrune() );
321 }
322
323 void AlternativeFinder::maybeFind( Expression * expr ) {
324 find( expr, ResolvMode::withoutFailFast() );
325 }
326
327 void AlternativeFinder::Finder::addAnonConversions( const Alternative & alt ) {
328 // adds anonymous member interpretations whenever an aggregate value type is seen.
329 // it's okay for the aggregate expression to have reference type -- cast it to the base type to treat the aggregate as the referenced value
330 std::unique_ptr<Expression> aggrExpr( alt.expr->clone() );
331 alt.env.apply( aggrExpr->result );
332 Type * aggrType = aggrExpr->result;
333 if ( dynamic_cast< ReferenceType * >( aggrType ) ) {
334 aggrType = aggrType->stripReferences();
335 aggrExpr.reset( new CastExpr( aggrExpr.release(), aggrType->clone() ) );
336 }
337
338 if ( StructInstType *structInst = dynamic_cast< StructInstType* >( aggrExpr->result ) ) {
339 addAggMembers( structInst, aggrExpr.get(), alt, alt.cost+Cost::safe, "" );
340 } else if ( UnionInstType *unionInst = dynamic_cast< UnionInstType* >( aggrExpr->result ) ) {
341 addAggMembers( unionInst, aggrExpr.get(), alt, alt.cost+Cost::safe, "" );
342 } // if
343 }
344
345 template< typename StructOrUnionType >
346 void AlternativeFinder::Finder::addAggMembers( StructOrUnionType *aggInst, Expression *expr, const Alternative& alt, const Cost &newCost, const std::string & name ) {
347 std::list< Declaration* > members;
348 aggInst->lookup( name, members );
349
350 for ( Declaration * decl : members ) {
351 if ( DeclarationWithType *dwt = dynamic_cast< DeclarationWithType* >( decl ) ) {
352 // addAnonAlternatives uses vector::push_back, which invalidates references to existing elements, so
353 // can't construct in place and use vector::back
354 Alternative newAlt{ alt, new MemberExpr{ dwt, expr->clone() }, newCost };
355 renameTypes( newAlt.expr );
356 addAnonConversions( newAlt ); // add anonymous member interpretations whenever an aggregate value type is seen as a member expression.
357 alternatives.push_back( std::move(newAlt) );
358 } else {
359 assert( false );
360 }
361 }
362 }
363
364 void AlternativeFinder::Finder::addTupleMembers( TupleType *tupleType, Expression *expr, const Alternative &alt, const Cost &newCost, Expression *member ) {
365 if ( ConstantExpr * constantExpr = dynamic_cast< ConstantExpr * >( member ) ) {
366 // get the value of the constant expression as an int, must be between 0 and the length of the tuple type to have meaning
367 auto val = constantExpr->intValue();
368 std::string tmp;
369 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {
370 alternatives.push_back( Alternative{
371 alt, new TupleIndexExpr( expr->clone(), val ), newCost } );
372 } // if
373 } // if
374 }
375
376 void AlternativeFinder::Finder::postvisit( ApplicationExpr *applicationExpr ) {
377 alternatives.push_back( Alternative{ applicationExpr->clone(), env } );
378 }
379
380 Cost computeConversionCost( Type * actualType, Type * formalType, const SymTab::Indexer &indexer, const TypeEnvironment & env ) {
381 PRINT(
382 std::cerr << std::endl << "converting ";
383 actualType->print( std::cerr, 8 );
384 std::cerr << std::endl << " to ";
385 formalType->print( std::cerr, 8 );
386 std::cerr << std::endl << "environment is: ";
387 env.print( std::cerr, 8 );
388 std::cerr << std::endl;
389 )
390 Cost convCost = conversionCost( actualType, formalType, indexer, env );
391 PRINT(
392 std::cerr << std::endl << "cost is " << convCost << std::endl;
393 )
394 if ( convCost == Cost::infinity ) {
395 return convCost;
396 }
397 convCost.incPoly( polyCost( formalType, env, indexer ) + polyCost( actualType, env, indexer ) );
398 PRINT(
399 std::cerr << "cost with polycost is " << convCost << std::endl;
400 )
401 return convCost;
402 }
403
404 Cost computeExpressionConversionCost( Expression *& actualExpr, Type * formalType, const SymTab::Indexer &indexer, const TypeEnvironment & env ) {
405 Cost convCost = computeConversionCost( actualExpr->result, formalType, indexer, env );
406
407 // if there is a non-zero conversion cost, ignoring poly cost, then the expression requires conversion.
408 // ignore poly cost for now, since this requires resolution of the cast to infer parameters and this
409 // does not currently work for the reason stated below.
410 Cost tmpCost = convCost;
411 tmpCost.incPoly( -tmpCost.get_polyCost() );
412 if ( tmpCost != Cost::zero ) {
413 Type *newType = formalType->clone();
414 env.apply( newType );
415 actualExpr = new CastExpr( actualExpr, newType );
416 // xxx - SHOULD be able to resolve this cast, but at the moment pointers are not castable to zero_t, but are implicitly convertible. This is clearly
417 // inconsistent, once this is fixed it should be possible to resolve the cast.
418 // xxx - this isn't working, it appears because type1 (the formal type) is seen as widenable, but it shouldn't be, because this makes the conversion from DT* to DT* since commontype(zero_t, DT*) is DT*, rather than just nothing.
419
420 // AlternativeFinder finder( indexer, env );
421 // finder.findWithAdjustment( actualExpr );
422 // assertf( finder.get_alternatives().size() > 0, "Somehow castable expression failed to find alternatives." );
423 // assertf( finder.get_alternatives().size() == 1, "Somehow got multiple alternatives for known cast expression." );
424 // Alternative & alt = finder.get_alternatives().front();
425 // delete actualExpr;
426 // actualExpr = alt.expr->clone();
427 }
428 return convCost;
429 }
430
431 Cost computeApplicationConversionCost( Alternative &alt, const SymTab::Indexer &indexer ) {
432 ApplicationExpr *appExpr = strict_dynamic_cast< ApplicationExpr* >( alt.expr );
433 PointerType *pointer = strict_dynamic_cast< PointerType* >( appExpr->function->result );
434 FunctionType *function = strict_dynamic_cast< FunctionType* >( pointer->base );
435
436 Cost convCost = Cost::zero;
437 std::list< DeclarationWithType* >& formals = function->parameters;
438 std::list< DeclarationWithType* >::iterator formal = formals.begin();
439 std::list< Expression* >& actuals = appExpr->args;
440
441 for ( Expression*& actualExpr : actuals ) {
442 Type * actualType = actualExpr->result;
443 PRINT(
444 std::cerr << "actual expression:" << std::endl;
445 actualExpr->print( std::cerr, 8 );
446 std::cerr << "--- results are" << std::endl;
447 actualType->print( std::cerr, 8 );
448 )
449 if ( formal == formals.end() ) {
450 if ( function->isVarArgs ) {
451 convCost.incUnsafe();
452 PRINT( std::cerr << "end of formals with varargs function: inc unsafe: " << convCost << std::endl; ; )
453 // convert reference-typed expressions to value-typed expressions
454 referenceToRvalueConversion( actualExpr, convCost );
455 continue;
456 } else {
457 return Cost::infinity;
458 }
459 }
460 if ( DefaultArgExpr * def = dynamic_cast< DefaultArgExpr * >( actualExpr ) ) {
461 // default arguments should be free - don't include conversion cost.
462 // Unwrap them here because they are not relevant to the rest of the system.
463 actualExpr = def->expr;
464 ++formal;
465 continue;
466 }
467 // mark conversion cost to formal and also specialization cost of formal type
468 Type * formalType = (*formal)->get_type();
469 convCost += computeExpressionConversionCost( actualExpr, formalType, indexer, alt.env );
470 convCost.decSpec( specCost( formalType ) );
471 ++formal; // can't be in for-loop update because of the continue
472 }
473 if ( formal != formals.end() ) {
474 return Cost::infinity;
475 }
476
477 // specialization cost of return types can't be accounted for directly, it disables
478 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:
479 //
480 // forall(otype OS) {
481 // void ?|?(OS&, int); // with newline
482 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization
483 // }
484
485 // mark type variable and specialization cost of forall clause
486 convCost.incVar( function->forall.size() );
487 for ( TypeDecl* td : function->forall ) {
488 convCost.decSpec( td->assertions.size() );
489 }
490
491 return convCost;
492 }
493
494 /// Adds type variables to the open variable set and marks their assertions
495 void makeUnifiableVars( Type *type, OpenVarSet &unifiableVars, AssertionSet &needAssertions ) {
496 for ( Type::ForallList::const_iterator tyvar = type->forall.begin(); tyvar != type->forall.end(); ++tyvar ) {
497 unifiableVars[ (*tyvar)->get_name() ] = TypeDecl::Data{ *tyvar };
498 for ( std::list< DeclarationWithType* >::iterator assert = (*tyvar)->assertions.begin(); assert != (*tyvar)->assertions.end(); ++assert ) {
499 needAssertions[ *assert ].isUsed = true;
500 }
501 }
502 }
503
504 /// Unique identifier for matching expression resolutions to their requesting expression (located in CandidateFinder.cpp)
505 extern UniqueId globalResnSlot;
506
507 template< typename OutputIterator >
508 void AlternativeFinder::Finder::inferParameters( Alternative &newAlt, OutputIterator out ) {
509 // Set need bindings for any unbound assertions
510 UniqueId crntResnSlot = 0; // matching ID for this expression's assertions
511 for ( auto& assn : newAlt.need ) {
512 // skip already-matched assertions
513 if ( assn.info.resnSlot != 0 ) continue;
514 // assign slot for expression if needed
515 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }
516 // fix slot to assertion
517 assn.info.resnSlot = crntResnSlot;
518 }
519 // pair slot to expression
520 if ( crntResnSlot != 0 ) { newAlt.expr->resnSlots.push_back( crntResnSlot ); }
521
522 // add to output list, assertion resolution is deferred
523 *out++ = newAlt;
524 }
525
526 /// Gets a default value from an initializer, nullptr if not present
527 ConstantExpr* getDefaultValue( Initializer* init ) {
528 if ( SingleInit* si = dynamic_cast<SingleInit*>( init ) ) {
529 if ( CastExpr* ce = dynamic_cast<CastExpr*>( si->value ) ) {
530 return dynamic_cast<ConstantExpr*>( ce->arg );
531 } else {
532 return dynamic_cast<ConstantExpr*>( si->value );
533 }
534 }
535 return nullptr;
536 }
537
538 /// State to iteratively build a match of parameter expressions to arguments
539 struct ArgPack {
540 std::size_t parent; ///< Index of parent pack
541 std::unique_ptr<Expression> expr; ///< The argument stored here
542 Cost cost; ///< The cost of this argument
543 TypeEnvironment env; ///< Environment for this pack
544 AssertionSet need; ///< Assertions outstanding for this pack
545 AssertionSet have; ///< Assertions found for this pack
546 OpenVarSet openVars; ///< Open variables for this pack
547 unsigned nextArg; ///< Index of next argument in arguments list
548 unsigned tupleStart; ///< Number of tuples that start at this index
549 unsigned nextExpl; ///< Index of next exploded element
550 unsigned explAlt; ///< Index of alternative for nextExpl > 0
551
552 ArgPack()
553 : parent(0), expr(), cost(Cost::zero), env(), need(), have(), openVars(), nextArg(0),
554 tupleStart(0), nextExpl(0), explAlt(0) {}
555
556 ArgPack(const TypeEnvironment& env, const AssertionSet& need, const AssertionSet& have,
557 const OpenVarSet& openVars)
558 : parent(0), expr(), cost(Cost::zero), env(env), need(need), have(have),
559 openVars(openVars), nextArg(0), tupleStart(0), nextExpl(0), explAlt(0) {}
560
561 ArgPack(std::size_t parent, Expression* expr, TypeEnvironment&& env, AssertionSet&& need,
562 AssertionSet&& have, OpenVarSet&& openVars, unsigned nextArg,
563 unsigned tupleStart = 0, Cost cost = Cost::zero, unsigned nextExpl = 0,
564 unsigned explAlt = 0 )
565 : parent(parent), expr(expr->clone()), cost(cost), env(move(env)), need(move(need)),
566 have(move(have)), openVars(move(openVars)), nextArg(nextArg), tupleStart(tupleStart),
567 nextExpl(nextExpl), explAlt(explAlt) {}
568
569 ArgPack(const ArgPack& o, TypeEnvironment&& env, AssertionSet&& need, AssertionSet&& have,
570 OpenVarSet&& openVars, unsigned nextArg, Cost added )
571 : parent(o.parent), expr(o.expr ? o.expr->clone() : nullptr), cost(o.cost + added),
572 env(move(env)), need(move(need)), have(move(have)), openVars(move(openVars)),
573 nextArg(nextArg), tupleStart(o.tupleStart), nextExpl(0), explAlt(0) {}
574
575 /// true iff this pack is in the middle of an exploded argument
576 bool hasExpl() const { return nextExpl > 0; }
577
578 /// Gets the list of exploded alternatives for this pack
579 const ExplodedActual& getExpl( const ExplodedArgs_old& args ) const {
580 return args[nextArg-1][explAlt];
581 }
582
583 /// Ends a tuple expression, consolidating the appropriate actuals
584 void endTuple( const std::vector<ArgPack>& packs ) {
585 // add all expressions in tuple to list, summing cost
586 std::list<Expression*> exprs;
587 const ArgPack* pack = this;
588 if ( expr ) { exprs.push_front( expr.release() ); }
589 while ( pack->tupleStart == 0 ) {
590 pack = &packs[pack->parent];
591 exprs.push_front( pack->expr->clone() );
592 cost += pack->cost;
593 }
594 // reset pack to appropriate tuple
595 expr.reset( new TupleExpr( exprs ) );
596 tupleStart = pack->tupleStart - 1;
597 parent = pack->parent;
598 }
599 };
600
601 /// Instantiates an argument to match a formal, returns false if no results left
602 bool instantiateArgument( Type* formalType, Initializer* initializer,
603 const ExplodedArgs_old& args, std::vector<ArgPack>& results, std::size_t& genStart,
604 const SymTab::Indexer& indexer, unsigned nTuples = 0 ) {
605 if ( TupleType * tupleType = dynamic_cast<TupleType*>( formalType ) ) {
606 // formalType is a TupleType - group actuals into a TupleExpr
607 ++nTuples;
608 for ( Type* type : *tupleType ) {
609 // xxx - dropping initializer changes behaviour from previous, but seems correct
610 // ^^^ need to handle the case where a tuple has a default argument
611 if ( ! instantiateArgument(
612 type, nullptr, args, results, genStart, indexer, nTuples ) )
613 return false;
614 nTuples = 0;
615 }
616 // re-consititute tuples for final generation
617 for ( auto i = genStart; i < results.size(); ++i ) {
618 results[i].endTuple( results );
619 }
620 return true;
621 } else if ( TypeInstType * ttype = Tuples::isTtype( formalType ) ) {
622 // formalType is a ttype, consumes all remaining arguments
623 // xxx - mixing default arguments with variadic??
624
625 // completed tuples; will be spliced to end of results to finish
626 std::vector<ArgPack> finalResults{};
627
628 // iterate until all results completed
629 std::size_t genEnd;
630 ++nTuples;
631 do {
632 genEnd = results.size();
633
634 // add another argument to results
635 for ( std::size_t i = genStart; i < genEnd; ++i ) {
636 auto nextArg = results[i].nextArg;
637
638 // use next element of exploded tuple if present
639 if ( results[i].hasExpl() ) {
640 const ExplodedActual& expl = results[i].getExpl( args );
641
642 unsigned nextExpl = results[i].nextExpl + 1;
643 if ( nextExpl == expl.exprs.size() ) {
644 nextExpl = 0;
645 }
646
647 results.emplace_back(
648 i, expl.exprs[results[i].nextExpl].get(), copy(results[i].env),
649 copy(results[i].need), copy(results[i].have),
650 copy(results[i].openVars), nextArg, nTuples, Cost::zero, nextExpl,
651 results[i].explAlt );
652
653 continue;
654 }
655
656 // finish result when out of arguments
657 if ( nextArg >= args.size() ) {
658 ArgPack newResult{
659 results[i].env, results[i].need, results[i].have,
660 results[i].openVars };
661 newResult.nextArg = nextArg;
662 Type* argType;
663
664 if ( nTuples > 0 || ! results[i].expr ) {
665 // first iteration or no expression to clone,
666 // push empty tuple expression
667 newResult.parent = i;
668 std::list<Expression*> emptyList;
669 newResult.expr.reset( new TupleExpr( emptyList ) );
670 argType = newResult.expr->get_result();
671 } else {
672 // clone result to collect tuple
673 newResult.parent = results[i].parent;
674 newResult.cost = results[i].cost;
675 newResult.tupleStart = results[i].tupleStart;
676 newResult.expr.reset( results[i].expr->clone() );
677 argType = newResult.expr->get_result();
678
679 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {
680 // the case where a ttype value is passed directly is special,
681 // e.g. for argument forwarding purposes
682 // xxx - what if passing multiple arguments, last of which is
683 // ttype?
684 // xxx - what would happen if unify was changed so that unifying
685 // tuple
686 // types flattened both before unifying lists? then pass in
687 // TupleType (ttype) below.
688 --newResult.tupleStart;
689 } else {
690 // collapse leftover arguments into tuple
691 newResult.endTuple( results );
692 argType = newResult.expr->get_result();
693 }
694 }
695
696 // check unification for ttype before adding to final
697 if ( unify( ttype, argType, newResult.env, newResult.need, newResult.have,
698 newResult.openVars, indexer ) ) {
699 finalResults.push_back( move(newResult) );
700 }
701
702 continue;
703 }
704
705 // add each possible next argument
706 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
707 const ExplodedActual& expl = args[nextArg][j];
708
709 // fresh copies of parent parameters for this iteration
710 TypeEnvironment env = results[i].env;
711 OpenVarSet openVars = results[i].openVars;
712
713 env.addActual( expl.env, openVars );
714
715 // skip empty tuple arguments by (near-)cloning parent into next gen
716 if ( expl.exprs.empty() ) {
717 results.emplace_back(
718 results[i], move(env), copy(results[i].need),
719 copy(results[i].have), move(openVars), nextArg + 1, expl.cost );
720
721 continue;
722 }
723
724 // add new result
725 results.emplace_back(
726 i, expl.exprs.front().get(), move(env), copy(results[i].need),
727 copy(results[i].have), move(openVars), nextArg + 1,
728 nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
729 }
730 }
731
732 // reset for next round
733 genStart = genEnd;
734 nTuples = 0;
735 } while ( genEnd != results.size() );
736
737 // splice final results onto results
738 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {
739 results.push_back( move(finalResults[i]) );
740 }
741 return ! finalResults.empty();
742 }
743
744 // iterate each current subresult
745 std::size_t genEnd = results.size();
746 for ( std::size_t i = genStart; i < genEnd; ++i ) {
747 auto nextArg = results[i].nextArg;
748
749 // use remainder of exploded tuple if present
750 if ( results[i].hasExpl() ) {
751 const ExplodedActual& expl = results[i].getExpl( args );
752 Expression* expr = expl.exprs[results[i].nextExpl].get();
753
754 TypeEnvironment env = results[i].env;
755 AssertionSet need = results[i].need, have = results[i].have;
756 OpenVarSet openVars = results[i].openVars;
757
758 Type* actualType = expr->get_result();
759
760 PRINT(
761 std::cerr << "formal type is ";
762 formalType->print( std::cerr );
763 std::cerr << std::endl << "actual type is ";
764 actualType->print( std::cerr );
765 std::cerr << std::endl;
766 )
767
768 if ( unify( formalType, actualType, env, need, have, openVars, indexer ) ) {
769 unsigned nextExpl = results[i].nextExpl + 1;
770 if ( nextExpl == expl.exprs.size() ) {
771 nextExpl = 0;
772 }
773
774 results.emplace_back(
775 i, expr, move(env), move(need), move(have), move(openVars), nextArg,
776 nTuples, Cost::zero, nextExpl, results[i].explAlt );
777 }
778
779 continue;
780 }
781
782 // use default initializers if out of arguments
783 if ( nextArg >= args.size() ) {
784 if ( ConstantExpr* cnstExpr = getDefaultValue( initializer ) ) {
785 if ( Constant* cnst = dynamic_cast<Constant*>( cnstExpr->get_constant() ) ) {
786 TypeEnvironment env = results[i].env;
787 AssertionSet need = results[i].need, have = results[i].have;
788 OpenVarSet openVars = results[i].openVars;
789
790 if ( unify( formalType, cnst->get_type(), env, need, have, openVars,
791 indexer ) ) {
792 results.emplace_back(
793 i, new DefaultArgExpr( cnstExpr ), move(env), move(need), move(have),
794 move(openVars), nextArg, nTuples );
795 }
796 }
797 }
798
799 continue;
800 }
801
802 // Check each possible next argument
803 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
804 const ExplodedActual& expl = args[nextArg][j];
805
806 // fresh copies of parent parameters for this iteration
807 TypeEnvironment env = results[i].env;
808 AssertionSet need = results[i].need, have = results[i].have;
809 OpenVarSet openVars = results[i].openVars;
810
811 env.addActual( expl.env, openVars );
812
813 // skip empty tuple arguments by (near-)cloning parent into next gen
814 if ( expl.exprs.empty() ) {
815 results.emplace_back(
816 results[i], move(env), move(need), move(have), move(openVars),
817 nextArg + 1, expl.cost );
818
819 continue;
820 }
821
822 // consider only first exploded actual
823 Expression* expr = expl.exprs.front().get();
824 Type* actualType = expr->result->clone();
825
826 PRINT(
827 std::cerr << "formal type is ";
828 formalType->print( std::cerr );
829 std::cerr << std::endl << "actual type is ";
830 actualType->print( std::cerr );
831 std::cerr << std::endl;
832 )
833
834 // attempt to unify types
835 if ( unify( formalType, actualType, env, need, have, openVars, indexer ) ) {
836 // add new result
837 results.emplace_back(
838 i, expr, move(env), move(need), move(have), move(openVars), nextArg + 1,
839 nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
840 }
841 }
842 }
843
844 // reset for next parameter
845 genStart = genEnd;
846
847 return genEnd != results.size();
848 }
849
850 template<typename OutputIterator>
851 void AlternativeFinder::Finder::validateFunctionAlternative( const Alternative &func, ArgPack& result,
852 const std::vector<ArgPack>& results, OutputIterator out ) {
853 ApplicationExpr *appExpr = new ApplicationExpr( func.expr->clone() );
854 // sum cost and accumulate actuals
855 std::list<Expression*>& args = appExpr->args;
856 Cost cost = func.cost;
857 const ArgPack* pack = &result;
858 while ( pack->expr ) {
859 args.push_front( pack->expr->clone() );
860 cost += pack->cost;
861 pack = &results[pack->parent];
862 }
863 // build and validate new alternative
864 Alternative newAlt{ appExpr, result.env, result.openVars, result.need, cost };
865 PRINT(
866 std::cerr << "instantiate function success: " << appExpr << std::endl;
867 std::cerr << "need assertions:" << std::endl;
868 printAssertionSet( result.need, std::cerr, 8 );
869 )
870 inferParameters( newAlt, out );
871 }
872
873 template<typename OutputIterator>
874 void AlternativeFinder::Finder::makeFunctionAlternatives( const Alternative &func,
875 FunctionType *funcType, const ExplodedArgs_old &args, OutputIterator out ) {
876 OpenVarSet funcOpenVars;
877 AssertionSet funcNeed, funcHave;
878 TypeEnvironment funcEnv( func.env );
879 makeUnifiableVars( funcType, funcOpenVars, funcNeed );
880 // add all type variables as open variables now so that those not used in the parameter
881 // list are still considered open.
882 funcEnv.add( funcType->forall );
883
884 if ( targetType && ! targetType->isVoid() && ! funcType->returnVals.empty() ) {
885 // attempt to narrow based on expected target type
886 Type * returnType = funcType->returnVals.front()->get_type();
887 if ( ! unify( returnType, targetType, funcEnv, funcNeed, funcHave, funcOpenVars,
888 indexer ) ) {
889 // unification failed, don't pursue this function alternative
890 return;
891 }
892 }
893
894 // iteratively build matches, one parameter at a time
895 std::vector<ArgPack> results;
896 results.push_back( ArgPack{ funcEnv, funcNeed, funcHave, funcOpenVars } );
897 std::size_t genStart = 0;
898
899 for ( DeclarationWithType* formal : funcType->parameters ) {
900 ObjectDecl* obj = strict_dynamic_cast< ObjectDecl* >( formal );
901 if ( ! instantiateArgument(
902 obj->type, obj->init, args, results, genStart, indexer ) )
903 return;
904 }
905
906 if ( funcType->get_isVarArgs() ) {
907 // append any unused arguments to vararg pack
908 std::size_t genEnd;
909 do {
910 genEnd = results.size();
911
912 // iterate results
913 for ( std::size_t i = genStart; i < genEnd; ++i ) {
914 auto nextArg = results[i].nextArg;
915
916 // use remainder of exploded tuple if present
917 if ( results[i].hasExpl() ) {
918 const ExplodedActual& expl = results[i].getExpl( args );
919
920 unsigned nextExpl = results[i].nextExpl + 1;
921 if ( nextExpl == expl.exprs.size() ) {
922 nextExpl = 0;
923 }
924
925 results.emplace_back(
926 i, expl.exprs[results[i].nextExpl].get(), copy(results[i].env),
927 copy(results[i].need), copy(results[i].have),
928 copy(results[i].openVars), nextArg, 0, Cost::zero, nextExpl,
929 results[i].explAlt );
930
931 continue;
932 }
933
934 // finish result when out of arguments
935 if ( nextArg >= args.size() ) {
936 validateFunctionAlternative( func, results[i], results, out );
937
938 continue;
939 }
940
941 // add each possible next argument
942 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
943 const ExplodedActual& expl = args[nextArg][j];
944
945 // fresh copies of parent parameters for this iteration
946 TypeEnvironment env = results[i].env;
947 OpenVarSet openVars = results[i].openVars;
948
949 env.addActual( expl.env, openVars );
950
951 // skip empty tuple arguments by (near-)cloning parent into next gen
952 if ( expl.exprs.empty() ) {
953 results.emplace_back(
954 results[i], move(env), copy(results[i].need),
955 copy(results[i].have), move(openVars), nextArg + 1, expl.cost );
956
957 continue;
958 }
959
960 // add new result
961 results.emplace_back(
962 i, expl.exprs.front().get(), move(env), copy(results[i].need),
963 copy(results[i].have), move(openVars), nextArg + 1, 0,
964 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
965 }
966 }
967
968 genStart = genEnd;
969 } while ( genEnd != results.size() );
970 } else {
971 // filter out results that don't use all the arguments
972 for ( std::size_t i = genStart; i < results.size(); ++i ) {
973 ArgPack& result = results[i];
974 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {
975 validateFunctionAlternative( func, result, results, out );
976 }
977 }
978 }
979 }
980
981 void AlternativeFinder::Finder::postvisit( UntypedExpr *untypedExpr ) {
982 AlternativeFinder funcFinder( indexer, env );
983 funcFinder.findWithAdjustment( untypedExpr->function );
984 // if there are no function alternatives, then proceeding is a waste of time.
985 // xxx - findWithAdjustment throws, so this check and others like it shouldn't be necessary.
986 if ( funcFinder.alternatives.empty() ) return;
987
988 std::vector< AlternativeFinder > argAlternatives;
989 altFinder.findSubExprs( untypedExpr->begin_args(), untypedExpr->end_args(),
990 back_inserter( argAlternatives ) );
991
992 // take care of possible tuple assignments
993 // if not tuple assignment, assignment is taken care of as a normal function call
994 Tuples::handleTupleAssignment( altFinder, untypedExpr, argAlternatives );
995
996 // find function operators
997 static NameExpr *opExpr = new NameExpr( "?()" );
998 AlternativeFinder funcOpFinder( indexer, env );
999 // it's ok if there aren't any defined function ops
1000 funcOpFinder.maybeFind( opExpr );
1001 PRINT(
1002 std::cerr << "known function ops:" << std::endl;
1003 printAlts( funcOpFinder.alternatives, std::cerr, 1 );
1004 )
1005
1006 // pre-explode arguments
1007 ExplodedArgs_old argExpansions;
1008 argExpansions.reserve( argAlternatives.size() );
1009
1010 for ( const AlternativeFinder& arg : argAlternatives ) {
1011 argExpansions.emplace_back();
1012 auto& argE = argExpansions.back();
1013 // argE.reserve( arg.alternatives.size() );
1014
1015 for ( const Alternative& actual : arg ) {
1016 argE.emplace_back( actual, indexer );
1017 }
1018 }
1019
1020 AltList candidates;
1021 SemanticErrorException errors;
1022 for ( AltList::iterator func = funcFinder.alternatives.begin(); func != funcFinder.alternatives.end(); ++func ) {
1023 try {
1024 PRINT(
1025 std::cerr << "working on alternative: " << std::endl;
1026 func->print( std::cerr, 8 );
1027 )
1028 // check if the type is pointer to function
1029 if ( PointerType *pointer = dynamic_cast< PointerType* >( func->expr->result->stripReferences() ) ) {
1030 if ( FunctionType *function = dynamic_cast< FunctionType* >( pointer->base ) ) {
1031 Alternative newFunc( *func );
1032 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
1033 makeFunctionAlternatives( newFunc, function, argExpansions,
1034 std::back_inserter( candidates ) );
1035 }
1036 } else if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( func->expr->result->stripReferences() ) ) { // handle ftype (e.g. *? on function pointer)
1037 if ( const EqvClass *eqvClass = func->env.lookup( typeInst->name ) ) {
1038 if ( FunctionType *function = dynamic_cast< FunctionType* >( eqvClass->type ) ) {
1039 Alternative newFunc( *func );
1040 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
1041 makeFunctionAlternatives( newFunc, function, argExpansions,
1042 std::back_inserter( candidates ) );
1043 } // if
1044 } // if
1045 }
1046 } catch ( SemanticErrorException &e ) {
1047 errors.append( e );
1048 }
1049 } // for
1050
1051 // try each function operator ?() with each function alternative
1052 if ( ! funcOpFinder.alternatives.empty() ) {
1053 // add exploded function alternatives to front of argument list
1054 std::vector<ExplodedActual> funcE;
1055 funcE.reserve( funcFinder.alternatives.size() );
1056 for ( const Alternative& actual : funcFinder ) {
1057 funcE.emplace_back( actual, indexer );
1058 }
1059 argExpansions.insert( argExpansions.begin(), move(funcE) );
1060
1061 for ( AltList::iterator funcOp = funcOpFinder.alternatives.begin();
1062 funcOp != funcOpFinder.alternatives.end(); ++funcOp ) {
1063 try {
1064 // check if type is a pointer to function
1065 if ( PointerType* pointer = dynamic_cast<PointerType*>(
1066 funcOp->expr->result->stripReferences() ) ) {
1067 if ( FunctionType* function =
1068 dynamic_cast<FunctionType*>( pointer->base ) ) {
1069 Alternative newFunc( *funcOp );
1070 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
1071 makeFunctionAlternatives( newFunc, function, argExpansions,
1072 std::back_inserter( candidates ) );
1073 }
1074 }
1075 } catch ( SemanticErrorException &e ) {
1076 errors.append( e );
1077 }
1078 }
1079 }
1080
1081 // Implement SFINAE; resolution errors are only errors if there aren't any non-erroneous resolutions
1082 if ( candidates.empty() && ! errors.isEmpty() ) { throw errors; }
1083
1084 // compute conversionsion costs
1085 for ( Alternative& withFunc : candidates ) {
1086 Cost cvtCost = computeApplicationConversionCost( withFunc, indexer );
1087
1088 PRINT(
1089 ApplicationExpr *appExpr = strict_dynamic_cast< ApplicationExpr* >( withFunc.expr );
1090 PointerType *pointer = strict_dynamic_cast< PointerType* >( appExpr->function->result );
1091 FunctionType *function = strict_dynamic_cast< FunctionType* >( pointer->base );
1092 std::cerr << "Case +++++++++++++ " << appExpr->function << std::endl;
1093 std::cerr << "formals are:" << std::endl;
1094 printAll( function->parameters, std::cerr, 8 );
1095 std::cerr << "actuals are:" << std::endl;
1096 printAll( appExpr->args, std::cerr, 8 );
1097 std::cerr << "bindings are:" << std::endl;
1098 withFunc.env.print( std::cerr, 8 );
1099 std::cerr << "cost is: " << withFunc.cost << std::endl;
1100 std::cerr << "cost of conversion is:" << cvtCost << std::endl;
1101 )
1102 if ( cvtCost != Cost::infinity ) {
1103 withFunc.cvtCost = cvtCost;
1104 alternatives.push_back( withFunc );
1105 } // if
1106 } // for
1107
1108 candidates = move(alternatives);
1109
1110 // use a new list so that alternatives are not examined by addAnonConversions twice.
1111 AltList winners;
1112 findMinCost( candidates.begin(), candidates.end(), std::back_inserter( winners ) );
1113
1114 // function may return struct or union value, in which case we need to add alternatives
1115 // for implicit conversions to each of the anonymous members, must happen after findMinCost
1116 // since anon conversions are never the cheapest expression
1117 for ( const Alternative & alt : winners ) {
1118 addAnonConversions( alt );
1119 }
1120 spliceBegin( alternatives, winners );
1121
1122 if ( alternatives.empty() && targetType && ! targetType->isVoid() ) {
1123 // xxx - this is a temporary hack. If resolution is unsuccessful with a target type, try again without a
1124 // target type, since it will sometimes succeed when it wouldn't easily with target type binding. For example,
1125 // forall( otype T ) lvalue T ?[?]( T *, ptrdiff_t );
1126 // const char * x = "hello world";
1127 // unsigned char ch = x[0];
1128 // Fails with simple return type binding. First, T is bound to unsigned char, then (x: const char *) is unified
1129 // with unsigned char *, which fails because pointer base types must be unified exactly. The new resolver should
1130 // fix this issue in a more robust way.
1131 targetType = nullptr;
1132 postvisit( untypedExpr );
1133 }
1134 }
1135
1136 bool isLvalue( Expression *expr ) {
1137 // xxx - recurse into tuples?
1138 return expr->result && ( expr->result->get_lvalue() || dynamic_cast< ReferenceType * >( expr->result ) );
1139 }
1140
1141 void AlternativeFinder::Finder::postvisit( AddressExpr *addressExpr ) {
1142 AlternativeFinder finder( indexer, env );
1143 finder.find( addressExpr->get_arg() );
1144 for ( Alternative& alt : finder.alternatives ) {
1145 if ( isLvalue( alt.expr ) ) {
1146 alternatives.push_back(
1147 Alternative{ alt, new AddressExpr( alt.expr->clone() ), alt.cost } );
1148 } // if
1149 } // for
1150 }
1151
1152 void AlternativeFinder::Finder::postvisit( LabelAddressExpr * expr ) {
1153 alternatives.push_back( Alternative{ expr->clone(), env } );
1154 }
1155
1156 Expression * restructureCast( Expression * argExpr, Type * toType, bool isGenerated ) {
1157 if ( argExpr->get_result()->size() > 1 && ! toType->isVoid() && ! dynamic_cast<ReferenceType *>( toType ) ) {
1158 // Argument expression is a tuple and the target type is not void and not a reference type.
1159 // Cast each member of the tuple to its corresponding target type, producing the tuple of those
1160 // cast expressions. If there are more components of the tuple than components in the target type,
1161 // then excess components do not come out in the result expression (but UniqueExprs ensure that
1162 // side effects will still be done).
1163 if ( Tuples::maybeImpureIgnoreUnique( argExpr ) ) {
1164 // expressions which may contain side effects require a single unique instance of the expression.
1165 argExpr = new UniqueExpr( argExpr );
1166 }
1167 std::list< Expression * > componentExprs;
1168 for ( unsigned int i = 0; i < toType->size(); i++ ) {
1169 // cast each component
1170 TupleIndexExpr * idx = new TupleIndexExpr( argExpr->clone(), i );
1171 componentExprs.push_back( restructureCast( idx, toType->getComponent( i ), isGenerated ) );
1172 }
1173 delete argExpr;
1174 assert( componentExprs.size() > 0 );
1175 // produce the tuple of casts
1176 return new TupleExpr( componentExprs );
1177 } else {
1178 // handle normally
1179 CastExpr * ret = new CastExpr( argExpr, toType->clone() );
1180 ret->isGenerated = isGenerated;
1181 return ret;
1182 }
1183 }
1184
1185 void AlternativeFinder::Finder::postvisit( CastExpr *castExpr ) {
1186 Type *& toType = castExpr->get_result();
1187 assert( toType );
1188 toType = resolveTypeof( toType, indexer );
1189 SymTab::validateType( toType, &indexer );
1190 adjustExprType( toType, env, indexer );
1191
1192 AlternativeFinder finder( indexer, env );
1193 finder.targetType = toType;
1194 finder.findWithAdjustment( castExpr->arg );
1195
1196 AltList candidates;
1197 for ( Alternative & alt : finder.alternatives ) {
1198 AssertionSet needAssertions( alt.need.begin(), alt.need.end() );
1199 AssertionSet haveAssertions;
1200 OpenVarSet openVars{ alt.openVars };
1201
1202 alt.env.extractOpenVars( openVars );
1203
1204 // It's possible that a cast can throw away some values in a multiply-valued expression. (An example is a
1205 // cast-to-void, which casts from one value to zero.) Figure out the prefix of the subexpression results
1206 // that are cast directly. The candidate is invalid if it has fewer results than there are types to cast
1207 // to.
1208 int discardedValues = alt.expr->result->size() - castExpr->result->size();
1209 if ( discardedValues < 0 ) continue;
1210 // xxx - may need to go into tuple types and extract relevant types and use unifyList. Note that currently, this does not
1211 // allow casting a tuple to an atomic type (e.g. (int)([1, 2, 3]))
1212 // unification run for side-effects
1213 unify( castExpr->result, alt.expr->result, alt.env, needAssertions,
1214 haveAssertions, openVars, indexer );
1215 Cost thisCost = castCost( alt.expr->result, castExpr->result, indexer,
1216 alt.env );
1217 PRINT(
1218 std::cerr << "working on cast with result: " << castExpr->result << std::endl;
1219 std::cerr << "and expr type: " << alt.expr->result << std::endl;
1220 std::cerr << "env: " << alt.env << std::endl;
1221 )
1222 if ( thisCost != Cost::infinity ) {
1223 PRINT(
1224 std::cerr << "has finite cost." << std::endl;
1225 )
1226 // count one safe conversion for each value that is thrown away
1227 thisCost.incSafe( discardedValues );
1228 Alternative newAlt{
1229 restructureCast( alt.expr->clone(), toType, castExpr->isGenerated ),
1230 alt.env, openVars, needAssertions, alt.cost, alt.cost + thisCost };
1231 inferParameters( newAlt, back_inserter( candidates ) );
1232 } // if
1233 } // for
1234
1235 // findMinCost selects the alternatives with the lowest "cost" members, but has the side effect of copying the
1236 // cvtCost member to the cost member (since the old cost is now irrelevant). Thus, calling findMinCost twice
1237 // selects first based on argument cost, then on conversion cost.
1238 AltList minArgCost;
1239 findMinCost( candidates.begin(), candidates.end(), std::back_inserter( minArgCost ) );
1240 findMinCost( minArgCost.begin(), minArgCost.end(), std::back_inserter( alternatives ) );
1241 }
1242
1243 void AlternativeFinder::Finder::postvisit( VirtualCastExpr * castExpr ) {
1244 assertf( castExpr->get_result(), "Implicit virtual cast targets not yet supported." );
1245 AlternativeFinder finder( indexer, env );
1246 // don't prune here, since it's guaranteed all alternatives will have the same type
1247 finder.findWithoutPrune( castExpr->get_arg() );
1248 for ( Alternative & alt : finder.alternatives ) {
1249 alternatives.push_back( Alternative{
1250 alt, new VirtualCastExpr{ alt.expr->clone(), castExpr->get_result()->clone() },
1251 alt.cost } );
1252 }
1253 }
1254
1255 namespace {
1256 /// Gets name from untyped member expression (member must be NameExpr)
1257 const std::string& get_member_name( UntypedMemberExpr *memberExpr ) {
1258 if ( dynamic_cast< ConstantExpr * >( memberExpr->get_member() ) ) {
1259 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );
1260 } // if
1261 NameExpr * nameExpr = dynamic_cast< NameExpr * >( memberExpr->get_member() );
1262 assert( nameExpr );
1263 return nameExpr->get_name();
1264 }
1265 }
1266
1267 void AlternativeFinder::Finder::postvisit( UntypedMemberExpr *memberExpr ) {
1268 AlternativeFinder funcFinder( indexer, env );
1269 funcFinder.findWithAdjustment( memberExpr->get_aggregate() );
1270 for ( AltList::const_iterator agg = funcFinder.alternatives.begin(); agg != funcFinder.alternatives.end(); ++agg ) {
1271 // it's okay for the aggregate expression to have reference type -- cast it to the base type to treat the aggregate as the referenced value
1272 Cost cost = agg->cost;
1273 Expression * aggrExpr = agg->expr->clone();
1274 referenceToRvalueConversion( aggrExpr, cost );
1275 std::unique_ptr<Expression> guard( aggrExpr );
1276
1277 // find member of the given type
1278 if ( StructInstType *structInst = dynamic_cast< StructInstType* >( aggrExpr->get_result() ) ) {
1279 addAggMembers( structInst, aggrExpr, *agg, cost, get_member_name(memberExpr) );
1280 } else if ( UnionInstType *unionInst = dynamic_cast< UnionInstType* >( aggrExpr->get_result() ) ) {
1281 addAggMembers( unionInst, aggrExpr, *agg, cost, get_member_name(memberExpr) );
1282 } else if ( TupleType * tupleType = dynamic_cast< TupleType * >( aggrExpr->get_result() ) ) {
1283 addTupleMembers( tupleType, aggrExpr, *agg, cost, memberExpr->get_member() );
1284 } // if
1285 } // for
1286 }
1287
1288 void AlternativeFinder::Finder::postvisit( MemberExpr *memberExpr ) {
1289 alternatives.push_back( Alternative{ memberExpr->clone(), env } );
1290 }
1291
1292 void AlternativeFinder::Finder::postvisit( NameExpr *nameExpr ) {
1293 std::list< SymTab::Indexer::IdData > declList;
1294 indexer.lookupId( nameExpr->name, declList );
1295 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )
1296 for ( auto & data : declList ) {
1297 Cost cost = Cost::zero;
1298 Expression * newExpr = data.combine( cost );
1299
1300 // addAnonAlternatives uses vector::push_back, which invalidates references to existing elements, so
1301 // can't construct in place and use vector::back
1302 Alternative newAlt{ newExpr, env, OpenVarSet{}, AssertionList{}, Cost::zero, cost };
1303 PRINT(
1304 std::cerr << "decl is ";
1305 data.id->print( std::cerr );
1306 std::cerr << std::endl;
1307 std::cerr << "newExpr is ";
1308 newExpr->print( std::cerr );
1309 std::cerr << std::endl;
1310 )
1311 renameTypes( newAlt.expr );
1312 addAnonConversions( newAlt ); // add anonymous member interpretations whenever an aggregate value type is seen as a name expression.
1313 alternatives.push_back( std::move(newAlt) );
1314 } // for
1315 }
1316
1317 void AlternativeFinder::Finder::postvisit( VariableExpr *variableExpr ) {
1318 // not sufficient to clone here, because variable's type may have changed
1319 // since the VariableExpr was originally created.
1320 alternatives.push_back( Alternative{ new VariableExpr{ variableExpr->var }, env } );
1321 }
1322
1323 void AlternativeFinder::Finder::postvisit( ConstantExpr *constantExpr ) {
1324 alternatives.push_back( Alternative{ constantExpr->clone(), env } );
1325 }
1326
1327 void AlternativeFinder::Finder::postvisit( SizeofExpr *sizeofExpr ) {
1328 if ( sizeofExpr->get_isType() ) {
1329 Type * newType = sizeofExpr->get_type()->clone();
1330 alternatives.push_back( Alternative{
1331 new SizeofExpr{ resolveTypeof( newType, indexer ) }, env } );
1332 } else {
1333 // find all alternatives for the argument to sizeof
1334 AlternativeFinder finder( indexer, env );
1335 finder.find( sizeofExpr->get_expr() );
1336 // find the lowest cost alternative among the alternatives, otherwise ambiguous
1337 AltList winners;
1338 findMinCost( finder.alternatives.begin(), finder.alternatives.end(), back_inserter( winners ) );
1339 if ( winners.size() != 1 ) {
1340 SemanticError( sizeofExpr->get_expr(), "Ambiguous expression in sizeof operand: " );
1341 } // if
1342 // return the lowest cost alternative for the argument
1343 Alternative &choice = winners.front();
1344 referenceToRvalueConversion( choice.expr, choice.cost );
1345 alternatives.push_back( Alternative{
1346 choice, new SizeofExpr( choice.expr->clone() ), Cost::zero } );
1347 } // if
1348 }
1349
1350 void AlternativeFinder::Finder::postvisit( AlignofExpr *alignofExpr ) {
1351 if ( alignofExpr->get_isType() ) {
1352 Type * newType = alignofExpr->get_type()->clone();
1353 alternatives.push_back( Alternative{
1354 new AlignofExpr{ resolveTypeof( newType, indexer ) }, env } );
1355 } else {
1356 // find all alternatives for the argument to sizeof
1357 AlternativeFinder finder( indexer, env );
1358 finder.find( alignofExpr->get_expr() );
1359 // find the lowest cost alternative among the alternatives, otherwise ambiguous
1360 AltList winners;
1361 findMinCost( finder.alternatives.begin(), finder.alternatives.end(), back_inserter( winners ) );
1362 if ( winners.size() != 1 ) {
1363 SemanticError( alignofExpr->get_expr(), "Ambiguous expression in alignof operand: " );
1364 } // if
1365 // return the lowest cost alternative for the argument
1366 Alternative &choice = winners.front();
1367 referenceToRvalueConversion( choice.expr, choice.cost );
1368 alternatives.push_back( Alternative{
1369 choice, new AlignofExpr{ choice.expr->clone() }, Cost::zero } );
1370 } // if
1371 }
1372
1373 template< typename StructOrUnionType >
1374 void AlternativeFinder::Finder::addOffsetof( StructOrUnionType *aggInst, const std::string &name ) {
1375 std::list< Declaration* > members;
1376 aggInst->lookup( name, members );
1377 for ( std::list< Declaration* >::const_iterator i = members.begin(); i != members.end(); ++i ) {
1378 if ( DeclarationWithType *dwt = dynamic_cast< DeclarationWithType* >( *i ) ) {
1379 alternatives.push_back( Alternative{
1380 new OffsetofExpr{ aggInst->clone(), dwt }, env } );
1381 renameTypes( alternatives.back().expr );
1382 } else {
1383 assert( false );
1384 }
1385 }
1386 }
1387
1388 void AlternativeFinder::Finder::postvisit( UntypedOffsetofExpr *offsetofExpr ) {
1389 AlternativeFinder funcFinder( indexer, env );
1390 // xxx - resolveTypeof?
1391 if ( StructInstType *structInst = dynamic_cast< StructInstType* >( offsetofExpr->get_type() ) ) {
1392 addOffsetof( structInst, offsetofExpr->member );
1393 } else if ( UnionInstType *unionInst = dynamic_cast< UnionInstType* >( offsetofExpr->get_type() ) ) {
1394 addOffsetof( unionInst, offsetofExpr->member );
1395 }
1396 }
1397
1398 void AlternativeFinder::Finder::postvisit( OffsetofExpr *offsetofExpr ) {
1399 alternatives.push_back( Alternative{ offsetofExpr->clone(), env } );
1400 }
1401
1402 void AlternativeFinder::Finder::postvisit( OffsetPackExpr *offsetPackExpr ) {
1403 alternatives.push_back( Alternative{ offsetPackExpr->clone(), env } );
1404 }
1405
1406 namespace {
1407 void resolveAttr( SymTab::Indexer::IdData data, FunctionType *function, Type *argType, const TypeEnvironment &env, AlternativeFinder & finder ) {
1408 // assume no polymorphism
1409 // assume no implicit conversions
1410 assert( function->get_parameters().size() == 1 );
1411 PRINT(
1412 std::cerr << "resolvAttr: funcDecl is ";
1413 data.id->print( std::cerr );
1414 std::cerr << " argType is ";
1415 argType->print( std::cerr );
1416 std::cerr << std::endl;
1417 )
1418 const SymTab::Indexer & indexer = finder.get_indexer();
1419 AltList & alternatives = finder.get_alternatives();
1420 if ( typesCompatibleIgnoreQualifiers( argType, function->get_parameters().front()->get_type(), indexer, env ) ) {
1421 Cost cost = Cost::zero;
1422 Expression * newExpr = data.combine( cost );
1423 alternatives.push_back( Alternative{
1424 new AttrExpr{ newExpr, argType->clone() }, env, OpenVarSet{},
1425 AssertionList{}, Cost::zero, cost } );
1426 for ( DeclarationWithType * retVal : function->returnVals ) {
1427 alternatives.back().expr->result = retVal->get_type()->clone();
1428 } // for
1429 } // if
1430 }
1431 }
1432
1433 void AlternativeFinder::Finder::postvisit( AttrExpr *attrExpr ) {
1434 // assume no 'pointer-to-attribute'
1435 NameExpr *nameExpr = dynamic_cast< NameExpr* >( attrExpr->get_attr() );
1436 assert( nameExpr );
1437 std::list< SymTab::Indexer::IdData > attrList;
1438 indexer.lookupId( nameExpr->get_name(), attrList );
1439 if ( attrExpr->get_isType() || attrExpr->get_expr() ) {
1440 for ( auto & data : attrList ) {
1441 DeclarationWithType * id = data.id;
1442 // check if the type is function
1443 if ( FunctionType *function = dynamic_cast< FunctionType* >( id->get_type() ) ) {
1444 // assume exactly one parameter
1445 if ( function->get_parameters().size() == 1 ) {
1446 if ( attrExpr->get_isType() ) {
1447 resolveAttr( data, function, attrExpr->get_type(), env, altFinder);
1448 } else {
1449 AlternativeFinder finder( indexer, env );
1450 finder.find( attrExpr->get_expr() );
1451 for ( AltList::iterator choice = finder.alternatives.begin(); choice != finder.alternatives.end(); ++choice ) {
1452 if ( choice->expr->get_result()->size() == 1 ) {
1453 resolveAttr(data, function, choice->expr->get_result(), choice->env, altFinder );
1454 } // fi
1455 } // for
1456 } // if
1457 } // if
1458 } // if
1459 } // for
1460 } else {
1461 for ( auto & data : attrList ) {
1462 Cost cost = Cost::zero;
1463 Expression * newExpr = data.combine( cost );
1464 alternatives.push_back( Alternative{
1465 newExpr, env, OpenVarSet{}, AssertionList{}, Cost::zero, cost } );
1466 renameTypes( alternatives.back().expr );
1467 } // for
1468 } // if
1469 }
1470
1471 void AlternativeFinder::Finder::postvisit( LogicalExpr *logicalExpr ) {
1472 AlternativeFinder firstFinder( indexer, env );
1473 firstFinder.findWithAdjustment( logicalExpr->get_arg1() );
1474 if ( firstFinder.alternatives.empty() ) return;
1475 AlternativeFinder secondFinder( indexer, env );
1476 secondFinder.findWithAdjustment( logicalExpr->get_arg2() );
1477 if ( secondFinder.alternatives.empty() ) return;
1478 for ( const Alternative & first : firstFinder.alternatives ) {
1479 for ( const Alternative & second : secondFinder.alternatives ) {
1480 TypeEnvironment compositeEnv{ first.env };
1481 compositeEnv.simpleCombine( second.env );
1482 OpenVarSet openVars{ first.openVars };
1483 mergeOpenVars( openVars, second.openVars );
1484 AssertionSet need;
1485 cloneAll( first.need, need );
1486 cloneAll( second.need, need );
1487
1488 LogicalExpr *newExpr = new LogicalExpr{
1489 first.expr->clone(), second.expr->clone(), logicalExpr->get_isAnd() };
1490 alternatives.push_back( Alternative{
1491 newExpr, std::move(compositeEnv), std::move(openVars),
1492 AssertionList( need.begin(), need.end() ), first.cost + second.cost } );
1493 }
1494 }
1495 }
1496
1497 void AlternativeFinder::Finder::postvisit( ConditionalExpr *conditionalExpr ) {
1498 // find alternatives for condition
1499 AlternativeFinder firstFinder( indexer, env );
1500 firstFinder.findWithAdjustment( conditionalExpr->arg1 );
1501 if ( firstFinder.alternatives.empty() ) return;
1502 // find alternatives for true expression
1503 AlternativeFinder secondFinder( indexer, env );
1504 secondFinder.findWithAdjustment( conditionalExpr->arg2 );
1505 if ( secondFinder.alternatives.empty() ) return;
1506 // find alterantives for false expression
1507 AlternativeFinder thirdFinder( indexer, env );
1508 thirdFinder.findWithAdjustment( conditionalExpr->arg3 );
1509 if ( thirdFinder.alternatives.empty() ) return;
1510 for ( const Alternative & first : firstFinder.alternatives ) {
1511 for ( const Alternative & second : secondFinder.alternatives ) {
1512 for ( const Alternative & third : thirdFinder.alternatives ) {
1513 TypeEnvironment compositeEnv{ first.env };
1514 compositeEnv.simpleCombine( second.env );
1515 compositeEnv.simpleCombine( third.env );
1516 OpenVarSet openVars{ first.openVars };
1517 mergeOpenVars( openVars, second.openVars );
1518 mergeOpenVars( openVars, third.openVars );
1519 AssertionSet need;
1520 cloneAll( first.need, need );
1521 cloneAll( second.need, need );
1522 cloneAll( third.need, need );
1523 AssertionSet have;
1524
1525 // unify true and false types, then infer parameters to produce new alternatives
1526 Type* commonType = nullptr;
1527 if ( unify( second.expr->result, third.expr->result, compositeEnv,
1528 need, have, openVars, indexer, commonType ) ) {
1529 ConditionalExpr *newExpr = new ConditionalExpr{
1530 first.expr->clone(), second.expr->clone(), third.expr->clone() };
1531 newExpr->result = commonType ? commonType : second.expr->result->clone();
1532 // convert both options to the conditional result type
1533 Cost cost = first.cost + second.cost + third.cost;
1534 cost += computeExpressionConversionCost(
1535 newExpr->arg2, newExpr->result, indexer, compositeEnv );
1536 cost += computeExpressionConversionCost(
1537 newExpr->arg3, newExpr->result, indexer, compositeEnv );
1538 // output alternative
1539 Alternative newAlt{
1540 newExpr, std::move(compositeEnv), std::move(openVars),
1541 AssertionList( need.begin(), need.end() ), cost };
1542 inferParameters( newAlt, back_inserter( alternatives ) );
1543 } // if
1544 } // for
1545 } // for
1546 } // for
1547 }
1548
1549 void AlternativeFinder::Finder::postvisit( CommaExpr *commaExpr ) {
1550 TypeEnvironment newEnv( env );
1551 Expression *newFirstArg = resolveInVoidContext( commaExpr->get_arg1(), indexer, newEnv );
1552 AlternativeFinder secondFinder( indexer, newEnv );
1553 secondFinder.findWithAdjustment( commaExpr->get_arg2() );
1554 for ( const Alternative & alt : secondFinder.alternatives ) {
1555 alternatives.push_back( Alternative{
1556 alt, new CommaExpr{ newFirstArg->clone(), alt.expr->clone() }, alt.cost } );
1557 } // for
1558 delete newFirstArg;
1559 }
1560
1561 void AlternativeFinder::Finder::postvisit( RangeExpr * rangeExpr ) {
1562 // resolve low and high, accept alternatives whose low and high types unify
1563 AlternativeFinder firstFinder( indexer, env );
1564 firstFinder.findWithAdjustment( rangeExpr->low );
1565 if ( firstFinder.alternatives.empty() ) return;
1566 AlternativeFinder secondFinder( indexer, env );
1567 secondFinder.findWithAdjustment( rangeExpr->high );
1568 if ( secondFinder.alternatives.empty() ) return;
1569 for ( const Alternative & first : firstFinder.alternatives ) {
1570 for ( const Alternative & second : secondFinder.alternatives ) {
1571 TypeEnvironment compositeEnv{ first.env };
1572 compositeEnv.simpleCombine( second.env );
1573 OpenVarSet openVars{ first.openVars };
1574 mergeOpenVars( openVars, second.openVars );
1575 AssertionSet need;
1576 cloneAll( first.need, need );
1577 cloneAll( second.need, need );
1578 AssertionSet have;
1579
1580 Type* commonType = nullptr;
1581 if ( unify( first.expr->result, second.expr->result, compositeEnv, need, have,
1582 openVars, indexer, commonType ) ) {
1583 RangeExpr * newExpr =
1584 new RangeExpr{ first.expr->clone(), second.expr->clone() };
1585 newExpr->result = commonType ? commonType : first.expr->result->clone();
1586 Alternative newAlt{
1587 newExpr, std::move(compositeEnv), std::move(openVars),
1588 AssertionList( need.begin(), need.end() ), first.cost + second.cost };
1589 inferParameters( newAlt, back_inserter( alternatives ) );
1590 } // if
1591 } // for
1592 } // for
1593 }
1594
1595 void AlternativeFinder::Finder::postvisit( UntypedTupleExpr *tupleExpr ) {
1596 std::vector< AlternativeFinder > subExprAlternatives;
1597 altFinder.findSubExprs( tupleExpr->get_exprs().begin(), tupleExpr->get_exprs().end(),
1598 back_inserter( subExprAlternatives ) );
1599 std::vector< AltList > possibilities;
1600 combos( subExprAlternatives.begin(), subExprAlternatives.end(),
1601 back_inserter( possibilities ) );
1602 for ( const AltList& alts : possibilities ) {
1603 std::list< Expression * > exprs;
1604 makeExprList( alts, exprs );
1605
1606 TypeEnvironment compositeEnv;
1607 OpenVarSet openVars;
1608 AssertionSet need;
1609 for ( const Alternative& alt : alts ) {
1610 compositeEnv.simpleCombine( alt.env );
1611 mergeOpenVars( openVars, alt.openVars );
1612 cloneAll( alt.need, need );
1613 }
1614
1615 alternatives.push_back( Alternative{
1616 new TupleExpr{ exprs }, std::move(compositeEnv), std::move(openVars),
1617 AssertionList( need.begin(), need.end() ), sumCost( alts ) } );
1618 } // for
1619 }
1620
1621 void AlternativeFinder::Finder::postvisit( TupleExpr *tupleExpr ) {
1622 alternatives.push_back( Alternative{ tupleExpr->clone(), env } );
1623 }
1624
1625 void AlternativeFinder::Finder::postvisit( ImplicitCopyCtorExpr * impCpCtorExpr ) {
1626 alternatives.push_back( Alternative{ impCpCtorExpr->clone(), env } );
1627 }
1628
1629 void AlternativeFinder::Finder::postvisit( ConstructorExpr * ctorExpr ) {
1630 AlternativeFinder finder( indexer, env );
1631 // don't prune here, since it's guaranteed all alternatives will have the same type
1632 // (giving the alternatives different types is half of the point of ConstructorExpr nodes)
1633 finder.findWithoutPrune( ctorExpr->get_callExpr() );
1634 for ( Alternative & alt : finder.alternatives ) {
1635 alternatives.push_back( Alternative{
1636 alt, new ConstructorExpr( alt.expr->clone() ), alt.cost } );
1637 }
1638 }
1639
1640 void AlternativeFinder::Finder::postvisit( TupleIndexExpr *tupleExpr ) {
1641 alternatives.push_back( Alternative{ tupleExpr->clone(), env } );
1642 }
1643
1644 void AlternativeFinder::Finder::postvisit( TupleAssignExpr *tupleAssignExpr ) {
1645 alternatives.push_back( Alternative{ tupleAssignExpr->clone(), env } );
1646 }
1647
1648 void AlternativeFinder::Finder::postvisit( UniqueExpr *unqExpr ) {
1649 AlternativeFinder finder( indexer, env );
1650 finder.findWithAdjustment( unqExpr->get_expr() );
1651 for ( Alternative & alt : finder.alternatives ) {
1652 // ensure that the id is passed on to the UniqueExpr alternative so that the expressions are "linked"
1653 UniqueExpr * newUnqExpr = new UniqueExpr( alt.expr->clone(), unqExpr->get_id() );
1654 alternatives.push_back( Alternative{ alt, newUnqExpr, alt.cost } );
1655 }
1656 }
1657
1658 void AlternativeFinder::Finder::postvisit( StmtExpr *stmtExpr ) {
1659 StmtExpr * newStmtExpr = stmtExpr->clone();
1660 ResolvExpr::resolveStmtExpr( newStmtExpr, indexer );
1661 // xxx - this env is almost certainly wrong, and needs to somehow contain the combined environments from all of the statements in the stmtExpr...
1662 alternatives.push_back( Alternative{ newStmtExpr, env } );
1663 }
1664
1665 void AlternativeFinder::Finder::postvisit( UntypedInitExpr *initExpr ) {
1666 // handle each option like a cast
1667 AltList candidates;
1668 PRINT(
1669 std::cerr << "untyped init expr: " << initExpr << std::endl;
1670 )
1671 // O(N^2) checks of d-types with e-types
1672 for ( InitAlternative & initAlt : initExpr->get_initAlts() ) {
1673 Type * toType = resolveTypeof( initAlt.type->clone(), indexer );
1674 SymTab::validateType( toType, &indexer );
1675 adjustExprType( toType, env, indexer );
1676 // Ideally the call to findWithAdjustment could be moved out of the loop, but unfortunately it currently has to occur inside or else
1677 // polymorphic return types are not properly bound to the initialization type, since return type variables are only open for the duration of resolving
1678 // the UntypedExpr. This is only actually an issue in initialization contexts that allow more than one possible initialization type, but it is still suboptimal.
1679 AlternativeFinder finder( indexer, env );
1680 finder.targetType = toType;
1681 finder.findWithAdjustment( initExpr->expr );
1682 for ( Alternative & alt : finder.get_alternatives() ) {
1683 TypeEnvironment newEnv( alt.env );
1684 AssertionSet need;
1685 cloneAll( alt.need, need );
1686 AssertionSet have;
1687 OpenVarSet openVars( alt.openVars );
1688 // xxx - find things in env that don't have a "representative type" and claim
1689 // those are open vars?
1690 PRINT(
1691 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;
1692 )
1693 // It's possible that a cast can throw away some values in a multiply-valued
1694 // expression. (An example is a cast-to-void, which casts from one value to
1695 // zero.) Figure out the prefix of the subexpression results that are cast
1696 // directly. The candidate is invalid if it has fewer results than there are
1697 // types to cast to.
1698 int discardedValues = alt.expr->result->size() - toType->size();
1699 if ( discardedValues < 0 ) continue;
1700 // xxx - may need to go into tuple types and extract relevant types and use
1701 // unifyList. Note that currently, this does not allow casting a tuple to an
1702 // atomic type (e.g. (int)([1, 2, 3]))
1703
1704 // unification run for side-effects
1705 unify( toType, alt.expr->result, newEnv, need, have, openVars, indexer );
1706 // xxx - do some inspecting on this line... why isn't result bound to initAlt.type?
1707
1708 Cost thisCost = castCost( alt.expr->result, toType, indexer, newEnv );
1709 if ( thisCost != Cost::infinity ) {
1710 // count one safe conversion for each value that is thrown away
1711 thisCost.incSafe( discardedValues );
1712 Alternative newAlt{
1713 new InitExpr{
1714 restructureCast( alt.expr->clone(), toType, true ), initAlt.designation->clone() },
1715 std::move(newEnv), std::move(openVars),
1716 AssertionList( need.begin(), need.end() ), alt.cost, thisCost };
1717 inferParameters( newAlt, back_inserter( candidates ) );
1718 }
1719 }
1720 }
1721
1722 // findMinCost selects the alternatives with the lowest "cost" members, but has the side effect of copying the
1723 // cvtCost member to the cost member (since the old cost is now irrelevant). Thus, calling findMinCost twice
1724 // selects first based on argument cost, then on conversion cost.
1725 AltList minArgCost;
1726 findMinCost( candidates.begin(), candidates.end(), std::back_inserter( minArgCost ) );
1727 findMinCost( minArgCost.begin(), minArgCost.end(), std::back_inserter( alternatives ) );
1728 }
1729
1730 void AlternativeFinder::Finder::postvisit( InitExpr * ) {
1731 assertf( false, "AlternativeFinder should never see a resolved InitExpr." );
1732 }
1733
1734 void AlternativeFinder::Finder::postvisit( DeletedExpr * ) {
1735 assertf( false, "AlternativeFinder should never see a DeletedExpr." );
1736 }
1737
1738 void AlternativeFinder::Finder::postvisit( GenericExpr * ) {
1739 assertf( false, "_Generic is not yet supported." );
1740 }
1741} // namespace ResolvExpr
1742
1743// Local Variables: //
1744// tab-width: 4 //
1745// mode: c++ //
1746// compile-command: "make install" //
1747// End: //
Note: See TracBrowser for help on using the repository browser.