source: src/ResolvExpr/AlternativeFinder.cc@ 50202fa

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 50202fa was 3233b91, checked in by Thierry Delisle <tdelisle@…>, 5 years ago

Fix left erros in old AST

  • Property mode set to 100644
File size: 71.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// AlternativeFinder.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sat May 16 23:52:08 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Thu Aug 8 16:35:00 2019
13// Update Count : 38
14//
15
16#include <algorithm> // for copy
17#include <cassert> // for strict_dynamic_cast, assert, assertf
18#include <cstddef> // for size_t
19#include <iostream> // for operator<<, cerr, ostream, endl
20#include <iterator> // for back_insert_iterator, back_inserter
21#include <list> // for _List_iterator, list, _List_const_...
22#include <map> // for _Rb_tree_iterator, map, _Rb_tree_c...
23#include <memory> // for allocator_traits<>::value_type, unique_ptr
24#include <utility> // for pair
25#include <vector> // for vector
26
27#include "CompilationState.h" // for resolvep
28#include "Alternative.h" // for AltList, Alternative
29#include "AlternativeFinder.h"
30#include "AST/Expr.hpp"
31#include "AST/SymbolTable.hpp"
32#include "AST/Type.hpp"
33#include "Common/SemanticError.h" // for SemanticError
34#include "Common/utility.h" // for deleteAll, printAll, CodeLocation
35#include "Cost.h" // for Cost, Cost::zero, operator<<, Cost...
36#include "ExplodedActual.h" // for ExplodedActual
37#include "InitTweak/InitTweak.h" // for getFunctionName
38#include "RenameVars.h" // for RenameVars, global_renamer
39#include "ResolveAssertions.h" // for resolveAssertions
40#include "ResolveTypeof.h" // for resolveTypeof
41#include "Resolver.h" // for resolveStmtExpr
42#include "SymTab/Indexer.h" // for Indexer
43#include "SymTab/Mangler.h" // for Mangler
44#include "SymTab/Validate.h" // for validateType
45#include "SynTree/Constant.h" // for Constant
46#include "SynTree/Declaration.h" // for DeclarationWithType, TypeDecl, Dec...
47#include "SynTree/Expression.h" // for Expression, CastExpr, NameExpr
48#include "SynTree/Initializer.h" // for SingleInit, operator<<, Designation
49#include "SynTree/SynTree.h" // for UniqueId
50#include "SynTree/Type.h" // for Type, FunctionType, PointerType
51#include "Tuples/Explode.h" // for explode
52#include "Tuples/Tuples.h" // for isTtype, handleTupleAssignment
53#include "Unify.h" // for unify
54#include "typeops.h" // for adjustExprType, polyCost, castCost
55
56#define PRINT( text ) if ( resolvep ) { text }
57//#define DEBUG_COST
58
59namespace ResolvExpr {
60 struct AlternativeFinder::Finder : public WithShortCircuiting {
61 Finder( AlternativeFinder & altFinder ) : altFinder( altFinder ), indexer( altFinder.indexer ), alternatives( altFinder.alternatives ), env( altFinder.env ), targetType( altFinder.targetType ) {}
62
63 void previsit( BaseSyntaxNode * ) { visit_children = false; }
64
65 void postvisit( ApplicationExpr * applicationExpr );
66 void postvisit( UntypedExpr * untypedExpr );
67 void postvisit( AddressExpr * addressExpr );
68 void postvisit( LabelAddressExpr * labelExpr );
69 void postvisit( CastExpr * castExpr );
70 void postvisit( VirtualCastExpr * castExpr );
71 void postvisit( KeywordCastExpr * castExpr );
72 void postvisit( UntypedMemberExpr * memberExpr );
73 void postvisit( MemberExpr * memberExpr );
74 void postvisit( NameExpr * variableExpr );
75 void postvisit( VariableExpr * variableExpr );
76 void postvisit( ConstantExpr * constantExpr );
77 void postvisit( SizeofExpr * sizeofExpr );
78 void postvisit( AlignofExpr * alignofExpr );
79 void postvisit( UntypedOffsetofExpr * offsetofExpr );
80 void postvisit( OffsetofExpr * offsetofExpr );
81 void postvisit( OffsetPackExpr * offsetPackExpr );
82 void postvisit( LogicalExpr * logicalExpr );
83 void postvisit( ConditionalExpr * conditionalExpr );
84 void postvisit( CommaExpr * commaExpr );
85 void postvisit( ImplicitCopyCtorExpr * impCpCtorExpr );
86 void postvisit( ConstructorExpr * ctorExpr );
87 void postvisit( RangeExpr * rangeExpr );
88 void postvisit( UntypedTupleExpr * tupleExpr );
89 void postvisit( TupleExpr * tupleExpr );
90 void postvisit( TupleIndexExpr * tupleExpr );
91 void postvisit( TupleAssignExpr * tupleExpr );
92 void postvisit( UniqueExpr * unqExpr );
93 void postvisit( StmtExpr * stmtExpr );
94 void postvisit( UntypedInitExpr * initExpr );
95 void postvisit( InitExpr * initExpr );
96 void postvisit( DeletedExpr * delExpr );
97 void postvisit( GenericExpr * genExpr );
98
99 /// Adds alternatives for anonymous members
100 void addAnonConversions( const Alternative & alt );
101 /// Adds alternatives for member expressions, given the aggregate, conversion cost for that aggregate, and name of the member
102 template< typename StructOrUnionType > void addAggMembers( StructOrUnionType *aggInst, Expression *expr, const Alternative &alt, const Cost &newCost, const std::string & name );
103 /// Adds alternatives for member expressions where the left side has tuple type
104 void addTupleMembers( TupleType *tupleType, Expression *expr, const Alternative &alt, const Cost &newCost, Expression *member );
105 /// Adds alternatives for offsetof expressions, given the base type and name of the member
106 template< typename StructOrUnionType > void addOffsetof( StructOrUnionType *aggInst, const std::string &name );
107 /// Takes a final result and checks if its assertions can be satisfied
108 template<typename OutputIterator>
109 void validateFunctionAlternative( const Alternative &func, ArgPack& result, const std::vector<ArgPack>& results, OutputIterator out );
110 /// Finds matching alternatives for a function, given a set of arguments
111 template<typename OutputIterator>
112 void makeFunctionAlternatives( const Alternative &func, FunctionType *funcType, const ExplodedArgs_old& args, OutputIterator out );
113 /// Sets up parameter inference for an output alternative
114 template< typename OutputIterator >
115 void inferParameters( Alternative &newAlt, OutputIterator out );
116 private:
117 AlternativeFinder & altFinder;
118 const SymTab::Indexer &indexer;
119 AltList & alternatives;
120 const TypeEnvironment &env;
121 Type *& targetType;
122 };
123
124 Cost sumCost( const AltList &in ) {
125 Cost total = Cost::zero;
126 for ( AltList::const_iterator i = in.begin(); i != in.end(); ++i ) {
127 total += i->cost;
128 }
129 return total;
130 }
131
132 void printAlts( const AltList &list, std::ostream &os, unsigned int indentAmt ) {
133 std::vector<std::string> sorted;
134 sorted.reserve(list.size());
135 for(const auto & c : list) {
136 std::stringstream ss;
137 c.print( ss, indentAmt );
138 sorted.push_back(ss.str());
139 }
140
141 std::sort(sorted.begin(), sorted.end());
142
143 for ( const auto & s : sorted ) {
144 os << s << std::endl;
145 }
146 }
147
148 namespace {
149 void makeExprList( const AltList &in, std::list< Expression* > &out ) {
150 for ( AltList::const_iterator i = in.begin(); i != in.end(); ++i ) {
151 out.push_back( i->expr->clone() );
152 }
153 }
154
155 struct PruneStruct {
156 bool isAmbiguous;
157 AltList::iterator candidate;
158 PruneStruct() {}
159 PruneStruct( AltList::iterator candidate ): isAmbiguous( false ), candidate( candidate ) {}
160 };
161
162 /// Prunes a list of alternatives down to those that have the minimum conversion cost for a given return type; skips ambiguous interpretations
163 template< typename InputIterator, typename OutputIterator >
164 void pruneAlternatives( InputIterator begin, InputIterator end, OutputIterator out ) {
165 // select the alternatives that have the minimum conversion cost for a particular set of result types
166 std::map< std::string, PruneStruct > selected;
167 for ( AltList::iterator candidate = begin; candidate != end; ++candidate ) {
168 PruneStruct current( candidate );
169 std::string mangleName;
170 {
171 Type * newType = candidate->expr->get_result()->clone();
172 candidate->env.apply( newType );
173 mangleName = SymTab::Mangler::mangle( newType );
174 delete newType;
175 }
176 std::map< std::string, PruneStruct >::iterator mapPlace = selected.find( mangleName );
177 if ( mapPlace != selected.end() ) {
178 if ( candidate->cost < mapPlace->second.candidate->cost ) {
179 PRINT(
180 std::cerr << "cost " << candidate->cost << " beats " << mapPlace->second.candidate->cost << std::endl;
181 )
182 selected[ mangleName ] = current;
183 } else if ( candidate->cost == mapPlace->second.candidate->cost ) {
184 // if one of the candidates contains a deleted identifier, can pick the other, since
185 // deleted expressions should not be ambiguous if there is another option that is at least as good
186 if ( findDeletedExpr( candidate->expr ) ) {
187 // do nothing
188 PRINT( std::cerr << "candidate is deleted" << std::endl; )
189 } else if ( findDeletedExpr( mapPlace->second.candidate->expr ) ) {
190 PRINT( std::cerr << "current is deleted" << std::endl; )
191 selected[ mangleName ] = current;
192 } else {
193 PRINT(
194 std::cerr << "marking ambiguous" << std::endl;
195 )
196 mapPlace->second.isAmbiguous = true;
197 }
198 } else {
199 PRINT(
200 std::cerr << "cost " << candidate->cost << " loses to " << mapPlace->second.candidate->cost << std::endl;
201 )
202 }
203 } else {
204 selected[ mangleName ] = current;
205 }
206 }
207
208 // accept the alternatives that were unambiguous
209 for ( std::map< std::string, PruneStruct >::iterator target = selected.begin(); target != selected.end(); ++target ) {
210 if ( ! target->second.isAmbiguous ) {
211 Alternative &alt = *target->second.candidate;
212 alt.env.applyFree( alt.expr->get_result() );
213 *out++ = alt;
214 }
215 }
216 }
217
218 void renameTypes( Expression *expr ) {
219 renameTyVars( expr->result );
220 }
221 } // namespace
222
223 void referenceToRvalueConversion( Expression *& expr, Cost & cost ) {
224 if ( dynamic_cast< ReferenceType * >( expr->get_result() ) ) {
225 // cast away reference from expr
226 expr = new CastExpr( expr, expr->get_result()->stripReferences()->clone() );
227 cost.incReference();
228 }
229 }
230
231 template< typename InputIterator, typename OutputIterator >
232 void AlternativeFinder::findSubExprs( InputIterator begin, InputIterator end, OutputIterator out ) {
233 while ( begin != end ) {
234 AlternativeFinder finder( indexer, env );
235 finder.findWithAdjustment( *begin );
236 // XXX either this
237 //Designators::fixDesignations( finder, (*begin++)->get_argName() );
238 // or XXX this
239 begin++;
240 PRINT(
241 std::cerr << "findSubExprs" << std::endl;
242 printAlts( finder.alternatives, std::cerr );
243 )
244 *out++ = finder;
245 }
246 }
247
248 AlternativeFinder::AlternativeFinder( const SymTab::Indexer &indexer, const TypeEnvironment &env )
249 : indexer( indexer ), env( env ) {
250 }
251
252 void AlternativeFinder::find( Expression *expr, ResolvMode mode ) {
253 PassVisitor<Finder> finder( *this );
254 expr->accept( finder );
255 if ( mode.failFast && alternatives.empty() ) {
256 PRINT(
257 std::cerr << "No reasonable alternatives for expression " << expr << std::endl;
258 )
259 SemanticError( expr, "No reasonable alternatives for expression " );
260 }
261 if ( mode.prune ) {
262 // trim candidates just to those where the assertions resolve
263 // - necessary pre-requisite to pruning
264 AltList candidates;
265 std::list<std::string> errors;
266 for ( unsigned i = 0; i < alternatives.size(); ++i ) {
267 resolveAssertions( alternatives[i], indexer, candidates, errors );
268 }
269 // fail early if none such
270 if ( mode.failFast && candidates.empty() ) {
271 std::ostringstream stream;
272 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
273 // << "Alternatives with failing assertions are:\n";
274 // printAlts( alternatives, stream, 1 );
275 for ( const auto& err : errors ) {
276 stream << err;
277 }
278 SemanticError( expr->location, stream.str() );
279 }
280 // reset alternatives
281 alternatives = std::move( candidates );
282 }
283 if ( mode.prune ) {
284 auto oldsize = alternatives.size();
285 PRINT(
286 std::cerr << "alternatives before prune:" << std::endl;
287 printAlts( alternatives, std::cerr );
288 )
289 AltList pruned;
290 pruneAlternatives( alternatives.begin(), alternatives.end(), back_inserter( pruned ) );
291 if ( mode.failFast && pruned.empty() ) {
292 std::ostringstream stream;
293 AltList winners;
294 findMinCost( alternatives.begin(), alternatives.end(), back_inserter( winners ) );
295 stream << "Cannot choose between " << winners.size() << " alternatives for expression\n";
296 expr->print( stream );
297 stream << " Alternatives are:\n";
298 printAlts( winners, stream, 1 );
299 SemanticError( expr->location, stream.str() );
300 }
301 alternatives = move(pruned);
302 PRINT(
303 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;
304 )
305 PRINT(
306 std::cerr << "there are " << alternatives.size() << " alternatives after elimination" << std::endl;
307 )
308 }
309 // adjust types after pruning so that types substituted by pruneAlternatives are correctly adjusted
310 if ( mode.adjust ) {
311 for ( Alternative& i : alternatives ) {
312 adjustExprType( i.expr->get_result(), i.env, indexer );
313 }
314 }
315
316 // Central location to handle gcc extension keyword, etc. for all expression types.
317 for ( Alternative &iter: alternatives ) {
318 iter.expr->set_extension( expr->get_extension() );
319 iter.expr->location = expr->location;
320 } // for
321 }
322
323 void AlternativeFinder::findWithAdjustment( Expression *expr ) {
324 find( expr, ResolvMode::withAdjustment() );
325 }
326
327 void AlternativeFinder::findWithoutPrune( Expression * expr ) {
328 find( expr, ResolvMode::withoutPrune() );
329 }
330
331 void AlternativeFinder::maybeFind( Expression * expr ) {
332 find( expr, ResolvMode::withoutFailFast() );
333 }
334
335 void AlternativeFinder::Finder::addAnonConversions( const Alternative & alt ) {
336 // adds anonymous member interpretations whenever an aggregate value type is seen.
337 // it's okay for the aggregate expression to have reference type -- cast it to the base type to treat the aggregate as the referenced value
338 std::unique_ptr<Expression> aggrExpr( alt.expr->clone() );
339 alt.env.apply( aggrExpr->result );
340 Type * aggrType = aggrExpr->result;
341 if ( dynamic_cast< ReferenceType * >( aggrType ) ) {
342 aggrType = aggrType->stripReferences();
343 aggrExpr.reset( new CastExpr( aggrExpr.release(), aggrType->clone() ) );
344 }
345
346 if ( StructInstType * structInst = dynamic_cast< StructInstType* >( aggrExpr->result ) ) {
347 addAggMembers( structInst, aggrExpr.get(), alt, alt.cost+Cost::safe, "" );
348 } else if ( UnionInstType * unionInst = dynamic_cast< UnionInstType* >( aggrExpr->result ) ) {
349 addAggMembers( unionInst, aggrExpr.get(), alt, alt.cost+Cost::safe, "" );
350 } // if
351 }
352
353 template< typename StructOrUnionType >
354 void AlternativeFinder::Finder::addAggMembers( StructOrUnionType * aggInst, Expression * expr, const Alternative& alt, const Cost &newCost, const std::string & name ) {
355 std::list< Declaration* > members;
356 aggInst->lookup( name, members );
357
358 for ( Declaration * decl : members ) {
359 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType* >( decl ) ) {
360 // addAnonAlternatives uses vector::push_back, which invalidates references to existing elements, so
361 // can't construct in place and use vector::back
362 Alternative newAlt{ alt, new MemberExpr{ dwt, expr->clone() }, newCost };
363 renameTypes( newAlt.expr );
364 addAnonConversions( newAlt ); // add anonymous member interpretations whenever an aggregate value type is seen as a member expression.
365 alternatives.push_back( std::move(newAlt) );
366 } else {
367 assert( false );
368 }
369 }
370 }
371
372 void AlternativeFinder::Finder::addTupleMembers( TupleType * tupleType, Expression * expr, const Alternative &alt, const Cost &newCost, Expression * member ) {
373 if ( ConstantExpr * constantExpr = dynamic_cast< ConstantExpr * >( member ) ) {
374 // get the value of the constant expression as an int, must be between 0 and the length of the tuple type to have meaning
375 auto val = constantExpr->intValue();
376 std::string tmp;
377 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {
378 alternatives.push_back( Alternative{
379 alt, new TupleIndexExpr( expr->clone(), val ), newCost } );
380 } // if
381 } // if
382 }
383
384 void AlternativeFinder::Finder::postvisit( ApplicationExpr * applicationExpr ) {
385 alternatives.push_back( Alternative{ applicationExpr->clone(), env } );
386 }
387
388 Cost computeConversionCost( Type * actualType, Type * formalType, bool actualIsLvalue,
389 const SymTab::Indexer &indexer, const TypeEnvironment & env ) {
390 PRINT(
391 std::cerr << std::endl << "converting ";
392 actualType->print( std::cerr, 8 );
393 std::cerr << std::endl << " to ";
394 formalType->print( std::cerr, 8 );
395 std::cerr << std::endl << "environment is: ";
396 env.print( std::cerr, 8 );
397 std::cerr << std::endl;
398 )
399 Cost convCost = conversionCost( actualType, formalType, actualIsLvalue, indexer, env );
400 PRINT(
401 std::cerr << std::endl << "cost is " << convCost << std::endl;
402 )
403 if ( convCost == Cost::infinity ) {
404 return convCost;
405 }
406 convCost.incPoly( polyCost( formalType, env, indexer ) + polyCost( actualType, env, indexer ) );
407 PRINT(
408 std::cerr << "cost with polycost is " << convCost << std::endl;
409 )
410 return convCost;
411 }
412
413 Cost computeExpressionConversionCost( Expression *& actualExpr, Type * formalType, const SymTab::Indexer &indexer, const TypeEnvironment & env ) {
414 Cost convCost = computeConversionCost(
415 actualExpr->result, formalType, actualExpr->get_lvalue(), indexer, env );
416
417 // if there is a non-zero conversion cost, ignoring poly cost, then the expression requires conversion.
418 // ignore poly cost for now, since this requires resolution of the cast to infer parameters and this
419 // does not currently work for the reason stated below.
420 Cost tmpCost = convCost;
421 tmpCost.incPoly( -tmpCost.get_polyCost() );
422 if ( tmpCost != Cost::zero ) {
423 Type *newType = formalType->clone();
424 env.apply( newType );
425 actualExpr = new CastExpr( actualExpr, newType );
426 // xxx - SHOULD be able to resolve this cast, but at the moment pointers are not castable to zero_t, but are implicitly convertible. This is clearly
427 // inconsistent, once this is fixed it should be possible to resolve the cast.
428 // xxx - this isn't working, it appears because type1 (the formal type) is seen as widenable, but it shouldn't be, because this makes the conversion from DT* to DT* since commontype(zero_t, DT*) is DT*, rather than just nothing.
429
430 // AlternativeFinder finder( indexer, env );
431 // finder.findWithAdjustment( actualExpr );
432 // assertf( finder.get_alternatives().size() > 0, "Somehow castable expression failed to find alternatives." );
433 // assertf( finder.get_alternatives().size() == 1, "Somehow got multiple alternatives for known cast expression." );
434 // Alternative & alt = finder.get_alternatives().front();
435 // delete actualExpr;
436 // actualExpr = alt.expr->clone();
437 }
438 return convCost;
439 }
440
441 Cost computeApplicationConversionCost( Alternative &alt, const SymTab::Indexer &indexer ) {
442 ApplicationExpr *appExpr = strict_dynamic_cast< ApplicationExpr* >( alt.expr );
443 PointerType *pointer = strict_dynamic_cast< PointerType* >( appExpr->function->result );
444 FunctionType *function = strict_dynamic_cast< FunctionType* >( pointer->base );
445
446 Cost convCost = Cost::zero;
447 std::list< DeclarationWithType* >& formals = function->parameters;
448 std::list< DeclarationWithType* >::iterator formal = formals.begin();
449 std::list< Expression* >& actuals = appExpr->args;
450
451 for ( Expression*& actualExpr : actuals ) {
452 Type * actualType = actualExpr->result;
453 PRINT(
454 std::cerr << "actual expression:" << std::endl;
455 actualExpr->print( std::cerr, 8 );
456 std::cerr << "--- results are" << std::endl;
457 actualType->print( std::cerr, 8 );
458 )
459 if ( formal == formals.end() ) {
460 if ( function->isVarArgs ) {
461 convCost.incUnsafe();
462 PRINT( std::cerr << "end of formals with varargs function: inc unsafe: " << convCost << std::endl; ; )
463 // convert reference-typed expressions to value-typed expressions
464 referenceToRvalueConversion( actualExpr, convCost );
465 continue;
466 } else {
467 return Cost::infinity;
468 }
469 }
470 if ( DefaultArgExpr * def = dynamic_cast< DefaultArgExpr * >( actualExpr ) ) {
471 // default arguments should be free - don't include conversion cost.
472 // Unwrap them here because they are not relevant to the rest of the system.
473 actualExpr = def->expr;
474 ++formal;
475 continue;
476 }
477 // mark conversion cost to formal and also specialization cost of formal type
478 Type * formalType = (*formal)->get_type();
479 convCost += computeExpressionConversionCost( actualExpr, formalType, indexer, alt.env );
480 convCost.decSpec( specCost( formalType ) );
481 ++formal; // can't be in for-loop update because of the continue
482 }
483 if ( formal != formals.end() ) {
484 return Cost::infinity;
485 }
486
487 // specialization cost of return types can't be accounted for directly, it disables
488 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:
489 //
490 // forall(otype OS) {
491 // void ?|?(OS&, int); // with newline
492 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization
493 // }
494
495 // mark type variable and specialization cost of forall clause
496 convCost.incVar( function->forall.size() );
497 for ( TypeDecl* td : function->forall ) {
498 convCost.decSpec( td->assertions.size() );
499 }
500
501 return convCost;
502 }
503
504 /// Adds type variables to the open variable set and marks their assertions
505 void makeUnifiableVars( Type *type, OpenVarSet &unifiableVars, AssertionSet &needAssertions ) {
506 for ( Type::ForallList::const_iterator tyvar = type->forall.begin(); tyvar != type->forall.end(); ++tyvar ) {
507 unifiableVars[ (*tyvar)->get_name() ] = TypeDecl::Data{ *tyvar };
508 for ( std::list< DeclarationWithType* >::iterator assert = (*tyvar)->assertions.begin(); assert != (*tyvar)->assertions.end(); ++assert ) {
509 needAssertions[ *assert ].isUsed = true;
510 }
511 }
512 }
513
514 /// Unique identifier for matching expression resolutions to their requesting expression (located in CandidateFinder.cpp)
515 extern UniqueId globalResnSlot;
516
517 template< typename OutputIterator >
518 void AlternativeFinder::Finder::inferParameters( Alternative &newAlt, OutputIterator out ) {
519 // Set need bindings for any unbound assertions
520 UniqueId crntResnSlot = 0; // matching ID for this expression's assertions
521 for ( auto& assn : newAlt.need ) {
522 // skip already-matched assertions
523 if ( assn.info.resnSlot != 0 ) continue;
524 // assign slot for expression if needed
525 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }
526 // fix slot to assertion
527 assn.info.resnSlot = crntResnSlot;
528 }
529 // pair slot to expression
530 if ( crntResnSlot != 0 ) { newAlt.expr->resnSlots.push_back( crntResnSlot ); }
531
532 // add to output list, assertion resolution is deferred
533 *out++ = newAlt;
534 }
535
536 /// Gets a default value from an initializer, nullptr if not present
537 ConstantExpr* getDefaultValue( Initializer* init ) {
538 if ( SingleInit* si = dynamic_cast<SingleInit*>( init ) ) {
539 if ( CastExpr* ce = dynamic_cast<CastExpr*>( si->value ) ) {
540 return dynamic_cast<ConstantExpr*>( ce->arg );
541 } else {
542 return dynamic_cast<ConstantExpr*>( si->value );
543 }
544 }
545 return nullptr;
546 }
547
548 /// State to iteratively build a match of parameter expressions to arguments
549 struct ArgPack {
550 std::size_t parent; ///< Index of parent pack
551 std::unique_ptr<Expression> expr; ///< The argument stored here
552 Cost cost; ///< The cost of this argument
553 TypeEnvironment env; ///< Environment for this pack
554 AssertionSet need; ///< Assertions outstanding for this pack
555 AssertionSet have; ///< Assertions found for this pack
556 OpenVarSet openVars; ///< Open variables for this pack
557 unsigned nextArg; ///< Index of next argument in arguments list
558 unsigned tupleStart; ///< Number of tuples that start at this index
559 unsigned nextExpl; ///< Index of next exploded element
560 unsigned explAlt; ///< Index of alternative for nextExpl > 0
561
562 ArgPack()
563 : parent(0), expr(), cost(Cost::zero), env(), need(), have(), openVars(), nextArg(0),
564 tupleStart(0), nextExpl(0), explAlt(0) {}
565
566 ArgPack(const TypeEnvironment& env, const AssertionSet& need, const AssertionSet& have,
567 const OpenVarSet& openVars)
568 : parent(0), expr(), cost(Cost::zero), env(env), need(need), have(have),
569 openVars(openVars), nextArg(0), tupleStart(0), nextExpl(0), explAlt(0) {}
570
571 ArgPack(std::size_t parent, Expression* expr, TypeEnvironment&& env, AssertionSet&& need,
572 AssertionSet&& have, OpenVarSet&& openVars, unsigned nextArg,
573 unsigned tupleStart = 0, Cost cost = Cost::zero, unsigned nextExpl = 0,
574 unsigned explAlt = 0 )
575 : parent(parent), expr(expr->clone()), cost(cost), env(move(env)), need(move(need)),
576 have(move(have)), openVars(move(openVars)), nextArg(nextArg), tupleStart(tupleStart),
577 nextExpl(nextExpl), explAlt(explAlt) {}
578
579 ArgPack(const ArgPack& o, TypeEnvironment&& env, AssertionSet&& need, AssertionSet&& have,
580 OpenVarSet&& openVars, unsigned nextArg, Cost added )
581 : parent(o.parent), expr(o.expr ? o.expr->clone() : nullptr), cost(o.cost + added),
582 env(move(env)), need(move(need)), have(move(have)), openVars(move(openVars)),
583 nextArg(nextArg), tupleStart(o.tupleStart), nextExpl(0), explAlt(0) {}
584
585 /// true iff this pack is in the middle of an exploded argument
586 bool hasExpl() const { return nextExpl > 0; }
587
588 /// Gets the list of exploded alternatives for this pack
589 const ExplodedActual& getExpl( const ExplodedArgs_old& args ) const {
590 return args[nextArg-1][explAlt];
591 }
592
593 /// Ends a tuple expression, consolidating the appropriate actuals
594 void endTuple( const std::vector<ArgPack>& packs ) {
595 // add all expressions in tuple to list, summing cost
596 std::list<Expression*> exprs;
597 const ArgPack* pack = this;
598 if ( expr ) { exprs.push_front( expr.release() ); }
599 while ( pack->tupleStart == 0 ) {
600 pack = &packs[pack->parent];
601 exprs.push_front( pack->expr->clone() );
602 cost += pack->cost;
603 }
604 // reset pack to appropriate tuple
605 expr.reset( new TupleExpr( exprs ) );
606 tupleStart = pack->tupleStart - 1;
607 parent = pack->parent;
608 }
609 };
610
611 /// Instantiates an argument to match a formal, returns false if no results left
612 bool instantiateArgument( Type* formalType, Initializer* initializer,
613 const ExplodedArgs_old& args, std::vector<ArgPack>& results, std::size_t& genStart,
614 const SymTab::Indexer& indexer, unsigned nTuples = 0 ) {
615 if ( TupleType * tupleType = dynamic_cast<TupleType*>( formalType ) ) {
616 // formalType is a TupleType - group actuals into a TupleExpr
617 ++nTuples;
618 for ( Type* type : *tupleType ) {
619 // xxx - dropping initializer changes behaviour from previous, but seems correct
620 // ^^^ need to handle the case where a tuple has a default argument
621 if ( ! instantiateArgument(
622 type, nullptr, args, results, genStart, indexer, nTuples ) )
623 return false;
624 nTuples = 0;
625 }
626 // re-consititute tuples for final generation
627 for ( auto i = genStart; i < results.size(); ++i ) {
628 results[i].endTuple( results );
629 }
630 return true;
631 } else if ( TypeInstType * ttype = Tuples::isTtype( formalType ) ) {
632 // formalType is a ttype, consumes all remaining arguments
633 // xxx - mixing default arguments with variadic??
634
635 // completed tuples; will be spliced to end of results to finish
636 std::vector<ArgPack> finalResults{};
637
638 // iterate until all results completed
639 std::size_t genEnd;
640 ++nTuples;
641 do {
642 genEnd = results.size();
643
644 // add another argument to results
645 for ( std::size_t i = genStart; i < genEnd; ++i ) {
646 auto nextArg = results[i].nextArg;
647
648 // use next element of exploded tuple if present
649 if ( results[i].hasExpl() ) {
650 const ExplodedActual& expl = results[i].getExpl( args );
651
652 unsigned nextExpl = results[i].nextExpl + 1;
653 if ( nextExpl == expl.exprs.size() ) {
654 nextExpl = 0;
655 }
656
657 results.emplace_back(
658 i, expl.exprs[results[i].nextExpl].get(), copy(results[i].env),
659 copy(results[i].need), copy(results[i].have),
660 copy(results[i].openVars), nextArg, nTuples, Cost::zero, nextExpl,
661 results[i].explAlt );
662
663 continue;
664 }
665
666 // finish result when out of arguments
667 if ( nextArg >= args.size() ) {
668 ArgPack newResult{
669 results[i].env, results[i].need, results[i].have,
670 results[i].openVars };
671 newResult.nextArg = nextArg;
672 Type* argType;
673
674 if ( nTuples > 0 || ! results[i].expr ) {
675 // first iteration or no expression to clone,
676 // push empty tuple expression
677 newResult.parent = i;
678 std::list<Expression*> emptyList;
679 newResult.expr.reset( new TupleExpr( emptyList ) );
680 argType = newResult.expr->get_result();
681 } else {
682 // clone result to collect tuple
683 newResult.parent = results[i].parent;
684 newResult.cost = results[i].cost;
685 newResult.tupleStart = results[i].tupleStart;
686 newResult.expr.reset( results[i].expr->clone() );
687 argType = newResult.expr->get_result();
688
689 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {
690 // the case where a ttype value is passed directly is special,
691 // e.g. for argument forwarding purposes
692 // xxx - what if passing multiple arguments, last of which is
693 // ttype?
694 // xxx - what would happen if unify was changed so that unifying
695 // tuple
696 // types flattened both before unifying lists? then pass in
697 // TupleType (ttype) below.
698 --newResult.tupleStart;
699 } else {
700 // collapse leftover arguments into tuple
701 newResult.endTuple( results );
702 argType = newResult.expr->get_result();
703 }
704 }
705
706 // check unification for ttype before adding to final
707 if ( unify( ttype, argType, newResult.env, newResult.need, newResult.have,
708 newResult.openVars, indexer ) ) {
709 finalResults.push_back( move(newResult) );
710 }
711
712 continue;
713 }
714
715 // add each possible next argument
716 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
717 const ExplodedActual& expl = args[nextArg][j];
718
719 // fresh copies of parent parameters for this iteration
720 TypeEnvironment env = results[i].env;
721 OpenVarSet openVars = results[i].openVars;
722
723 env.addActual( expl.env, openVars );
724
725 // skip empty tuple arguments by (near-)cloning parent into next gen
726 if ( expl.exprs.empty() ) {
727 results.emplace_back(
728 results[i], move(env), copy(results[i].need),
729 copy(results[i].have), move(openVars), nextArg + 1, expl.cost );
730
731 continue;
732 }
733
734 // add new result
735 results.emplace_back(
736 i, expl.exprs.front().get(), move(env), copy(results[i].need),
737 copy(results[i].have), move(openVars), nextArg + 1,
738 nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
739 }
740 }
741
742 // reset for next round
743 genStart = genEnd;
744 nTuples = 0;
745 } while ( genEnd != results.size() );
746
747 // splice final results onto results
748 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {
749 results.push_back( move(finalResults[i]) );
750 }
751 return ! finalResults.empty();
752 }
753
754 // iterate each current subresult
755 std::size_t genEnd = results.size();
756 for ( std::size_t i = genStart; i < genEnd; ++i ) {
757 auto nextArg = results[i].nextArg;
758
759 // use remainder of exploded tuple if present
760 if ( results[i].hasExpl() ) {
761 const ExplodedActual& expl = results[i].getExpl( args );
762 Expression* expr = expl.exprs[results[i].nextExpl].get();
763
764 TypeEnvironment env = results[i].env;
765 AssertionSet need = results[i].need, have = results[i].have;
766 OpenVarSet openVars = results[i].openVars;
767
768 Type* actualType = expr->get_result();
769
770 PRINT(
771 std::cerr << "formal type is ";
772 formalType->print( std::cerr );
773 std::cerr << std::endl << "actual type is ";
774 actualType->print( std::cerr );
775 std::cerr << std::endl;
776 )
777
778 if ( unify( formalType, actualType, env, need, have, openVars, indexer ) ) {
779 unsigned nextExpl = results[i].nextExpl + 1;
780 if ( nextExpl == expl.exprs.size() ) {
781 nextExpl = 0;
782 }
783
784 results.emplace_back(
785 i, expr, move(env), move(need), move(have), move(openVars), nextArg,
786 nTuples, Cost::zero, nextExpl, results[i].explAlt );
787 }
788
789 continue;
790 }
791
792 // use default initializers if out of arguments
793 if ( nextArg >= args.size() ) {
794 if ( ConstantExpr* cnstExpr = getDefaultValue( initializer ) ) {
795 if ( Constant* cnst = dynamic_cast<Constant*>( cnstExpr->get_constant() ) ) {
796 TypeEnvironment env = results[i].env;
797 AssertionSet need = results[i].need, have = results[i].have;
798 OpenVarSet openVars = results[i].openVars;
799
800 if ( unify( formalType, cnst->get_type(), env, need, have, openVars,
801 indexer ) ) {
802 results.emplace_back(
803 i, new DefaultArgExpr( cnstExpr ), move(env), move(need), move(have),
804 move(openVars), nextArg, nTuples );
805 }
806 }
807 }
808
809 continue;
810 }
811
812 // Check each possible next argument
813 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
814 const ExplodedActual& expl = args[nextArg][j];
815
816 // fresh copies of parent parameters for this iteration
817 TypeEnvironment env = results[i].env;
818 AssertionSet need = results[i].need, have = results[i].have;
819 OpenVarSet openVars = results[i].openVars;
820
821 env.addActual( expl.env, openVars );
822
823 // skip empty tuple arguments by (near-)cloning parent into next gen
824 if ( expl.exprs.empty() ) {
825 results.emplace_back(
826 results[i], move(env), move(need), move(have), move(openVars),
827 nextArg + 1, expl.cost );
828
829 continue;
830 }
831
832 // consider only first exploded actual
833 Expression* expr = expl.exprs.front().get();
834 Type* actualType = expr->result->clone();
835
836 PRINT(
837 std::cerr << "formal type is ";
838 formalType->print( std::cerr );
839 std::cerr << std::endl << "actual type is ";
840 actualType->print( std::cerr );
841 std::cerr << std::endl;
842 )
843
844 // attempt to unify types
845 if ( unify( formalType, actualType, env, need, have, openVars, indexer ) ) {
846 // add new result
847 results.emplace_back(
848 i, expr, move(env), move(need), move(have), move(openVars), nextArg + 1,
849 nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
850 }
851 }
852 }
853
854 // reset for next parameter
855 genStart = genEnd;
856
857 return genEnd != results.size();
858 }
859
860 template<typename OutputIterator>
861 void AlternativeFinder::Finder::validateFunctionAlternative( const Alternative &func, ArgPack& result,
862 const std::vector<ArgPack>& results, OutputIterator out ) {
863 ApplicationExpr *appExpr = new ApplicationExpr( func.expr->clone() );
864 // sum cost and accumulate actuals
865 std::list<Expression*>& args = appExpr->args;
866 Cost cost = func.cost;
867 const ArgPack* pack = &result;
868 while ( pack->expr ) {
869 args.push_front( pack->expr->clone() );
870 cost += pack->cost;
871 pack = &results[pack->parent];
872 }
873 // build and validate new alternative
874 Alternative newAlt{ appExpr, result.env, result.openVars, result.need, cost };
875 PRINT(
876 std::cerr << "instantiate function success: " << appExpr << std::endl;
877 std::cerr << "need assertions:" << std::endl;
878 printAssertionSet( result.need, std::cerr, 8 );
879 )
880 inferParameters( newAlt, out );
881 }
882
883 template<typename OutputIterator>
884 void AlternativeFinder::Finder::makeFunctionAlternatives( const Alternative &func,
885 FunctionType *funcType, const ExplodedArgs_old &args, OutputIterator out ) {
886 OpenVarSet funcOpenVars;
887 AssertionSet funcNeed, funcHave;
888 TypeEnvironment funcEnv( func.env );
889 makeUnifiableVars( funcType, funcOpenVars, funcNeed );
890 // add all type variables as open variables now so that those not used in the parameter
891 // list are still considered open.
892 funcEnv.add( funcType->forall );
893
894 if ( targetType && ! targetType->isVoid() && ! funcType->returnVals.empty() ) {
895 // attempt to narrow based on expected target type
896 Type * returnType = funcType->returnVals.front()->get_type();
897 if ( ! unify( returnType, targetType, funcEnv, funcNeed, funcHave, funcOpenVars,
898 indexer ) ) {
899 // unification failed, don't pursue this function alternative
900 return;
901 }
902 }
903
904 // iteratively build matches, one parameter at a time
905 std::vector<ArgPack> results;
906 results.push_back( ArgPack{ funcEnv, funcNeed, funcHave, funcOpenVars } );
907 std::size_t genStart = 0;
908
909 for ( DeclarationWithType* formal : funcType->parameters ) {
910 ObjectDecl* obj = strict_dynamic_cast< ObjectDecl* >( formal );
911 if ( ! instantiateArgument(
912 obj->type, obj->init, args, results, genStart, indexer ) )
913 return;
914 }
915
916 if ( funcType->get_isVarArgs() ) {
917 // append any unused arguments to vararg pack
918 std::size_t genEnd;
919 do {
920 genEnd = results.size();
921
922 // iterate results
923 for ( std::size_t i = genStart; i < genEnd; ++i ) {
924 auto nextArg = results[i].nextArg;
925
926 // use remainder of exploded tuple if present
927 if ( results[i].hasExpl() ) {
928 const ExplodedActual& expl = results[i].getExpl( args );
929
930 unsigned nextExpl = results[i].nextExpl + 1;
931 if ( nextExpl == expl.exprs.size() ) {
932 nextExpl = 0;
933 }
934
935 results.emplace_back(
936 i, expl.exprs[results[i].nextExpl].get(), copy(results[i].env),
937 copy(results[i].need), copy(results[i].have),
938 copy(results[i].openVars), nextArg, 0, Cost::zero, nextExpl,
939 results[i].explAlt );
940
941 continue;
942 }
943
944 // finish result when out of arguments
945 if ( nextArg >= args.size() ) {
946 validateFunctionAlternative( func, results[i], results, out );
947
948 continue;
949 }
950
951 // add each possible next argument
952 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
953 const ExplodedActual& expl = args[nextArg][j];
954
955 // fresh copies of parent parameters for this iteration
956 TypeEnvironment env = results[i].env;
957 OpenVarSet openVars = results[i].openVars;
958
959 env.addActual( expl.env, openVars );
960
961 // skip empty tuple arguments by (near-)cloning parent into next gen
962 if ( expl.exprs.empty() ) {
963 results.emplace_back(
964 results[i], move(env), copy(results[i].need),
965 copy(results[i].have), move(openVars), nextArg + 1, expl.cost );
966
967 continue;
968 }
969
970 // add new result
971 results.emplace_back(
972 i, expl.exprs.front().get(), move(env), copy(results[i].need),
973 copy(results[i].have), move(openVars), nextArg + 1, 0,
974 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
975 }
976 }
977
978 genStart = genEnd;
979 } while ( genEnd != results.size() );
980 } else {
981 // filter out results that don't use all the arguments
982 for ( std::size_t i = genStart; i < results.size(); ++i ) {
983 ArgPack& result = results[i];
984 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {
985 validateFunctionAlternative( func, result, results, out );
986 }
987 }
988 }
989 }
990
991 void AlternativeFinder::Finder::postvisit( UntypedExpr *untypedExpr ) {
992 AlternativeFinder funcFinder( indexer, env );
993 funcFinder.findWithAdjustment( untypedExpr->function );
994 // if there are no function alternatives, then proceeding is a waste of time.
995 // xxx - findWithAdjustment throws, so this check and others like it shouldn't be necessary.
996 if ( funcFinder.alternatives.empty() ) return;
997
998 std::vector< AlternativeFinder > argAlternatives;
999 altFinder.findSubExprs( untypedExpr->begin_args(), untypedExpr->end_args(),
1000 back_inserter( argAlternatives ) );
1001
1002 // take care of possible tuple assignments
1003 // if not tuple assignment, assignment is taken care of as a normal function call
1004 Tuples::handleTupleAssignment( altFinder, untypedExpr, argAlternatives );
1005
1006 // find function operators
1007 static NameExpr *opExpr = new NameExpr( "?()" );
1008 AlternativeFinder funcOpFinder( indexer, env );
1009 // it's ok if there aren't any defined function ops
1010 funcOpFinder.maybeFind( opExpr );
1011 PRINT(
1012 std::cerr << "known function ops:" << std::endl;
1013 printAlts( funcOpFinder.alternatives, std::cerr, 1 );
1014 )
1015
1016 // pre-explode arguments
1017 ExplodedArgs_old argExpansions;
1018 argExpansions.reserve( argAlternatives.size() );
1019
1020 for ( const AlternativeFinder& arg : argAlternatives ) {
1021 argExpansions.emplace_back();
1022 auto& argE = argExpansions.back();
1023 // argE.reserve( arg.alternatives.size() );
1024
1025 for ( const Alternative& actual : arg ) {
1026 argE.emplace_back( actual, indexer );
1027 }
1028 }
1029
1030 AltList candidates;
1031 SemanticErrorException errors;
1032 for ( AltList::iterator func = funcFinder.alternatives.begin(); func != funcFinder.alternatives.end(); ++func ) {
1033 try {
1034 PRINT(
1035 std::cerr << "working on alternative: " << std::endl;
1036 func->print( std::cerr, 8 );
1037 )
1038 // check if the type is pointer to function
1039 if ( PointerType *pointer = dynamic_cast< PointerType* >( func->expr->result->stripReferences() ) ) {
1040 if ( FunctionType *function = dynamic_cast< FunctionType* >( pointer->base ) ) {
1041 Alternative newFunc( *func );
1042 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
1043 makeFunctionAlternatives( newFunc, function, argExpansions,
1044 std::back_inserter( candidates ) );
1045 }
1046 } else if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( func->expr->result->stripReferences() ) ) { // handle ftype (e.g. *? on function pointer)
1047 if ( const EqvClass *eqvClass = func->env.lookup( typeInst->name ) ) {
1048 if ( FunctionType *function = dynamic_cast< FunctionType* >( eqvClass->type ) ) {
1049 Alternative newFunc( *func );
1050 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
1051 makeFunctionAlternatives( newFunc, function, argExpansions,
1052 std::back_inserter( candidates ) );
1053 } // if
1054 } // if
1055 }
1056 } catch ( SemanticErrorException &e ) {
1057 errors.append( e );
1058 }
1059 } // for
1060
1061 // try each function operator ?() with each function alternative
1062 if ( ! funcOpFinder.alternatives.empty() ) {
1063 // add exploded function alternatives to front of argument list
1064 std::vector<ExplodedActual> funcE;
1065 funcE.reserve( funcFinder.alternatives.size() );
1066 for ( const Alternative& actual : funcFinder ) {
1067 funcE.emplace_back( actual, indexer );
1068 }
1069 argExpansions.insert( argExpansions.begin(), move(funcE) );
1070
1071 for ( AltList::iterator funcOp = funcOpFinder.alternatives.begin();
1072 funcOp != funcOpFinder.alternatives.end(); ++funcOp ) {
1073 try {
1074 // check if type is a pointer to function
1075 if ( PointerType* pointer = dynamic_cast<PointerType*>(
1076 funcOp->expr->result->stripReferences() ) ) {
1077 if ( FunctionType* function =
1078 dynamic_cast<FunctionType*>( pointer->base ) ) {
1079 Alternative newFunc( *funcOp );
1080 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
1081 makeFunctionAlternatives( newFunc, function, argExpansions,
1082 std::back_inserter( candidates ) );
1083 }
1084 }
1085 } catch ( SemanticErrorException &e ) {
1086 errors.append( e );
1087 }
1088 }
1089 }
1090
1091 // Implement SFINAE; resolution errors are only errors if there aren't any non-erroneous resolutions
1092 if ( candidates.empty() && ! errors.isEmpty() ) { throw errors; }
1093
1094 // compute conversionsion costs
1095 for ( Alternative& withFunc : candidates ) {
1096 Cost cvtCost = computeApplicationConversionCost( withFunc, indexer );
1097
1098 PRINT(
1099 ApplicationExpr *appExpr = strict_dynamic_cast< ApplicationExpr* >( withFunc.expr );
1100 PointerType *pointer = strict_dynamic_cast< PointerType* >( appExpr->function->result );
1101 FunctionType *function = strict_dynamic_cast< FunctionType* >( pointer->base );
1102 std::cerr << "Case +++++++++++++ " << appExpr->function << std::endl;
1103 std::cerr << "formals are:" << std::endl;
1104 printAll( function->parameters, std::cerr, 8 );
1105 std::cerr << "actuals are:" << std::endl;
1106 printAll( appExpr->args, std::cerr, 8 );
1107 std::cerr << "bindings are:" << std::endl;
1108 withFunc.env.print( std::cerr, 8 );
1109 std::cerr << "cost is: " << withFunc.cost << std::endl;
1110 std::cerr << "cost of conversion is:" << cvtCost << std::endl;
1111 )
1112 if ( cvtCost != Cost::infinity ) {
1113 withFunc.cvtCost = cvtCost;
1114 alternatives.push_back( withFunc );
1115 } // if
1116 } // for
1117
1118 candidates = move(alternatives);
1119
1120 // use a new list so that alternatives are not examined by addAnonConversions twice.
1121 AltList winners;
1122 findMinCost( candidates.begin(), candidates.end(), std::back_inserter( winners ) );
1123
1124 // function may return struct or union value, in which case we need to add alternatives
1125 // for implicit conversions to each of the anonymous members, must happen after findMinCost
1126 // since anon conversions are never the cheapest expression
1127 for ( const Alternative & alt : winners ) {
1128 addAnonConversions( alt );
1129 }
1130 spliceBegin( alternatives, winners );
1131
1132 if ( alternatives.empty() && targetType && ! targetType->isVoid() ) {
1133 // xxx - this is a temporary hack. If resolution is unsuccessful with a target type, try again without a
1134 // target type, since it will sometimes succeed when it wouldn't easily with target type binding. For example,
1135 // forall( otype T ) lvalue T ?[?]( T *, ptrdiff_t );
1136 // const char * x = "hello world";
1137 // unsigned char ch = x[0];
1138 // Fails with simple return type binding. First, T is bound to unsigned char, then (x: const char *) is unified
1139 // with unsigned char *, which fails because pointer base types must be unified exactly. The new resolver should
1140 // fix this issue in a more robust way.
1141 targetType = nullptr;
1142 postvisit( untypedExpr );
1143 }
1144 }
1145
1146 bool isLvalue( Expression *expr ) {
1147 // xxx - recurse into tuples?
1148 return expr->result && ( expr->get_lvalue() || dynamic_cast< ReferenceType * >( expr->result ) );
1149 }
1150
1151 void AlternativeFinder::Finder::postvisit( AddressExpr *addressExpr ) {
1152 AlternativeFinder finder( indexer, env );
1153 finder.find( addressExpr->get_arg() );
1154 for ( Alternative& alt : finder.alternatives ) {
1155 if ( isLvalue( alt.expr ) ) {
1156 alternatives.push_back(
1157 Alternative{ alt, new AddressExpr( alt.expr->clone() ), alt.cost } );
1158 } // if
1159 } // for
1160 }
1161
1162 void AlternativeFinder::Finder::postvisit( LabelAddressExpr * expr ) {
1163 alternatives.push_back( Alternative{ expr->clone(), env } );
1164 }
1165
1166 Expression * restructureCast( Expression * argExpr, Type * toType, bool isGenerated ) {
1167 if ( argExpr->get_result()->size() > 1 && ! toType->isVoid() && ! dynamic_cast<ReferenceType *>( toType ) ) {
1168 // Argument expression is a tuple and the target type is not void and not a reference type.
1169 // Cast each member of the tuple to its corresponding target type, producing the tuple of those
1170 // cast expressions. If there are more components of the tuple than components in the target type,
1171 // then excess components do not come out in the result expression (but UniqueExprs ensure that
1172 // side effects will still be done).
1173 if ( Tuples::maybeImpureIgnoreUnique( argExpr ) ) {
1174 // expressions which may contain side effects require a single unique instance of the expression.
1175 argExpr = new UniqueExpr( argExpr );
1176 }
1177 std::list< Expression * > componentExprs;
1178 for ( unsigned int i = 0; i < toType->size(); i++ ) {
1179 // cast each component
1180 TupleIndexExpr * idx = new TupleIndexExpr( argExpr->clone(), i );
1181 componentExprs.push_back( restructureCast( idx, toType->getComponent( i ), isGenerated ) );
1182 }
1183 delete argExpr;
1184 assert( componentExprs.size() > 0 );
1185 // produce the tuple of casts
1186 return new TupleExpr( componentExprs );
1187 } else {
1188 // handle normally
1189 CastExpr * ret = new CastExpr( argExpr, toType->clone() );
1190 ret->isGenerated = isGenerated;
1191 return ret;
1192 }
1193 }
1194
1195 void AlternativeFinder::Finder::postvisit( CastExpr *castExpr ) {
1196 Type *& toType = castExpr->get_result();
1197 assert( toType );
1198 toType = resolveTypeof( toType, indexer );
1199 assert(!dynamic_cast<TypeofType *>(toType));
1200 SymTab::validateType( toType, &indexer );
1201 adjustExprType( toType, env, indexer );
1202
1203 AlternativeFinder finder( indexer, env );
1204 finder.targetType = toType;
1205 finder.findWithAdjustment( castExpr->arg );
1206
1207 AltList candidates;
1208 for ( Alternative & alt : finder.alternatives ) {
1209 AssertionSet needAssertions( alt.need.begin(), alt.need.end() );
1210 AssertionSet haveAssertions;
1211 OpenVarSet openVars{ alt.openVars };
1212
1213 alt.env.extractOpenVars( openVars );
1214
1215 // It's possible that a cast can throw away some values in a multiply-valued expression. (An example is a
1216 // cast-to-void, which casts from one value to zero.) Figure out the prefix of the subexpression results
1217 // that are cast directly. The candidate is invalid if it has fewer results than there are types to cast
1218 // to.
1219 int discardedValues = alt.expr->result->size() - castExpr->result->size();
1220 if ( discardedValues < 0 ) continue;
1221 // xxx - may need to go into tuple types and extract relevant types and use unifyList. Note that currently, this does not
1222 // allow casting a tuple to an atomic type (e.g. (int)([1, 2, 3]))
1223 // unification run for side-effects
1224 unify( castExpr->result, alt.expr->result, alt.env, needAssertions,
1225 haveAssertions, openVars, indexer );
1226 Cost thisCost =
1227 castExpr->isGenerated
1228 ? conversionCost( alt.expr->result, castExpr->result, alt.expr->get_lvalue(), indexer, alt.env )
1229 : castCost( alt.expr->result, castExpr->result, alt.expr->get_lvalue(), indexer, alt.env );
1230 PRINT(
1231 std::cerr << "working on cast with result: " << castExpr->result << std::endl;
1232 std::cerr << "and expr type: " << alt.expr->result << std::endl;
1233 std::cerr << "env: " << alt.env << std::endl;
1234 )
1235 if ( thisCost != Cost::infinity ) {
1236 PRINT(
1237 std::cerr << "has finite cost." << std::endl;
1238 )
1239 // count one safe conversion for each value that is thrown away
1240 thisCost.incSafe( discardedValues );
1241 Alternative newAlt{
1242 restructureCast( alt.expr->clone(), toType, castExpr->isGenerated ),
1243 alt.env, openVars, needAssertions, alt.cost, alt.cost + thisCost };
1244 inferParameters( newAlt, back_inserter( candidates ) );
1245 } // if
1246 } // for
1247
1248 // findMinCost selects the alternatives with the lowest "cost" members, but has the side effect of copying the
1249 // cvtCost member to the cost member (since the old cost is now irrelevant). Thus, calling findMinCost twice
1250 // selects first based on argument cost, then on conversion cost.
1251 AltList minArgCost;
1252 findMinCost( candidates.begin(), candidates.end(), std::back_inserter( minArgCost ) );
1253 findMinCost( minArgCost.begin(), minArgCost.end(), std::back_inserter( alternatives ) );
1254 }
1255
1256 void AlternativeFinder::Finder::postvisit( VirtualCastExpr * castExpr ) {
1257 assertf( castExpr->get_result(), "Implicit virtual cast targets not yet supported." );
1258 AlternativeFinder finder( indexer, env );
1259 // don't prune here, since it's guaranteed all alternatives will have the same type
1260 finder.findWithoutPrune( castExpr->get_arg() );
1261 for ( Alternative & alt : finder.alternatives ) {
1262 alternatives.push_back( Alternative{
1263 alt, new VirtualCastExpr{ alt.expr->clone(), castExpr->get_result()->clone() },
1264 alt.cost } );
1265 }
1266 }
1267
1268 void AlternativeFinder::Finder::postvisit( KeywordCastExpr * castExpr ) {
1269 assertf( castExpr->get_result(), "Cast target should have been set in Validate." );
1270 auto ref = dynamic_cast<ReferenceType*>(castExpr->get_result());
1271 assert(ref);
1272 auto inst = dynamic_cast<StructInstType*>(ref->base);
1273 assert(inst);
1274 auto target = inst->baseStruct;
1275
1276 AlternativeFinder finder( indexer, env );
1277
1278 auto pick_alternatives = [target, this](AltList & found, bool expect_ref) {
1279 for(auto & alt : found) {
1280 Type * expr = alt.expr->get_result();
1281 if(expect_ref) {
1282 auto res = dynamic_cast<ReferenceType*>(expr);
1283 if(!res) { continue; }
1284 expr = res->base;
1285 }
1286
1287 if(auto insttype = dynamic_cast<TypeInstType*>(expr)) {
1288 auto td = alt.env.lookup(insttype->name);
1289 if(!td) { continue; }
1290 expr = td->type;
1291 }
1292
1293 if(auto base = dynamic_cast<StructInstType*>(expr)) {
1294 if(base->baseStruct == target) {
1295 alternatives.push_back(
1296 std::move(alt)
1297 );
1298 }
1299 }
1300 }
1301 };
1302
1303 try {
1304 // Attempt 1 : turn (thread&)X into ($thread&)X.__thrd
1305 // Clone is purely for memory management
1306 std::unique_ptr<Expression> tech1 { new UntypedMemberExpr(new NameExpr(castExpr->concrete_target.field), castExpr->arg->clone()) };
1307
1308 // don't prune here, since it's guaranteed all alternatives will have the same type
1309 finder.findWithoutPrune( tech1.get() );
1310 pick_alternatives(finder.alternatives, false);
1311
1312 return;
1313 } catch(SemanticErrorException & ) {}
1314
1315 // Fallback : turn (thread&)X into ($thread&)get_thread(X)
1316 std::unique_ptr<Expression> fallback { UntypedExpr::createDeref( new UntypedExpr(new NameExpr(castExpr->concrete_target.getter), { castExpr->arg->clone() })) };
1317 // don't prune here, since it's guaranteed all alternatives will have the same type
1318 finder.findWithoutPrune( fallback.get() );
1319
1320 pick_alternatives(finder.alternatives, true);
1321
1322 // Whatever happens here, we have no more fallbacks
1323 }
1324
1325 namespace {
1326 /// Gets name from untyped member expression (member must be NameExpr)
1327 const std::string& get_member_name( UntypedMemberExpr *memberExpr ) {
1328 if ( dynamic_cast< ConstantExpr * >( memberExpr->get_member() ) ) {
1329 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );
1330 } // if
1331 NameExpr * nameExpr = dynamic_cast< NameExpr * >( memberExpr->get_member() );
1332 assert( nameExpr );
1333 return nameExpr->get_name();
1334 }
1335 }
1336
1337 void AlternativeFinder::Finder::postvisit( UntypedMemberExpr *memberExpr ) {
1338 AlternativeFinder funcFinder( indexer, env );
1339 funcFinder.findWithAdjustment( memberExpr->get_aggregate() );
1340 for ( AltList::const_iterator agg = funcFinder.alternatives.begin(); agg != funcFinder.alternatives.end(); ++agg ) {
1341 // it's okay for the aggregate expression to have reference type -- cast it to the base type to treat the aggregate as the referenced value
1342 Cost cost = agg->cost;
1343 Expression * aggrExpr = agg->expr->clone();
1344 referenceToRvalueConversion( aggrExpr, cost );
1345 std::unique_ptr<Expression> guard( aggrExpr );
1346
1347 // find member of the given type
1348 if ( StructInstType *structInst = dynamic_cast< StructInstType* >( aggrExpr->get_result() ) ) {
1349 addAggMembers( structInst, aggrExpr, *agg, cost, get_member_name(memberExpr) );
1350 } else if ( UnionInstType *unionInst = dynamic_cast< UnionInstType* >( aggrExpr->get_result() ) ) {
1351 addAggMembers( unionInst, aggrExpr, *agg, cost, get_member_name(memberExpr) );
1352 } else if ( TupleType * tupleType = dynamic_cast< TupleType * >( aggrExpr->get_result() ) ) {
1353 addTupleMembers( tupleType, aggrExpr, *agg, cost, memberExpr->get_member() );
1354 } // if
1355 } // for
1356 }
1357
1358 void AlternativeFinder::Finder::postvisit( MemberExpr *memberExpr ) {
1359 alternatives.push_back( Alternative{ memberExpr->clone(), env } );
1360 }
1361
1362 void AlternativeFinder::Finder::postvisit( NameExpr *nameExpr ) {
1363 std::list< SymTab::Indexer::IdData > declList;
1364 indexer.lookupId( nameExpr->name, declList );
1365 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )
1366 for ( auto & data : declList ) {
1367 Cost cost = Cost::zero;
1368 Expression * newExpr = data.combine( cost );
1369
1370 // addAnonAlternatives uses vector::push_back, which invalidates references to existing elements, so
1371 // can't construct in place and use vector::back
1372 Alternative newAlt{ newExpr, env, OpenVarSet{}, AssertionList{}, Cost::zero, cost };
1373 PRINT(
1374 std::cerr << "decl is ";
1375 data.id->print( std::cerr );
1376 std::cerr << std::endl;
1377 std::cerr << "newExpr is ";
1378 newExpr->print( std::cerr );
1379 std::cerr << std::endl;
1380 )
1381 renameTypes( newAlt.expr );
1382 addAnonConversions( newAlt ); // add anonymous member interpretations whenever an aggregate value type is seen as a name expression.
1383 alternatives.push_back( std::move(newAlt) );
1384 } // for
1385 }
1386
1387 void AlternativeFinder::Finder::postvisit( VariableExpr *variableExpr ) {
1388 // not sufficient to clone here, because variable's type may have changed
1389 // since the VariableExpr was originally created.
1390 alternatives.push_back( Alternative{ new VariableExpr{ variableExpr->var }, env } );
1391 }
1392
1393 void AlternativeFinder::Finder::postvisit( ConstantExpr *constantExpr ) {
1394 alternatives.push_back( Alternative{ constantExpr->clone(), env } );
1395 }
1396
1397 void AlternativeFinder::Finder::postvisit( SizeofExpr *sizeofExpr ) {
1398 if ( sizeofExpr->get_isType() ) {
1399 Type * newType = sizeofExpr->get_type()->clone();
1400 alternatives.push_back( Alternative{
1401 new SizeofExpr{ resolveTypeof( newType, indexer ) }, env } );
1402 } else {
1403 // find all alternatives for the argument to sizeof
1404 AlternativeFinder finder( indexer, env );
1405 finder.find( sizeofExpr->get_expr() );
1406 // find the lowest cost alternative among the alternatives, otherwise ambiguous
1407 AltList winners;
1408 findMinCost( finder.alternatives.begin(), finder.alternatives.end(), back_inserter( winners ) );
1409 if ( winners.size() != 1 ) {
1410 SemanticError( sizeofExpr->get_expr(), "Ambiguous expression in sizeof operand: " );
1411 } // if
1412 // return the lowest cost alternative for the argument
1413 Alternative &choice = winners.front();
1414 referenceToRvalueConversion( choice.expr, choice.cost );
1415 alternatives.push_back( Alternative{
1416 choice, new SizeofExpr( choice.expr->clone() ), Cost::zero } );
1417 } // if
1418 }
1419
1420 void AlternativeFinder::Finder::postvisit( AlignofExpr *alignofExpr ) {
1421 if ( alignofExpr->get_isType() ) {
1422 Type * newType = alignofExpr->get_type()->clone();
1423 alternatives.push_back( Alternative{
1424 new AlignofExpr{ resolveTypeof( newType, indexer ) }, env } );
1425 } else {
1426 // find all alternatives for the argument to sizeof
1427 AlternativeFinder finder( indexer, env );
1428 finder.find( alignofExpr->get_expr() );
1429 // find the lowest cost alternative among the alternatives, otherwise ambiguous
1430 AltList winners;
1431 findMinCost( finder.alternatives.begin(), finder.alternatives.end(), back_inserter( winners ) );
1432 if ( winners.size() != 1 ) {
1433 SemanticError( alignofExpr->get_expr(), "Ambiguous expression in alignof operand: " );
1434 } // if
1435 // return the lowest cost alternative for the argument
1436 Alternative &choice = winners.front();
1437 referenceToRvalueConversion( choice.expr, choice.cost );
1438 alternatives.push_back( Alternative{
1439 choice, new AlignofExpr{ choice.expr->clone() }, Cost::zero } );
1440 } // if
1441 }
1442
1443 template< typename StructOrUnionType >
1444 void AlternativeFinder::Finder::addOffsetof( StructOrUnionType *aggInst, const std::string &name ) {
1445 std::list< Declaration* > members;
1446 aggInst->lookup( name, members );
1447 for ( std::list< Declaration* >::const_iterator i = members.begin(); i != members.end(); ++i ) {
1448 if ( DeclarationWithType *dwt = dynamic_cast< DeclarationWithType* >( *i ) ) {
1449 alternatives.push_back( Alternative{
1450 new OffsetofExpr{ aggInst->clone(), dwt }, env } );
1451 renameTypes( alternatives.back().expr );
1452 } else {
1453 assert( false );
1454 }
1455 }
1456 }
1457
1458 void AlternativeFinder::Finder::postvisit( UntypedOffsetofExpr *offsetofExpr ) {
1459 AlternativeFinder funcFinder( indexer, env );
1460 // xxx - resolveTypeof?
1461 if ( StructInstType *structInst = dynamic_cast< StructInstType* >( offsetofExpr->get_type() ) ) {
1462 addOffsetof( structInst, offsetofExpr->member );
1463 } else if ( UnionInstType *unionInst = dynamic_cast< UnionInstType* >( offsetofExpr->get_type() ) ) {
1464 addOffsetof( unionInst, offsetofExpr->member );
1465 }
1466 }
1467
1468 void AlternativeFinder::Finder::postvisit( OffsetofExpr *offsetofExpr ) {
1469 alternatives.push_back( Alternative{ offsetofExpr->clone(), env } );
1470 }
1471
1472 void AlternativeFinder::Finder::postvisit( OffsetPackExpr *offsetPackExpr ) {
1473 alternatives.push_back( Alternative{ offsetPackExpr->clone(), env } );
1474 }
1475
1476 void AlternativeFinder::Finder::postvisit( LogicalExpr * logicalExpr ) {
1477 AlternativeFinder firstFinder( indexer, env );
1478 firstFinder.findWithAdjustment( logicalExpr->get_arg1() );
1479 if ( firstFinder.alternatives.empty() ) return;
1480 AlternativeFinder secondFinder( indexer, env );
1481 secondFinder.findWithAdjustment( logicalExpr->get_arg2() );
1482 if ( secondFinder.alternatives.empty() ) return;
1483 for ( const Alternative & first : firstFinder.alternatives ) {
1484 for ( const Alternative & second : secondFinder.alternatives ) {
1485 TypeEnvironment compositeEnv{ first.env };
1486 compositeEnv.simpleCombine( second.env );
1487 OpenVarSet openVars{ first.openVars };
1488 mergeOpenVars( openVars, second.openVars );
1489 AssertionSet need;
1490 cloneAll( first.need, need );
1491 cloneAll( second.need, need );
1492
1493 LogicalExpr *newExpr = new LogicalExpr{
1494 first.expr->clone(), second.expr->clone(), logicalExpr->get_isAnd() };
1495 alternatives.push_back( Alternative{
1496 newExpr, std::move(compositeEnv), std::move(openVars),
1497 AssertionList( need.begin(), need.end() ), first.cost + second.cost } );
1498 }
1499 }
1500 }
1501
1502 void AlternativeFinder::Finder::postvisit( ConditionalExpr *conditionalExpr ) {
1503 // find alternatives for condition
1504 AlternativeFinder firstFinder( indexer, env );
1505 firstFinder.findWithAdjustment( conditionalExpr->arg1 );
1506 if ( firstFinder.alternatives.empty() ) return;
1507 // find alternatives for true expression
1508 AlternativeFinder secondFinder( indexer, env );
1509 secondFinder.findWithAdjustment( conditionalExpr->arg2 );
1510 if ( secondFinder.alternatives.empty() ) return;
1511 // find alterantives for false expression
1512 AlternativeFinder thirdFinder( indexer, env );
1513 thirdFinder.findWithAdjustment( conditionalExpr->arg3 );
1514 if ( thirdFinder.alternatives.empty() ) return;
1515 for ( const Alternative & first : firstFinder.alternatives ) {
1516 for ( const Alternative & second : secondFinder.alternatives ) {
1517 for ( const Alternative & third : thirdFinder.alternatives ) {
1518 TypeEnvironment compositeEnv{ first.env };
1519 compositeEnv.simpleCombine( second.env );
1520 compositeEnv.simpleCombine( third.env );
1521 OpenVarSet openVars{ first.openVars };
1522 mergeOpenVars( openVars, second.openVars );
1523 mergeOpenVars( openVars, third.openVars );
1524 AssertionSet need;
1525 cloneAll( first.need, need );
1526 cloneAll( second.need, need );
1527 cloneAll( third.need, need );
1528 AssertionSet have;
1529
1530 // unify true and false types, then infer parameters to produce new alternatives
1531 Type* commonType = nullptr;
1532 if ( unify( second.expr->result, third.expr->result, compositeEnv,
1533 need, have, openVars, indexer, commonType ) ) {
1534 ConditionalExpr *newExpr = new ConditionalExpr{
1535 first.expr->clone(), second.expr->clone(), third.expr->clone() };
1536 newExpr->result = commonType ? commonType : second.expr->result->clone();
1537 // convert both options to the conditional result type
1538 Cost cost = first.cost + second.cost + third.cost;
1539 cost += computeExpressionConversionCost(
1540 newExpr->arg2, newExpr->result, indexer, compositeEnv );
1541 cost += computeExpressionConversionCost(
1542 newExpr->arg3, newExpr->result, indexer, compositeEnv );
1543 // output alternative
1544 Alternative newAlt{
1545 newExpr, std::move(compositeEnv), std::move(openVars),
1546 AssertionList( need.begin(), need.end() ), cost };
1547 inferParameters( newAlt, back_inserter( alternatives ) );
1548 } // if
1549 } // for
1550 } // for
1551 } // for
1552 }
1553
1554 void AlternativeFinder::Finder::postvisit( CommaExpr *commaExpr ) {
1555 TypeEnvironment newEnv( env );
1556 Expression *newFirstArg = resolveInVoidContext( commaExpr->get_arg1(), indexer, newEnv );
1557 AlternativeFinder secondFinder( indexer, newEnv );
1558 secondFinder.findWithAdjustment( commaExpr->get_arg2() );
1559 for ( const Alternative & alt : secondFinder.alternatives ) {
1560 alternatives.push_back( Alternative{
1561 alt, new CommaExpr{ newFirstArg->clone(), alt.expr->clone() }, alt.cost } );
1562 } // for
1563 delete newFirstArg;
1564 }
1565
1566 void AlternativeFinder::Finder::postvisit( RangeExpr * rangeExpr ) {
1567 // resolve low and high, accept alternatives whose low and high types unify
1568 AlternativeFinder firstFinder( indexer, env );
1569 firstFinder.findWithAdjustment( rangeExpr->low );
1570 if ( firstFinder.alternatives.empty() ) return;
1571 AlternativeFinder secondFinder( indexer, env );
1572 secondFinder.findWithAdjustment( rangeExpr->high );
1573 if ( secondFinder.alternatives.empty() ) return;
1574 for ( const Alternative & first : firstFinder.alternatives ) {
1575 for ( const Alternative & second : secondFinder.alternatives ) {
1576 TypeEnvironment compositeEnv{ first.env };
1577 compositeEnv.simpleCombine( second.env );
1578 OpenVarSet openVars{ first.openVars };
1579 mergeOpenVars( openVars, second.openVars );
1580 AssertionSet need;
1581 cloneAll( first.need, need );
1582 cloneAll( second.need, need );
1583 AssertionSet have;
1584
1585 Type* commonType = nullptr;
1586 if ( unify( first.expr->result, second.expr->result, compositeEnv, need, have,
1587 openVars, indexer, commonType ) ) {
1588 RangeExpr * newExpr =
1589 new RangeExpr{ first.expr->clone(), second.expr->clone() };
1590 newExpr->result = commonType ? commonType : first.expr->result->clone();
1591 Alternative newAlt{
1592 newExpr, std::move(compositeEnv), std::move(openVars),
1593 AssertionList( need.begin(), need.end() ), first.cost + second.cost };
1594 inferParameters( newAlt, back_inserter( alternatives ) );
1595 } // if
1596 } // for
1597 } // for
1598 }
1599
1600 void AlternativeFinder::Finder::postvisit( UntypedTupleExpr *tupleExpr ) {
1601 std::vector< AlternativeFinder > subExprAlternatives;
1602 altFinder.findSubExprs( tupleExpr->get_exprs().begin(), tupleExpr->get_exprs().end(),
1603 back_inserter( subExprAlternatives ) );
1604 std::vector< AltList > possibilities;
1605 combos( subExprAlternatives.begin(), subExprAlternatives.end(),
1606 back_inserter( possibilities ) );
1607 for ( const AltList& alts : possibilities ) {
1608 std::list< Expression * > exprs;
1609 makeExprList( alts, exprs );
1610
1611 TypeEnvironment compositeEnv;
1612 OpenVarSet openVars;
1613 AssertionSet need;
1614 for ( const Alternative& alt : alts ) {
1615 compositeEnv.simpleCombine( alt.env );
1616 mergeOpenVars( openVars, alt.openVars );
1617 cloneAll( alt.need, need );
1618 }
1619
1620 alternatives.push_back( Alternative{
1621 new TupleExpr{ exprs }, std::move(compositeEnv), std::move(openVars),
1622 AssertionList( need.begin(), need.end() ), sumCost( alts ) } );
1623 } // for
1624 }
1625
1626 void AlternativeFinder::Finder::postvisit( TupleExpr *tupleExpr ) {
1627 alternatives.push_back( Alternative{ tupleExpr->clone(), env } );
1628 }
1629
1630 void AlternativeFinder::Finder::postvisit( ImplicitCopyCtorExpr * impCpCtorExpr ) {
1631 alternatives.push_back( Alternative{ impCpCtorExpr->clone(), env } );
1632 }
1633
1634 void AlternativeFinder::Finder::postvisit( ConstructorExpr * ctorExpr ) {
1635 AlternativeFinder finder( indexer, env );
1636 // don't prune here, since it's guaranteed all alternatives will have the same type
1637 // (giving the alternatives different types is half of the point of ConstructorExpr nodes)
1638 finder.findWithoutPrune( ctorExpr->get_callExpr() );
1639 for ( Alternative & alt : finder.alternatives ) {
1640 alternatives.push_back( Alternative{
1641 alt, new ConstructorExpr( alt.expr->clone() ), alt.cost } );
1642 }
1643 }
1644
1645 void AlternativeFinder::Finder::postvisit( TupleIndexExpr *tupleExpr ) {
1646 alternatives.push_back( Alternative{ tupleExpr->clone(), env } );
1647 }
1648
1649 void AlternativeFinder::Finder::postvisit( TupleAssignExpr *tupleAssignExpr ) {
1650 alternatives.push_back( Alternative{ tupleAssignExpr->clone(), env } );
1651 }
1652
1653 void AlternativeFinder::Finder::postvisit( UniqueExpr *unqExpr ) {
1654 AlternativeFinder finder( indexer, env );
1655 finder.findWithAdjustment( unqExpr->get_expr() );
1656 for ( Alternative & alt : finder.alternatives ) {
1657 // ensure that the id is passed on to the UniqueExpr alternative so that the expressions are "linked"
1658 UniqueExpr * newUnqExpr = new UniqueExpr( alt.expr->clone(), unqExpr->get_id() );
1659 alternatives.push_back( Alternative{ alt, newUnqExpr, alt.cost } );
1660 }
1661 }
1662
1663 void AlternativeFinder::Finder::postvisit( StmtExpr *stmtExpr ) {
1664 StmtExpr * newStmtExpr = stmtExpr->clone();
1665 ResolvExpr::resolveStmtExpr( newStmtExpr, indexer );
1666 // xxx - this env is almost certainly wrong, and needs to somehow contain the combined environments from all of the statements in the stmtExpr...
1667 alternatives.push_back( Alternative{ newStmtExpr, env } );
1668 }
1669
1670 void AlternativeFinder::Finder::postvisit( UntypedInitExpr *initExpr ) {
1671 // handle each option like a cast
1672 AltList candidates;
1673 PRINT(
1674 std::cerr << "untyped init expr: " << initExpr << std::endl;
1675 )
1676 // O(N^2) checks of d-types with e-types
1677 for ( InitAlternative & initAlt : initExpr->get_initAlts() ) {
1678 Type * toType = resolveTypeof( initAlt.type->clone(), indexer );
1679 SymTab::validateType( toType, &indexer );
1680 adjustExprType( toType, env, indexer );
1681 // Ideally the call to findWithAdjustment could be moved out of the loop, but unfortunately it currently has to occur inside or else
1682 // polymorphic return types are not properly bound to the initialization type, since return type variables are only open for the duration of resolving
1683 // the UntypedExpr. This is only actually an issue in initialization contexts that allow more than one possible initialization type, but it is still suboptimal.
1684 AlternativeFinder finder( indexer, env );
1685 finder.targetType = toType;
1686 finder.findWithAdjustment( initExpr->expr );
1687 for ( Alternative & alt : finder.get_alternatives() ) {
1688 TypeEnvironment newEnv( alt.env );
1689 AssertionSet need;
1690 cloneAll( alt.need, need );
1691 AssertionSet have;
1692 OpenVarSet openVars( alt.openVars );
1693 // xxx - find things in env that don't have a "representative type" and claim
1694 // those are open vars?
1695 PRINT(
1696 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;
1697 )
1698 // It's possible that a cast can throw away some values in a multiply-valued
1699 // expression. (An example is a cast-to-void, which casts from one value to
1700 // zero.) Figure out the prefix of the subexpression results that are cast
1701 // directly. The candidate is invalid if it has fewer results than there are
1702 // types to cast to.
1703 int discardedValues = alt.expr->result->size() - toType->size();
1704 if ( discardedValues < 0 ) continue;
1705 // xxx - may need to go into tuple types and extract relevant types and use
1706 // unifyList. Note that currently, this does not allow casting a tuple to an
1707 // atomic type (e.g. (int)([1, 2, 3]))
1708
1709 // unification run for side-effects
1710 bool canUnify = unify( toType, alt.expr->result, newEnv, need, have, openVars, indexer );
1711 (void) canUnify;
1712 // xxx - do some inspecting on this line... why isn't result bound to initAlt.type?
1713
1714 Cost thisCost = computeConversionCost( alt.expr->result, toType, alt.expr->get_lvalue(),
1715 indexer, newEnv );
1716
1717 PRINT(
1718 Cost legacyCost = castCost( alt.expr->result, toType, alt.expr->get_lvalue(),
1719 indexer, newEnv );
1720 std::cerr << "Considering initialization:";
1721 std::cerr << std::endl << " FROM: "; alt.expr->result->print(std::cerr);
1722 std::cerr << std::endl << " TO: "; toType ->print(std::cerr);
1723 std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed");
1724 std::cerr << std::endl << " Legacy cost " << legacyCost;
1725 std::cerr << std::endl << " New cost " << thisCost;
1726 std::cerr << std::endl;
1727 )
1728
1729 if ( thisCost != Cost::infinity ) {
1730 // count one safe conversion for each value that is thrown away
1731 thisCost.incSafe( discardedValues );
1732 Alternative newAlt{
1733 new InitExpr{
1734 restructureCast( alt.expr->clone(), toType, true ), initAlt.designation->clone() },
1735 std::move(newEnv), std::move(openVars),
1736 AssertionList( need.begin(), need.end() ), alt.cost, thisCost };
1737 inferParameters( newAlt, back_inserter( candidates ) );
1738 }
1739 }
1740 }
1741
1742 // findMinCost selects the alternatives with the lowest "cost" members, but has the side effect of copying the
1743 // cvtCost member to the cost member (since the old cost is now irrelevant). Thus, calling findMinCost twice
1744 // selects first based on argument cost, then on conversion cost.
1745 AltList minArgCost;
1746 findMinCost( candidates.begin(), candidates.end(), std::back_inserter( minArgCost ) );
1747 findMinCost( minArgCost.begin(), minArgCost.end(), std::back_inserter( alternatives ) );
1748 }
1749
1750 void AlternativeFinder::Finder::postvisit( InitExpr * ) {
1751 assertf( false, "AlternativeFinder should never see a resolved InitExpr." );
1752 }
1753
1754 void AlternativeFinder::Finder::postvisit( DeletedExpr * ) {
1755 assertf( false, "AlternativeFinder should never see a DeletedExpr." );
1756 }
1757
1758 void AlternativeFinder::Finder::postvisit( GenericExpr * ) {
1759 assertf( false, "_Generic is not yet supported." );
1760 }
1761} // namespace ResolvExpr
1762
1763// Local Variables: //
1764// tab-width: 4 //
1765// mode: c++ //
1766// compile-command: "make install" //
1767// End: //
Note: See TracBrowser for help on using the repository browser.