source: src/ResolvExpr/AlternativeFinder.cc@ 1cf2a9b

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 1cf2a9b was ac2b598, checked in by Thierry Delisle <tdelisle@…>, 6 years ago

Changed descriptors for concurrency to use $ prefix instead of trailing _desc

  • Property mode set to 100644
File size: 70.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// AlternativeFinder.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sat May 16 23:52:08 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Thu Aug 8 16:35:00 2019
13// Update Count : 38
14//
15
16#include <algorithm> // for copy
17#include <cassert> // for strict_dynamic_cast, assert, assertf
18#include <cstddef> // for size_t
19#include <iostream> // for operator<<, cerr, ostream, endl
20#include <iterator> // for back_insert_iterator, back_inserter
21#include <list> // for _List_iterator, list, _List_const_...
22#include <map> // for _Rb_tree_iterator, map, _Rb_tree_c...
23#include <memory> // for allocator_traits<>::value_type, unique_ptr
24#include <utility> // for pair
25#include <vector> // for vector
26
27#include "CompilationState.h" // for resolvep
28#include "Alternative.h" // for AltList, Alternative
29#include "AlternativeFinder.h"
30#include "AST/Expr.hpp"
31#include "AST/SymbolTable.hpp"
32#include "AST/Type.hpp"
33#include "Common/SemanticError.h" // for SemanticError
34#include "Common/utility.h" // for deleteAll, printAll, CodeLocation
35#include "Cost.h" // for Cost, Cost::zero, operator<<, Cost...
36#include "ExplodedActual.h" // for ExplodedActual
37#include "InitTweak/InitTweak.h" // for getFunctionName
38#include "RenameVars.h" // for RenameVars, global_renamer
39#include "ResolveAssertions.h" // for resolveAssertions
40#include "ResolveTypeof.h" // for resolveTypeof
41#include "Resolver.h" // for resolveStmtExpr
42#include "SymTab/Indexer.h" // for Indexer
43#include "SymTab/Mangler.h" // for Mangler
44#include "SymTab/Validate.h" // for validateType
45#include "SynTree/Constant.h" // for Constant
46#include "SynTree/Declaration.h" // for DeclarationWithType, TypeDecl, Dec...
47#include "SynTree/Expression.h" // for Expression, CastExpr, NameExpr
48#include "SynTree/Initializer.h" // for SingleInit, operator<<, Designation
49#include "SynTree/SynTree.h" // for UniqueId
50#include "SynTree/Type.h" // for Type, FunctionType, PointerType
51#include "Tuples/Explode.h" // for explode
52#include "Tuples/Tuples.h" // for isTtype, handleTupleAssignment
53#include "Unify.h" // for unify
54#include "typeops.h" // for adjustExprType, polyCost, castCost
55
56#define PRINT( text ) if ( resolvep ) { text }
57//#define DEBUG_COST
58
59namespace ResolvExpr {
60 struct AlternativeFinder::Finder : public WithShortCircuiting {
61 Finder( AlternativeFinder & altFinder ) : altFinder( altFinder ), indexer( altFinder.indexer ), alternatives( altFinder.alternatives ), env( altFinder.env ), targetType( altFinder.targetType ) {}
62
63 void previsit( BaseSyntaxNode * ) { visit_children = false; }
64
65 void postvisit( ApplicationExpr * applicationExpr );
66 void postvisit( UntypedExpr * untypedExpr );
67 void postvisit( AddressExpr * addressExpr );
68 void postvisit( LabelAddressExpr * labelExpr );
69 void postvisit( CastExpr * castExpr );
70 void postvisit( VirtualCastExpr * castExpr );
71 void postvisit( KeywordCastExpr * castExpr );
72 void postvisit( UntypedMemberExpr * memberExpr );
73 void postvisit( MemberExpr * memberExpr );
74 void postvisit( NameExpr * variableExpr );
75 void postvisit( VariableExpr * variableExpr );
76 void postvisit( ConstantExpr * constantExpr );
77 void postvisit( SizeofExpr * sizeofExpr );
78 void postvisit( AlignofExpr * alignofExpr );
79 void postvisit( UntypedOffsetofExpr * offsetofExpr );
80 void postvisit( OffsetofExpr * offsetofExpr );
81 void postvisit( OffsetPackExpr * offsetPackExpr );
82 void postvisit( LogicalExpr * logicalExpr );
83 void postvisit( ConditionalExpr * conditionalExpr );
84 void postvisit( CommaExpr * commaExpr );
85 void postvisit( ImplicitCopyCtorExpr * impCpCtorExpr );
86 void postvisit( ConstructorExpr * ctorExpr );
87 void postvisit( RangeExpr * rangeExpr );
88 void postvisit( UntypedTupleExpr * tupleExpr );
89 void postvisit( TupleExpr * tupleExpr );
90 void postvisit( TupleIndexExpr * tupleExpr );
91 void postvisit( TupleAssignExpr * tupleExpr );
92 void postvisit( UniqueExpr * unqExpr );
93 void postvisit( StmtExpr * stmtExpr );
94 void postvisit( UntypedInitExpr * initExpr );
95 void postvisit( InitExpr * initExpr );
96 void postvisit( DeletedExpr * delExpr );
97 void postvisit( GenericExpr * genExpr );
98
99 /// Adds alternatives for anonymous members
100 void addAnonConversions( const Alternative & alt );
101 /// Adds alternatives for member expressions, given the aggregate, conversion cost for that aggregate, and name of the member
102 template< typename StructOrUnionType > void addAggMembers( StructOrUnionType *aggInst, Expression *expr, const Alternative &alt, const Cost &newCost, const std::string & name );
103 /// Adds alternatives for member expressions where the left side has tuple type
104 void addTupleMembers( TupleType *tupleType, Expression *expr, const Alternative &alt, const Cost &newCost, Expression *member );
105 /// Adds alternatives for offsetof expressions, given the base type and name of the member
106 template< typename StructOrUnionType > void addOffsetof( StructOrUnionType *aggInst, const std::string &name );
107 /// Takes a final result and checks if its assertions can be satisfied
108 template<typename OutputIterator>
109 void validateFunctionAlternative( const Alternative &func, ArgPack& result, const std::vector<ArgPack>& results, OutputIterator out );
110 /// Finds matching alternatives for a function, given a set of arguments
111 template<typename OutputIterator>
112 void makeFunctionAlternatives( const Alternative &func, FunctionType *funcType, const ExplodedArgs_old& args, OutputIterator out );
113 /// Sets up parameter inference for an output alternative
114 template< typename OutputIterator >
115 void inferParameters( Alternative &newAlt, OutputIterator out );
116 private:
117 AlternativeFinder & altFinder;
118 const SymTab::Indexer &indexer;
119 AltList & alternatives;
120 const TypeEnvironment &env;
121 Type *& targetType;
122 };
123
124 Cost sumCost( const AltList &in ) {
125 Cost total = Cost::zero;
126 for ( AltList::const_iterator i = in.begin(); i != in.end(); ++i ) {
127 total += i->cost;
128 }
129 return total;
130 }
131
132 void printAlts( const AltList &list, std::ostream &os, unsigned int indentAmt ) {
133 Indenter indent = { indentAmt };
134 for ( AltList::const_iterator i = list.begin(); i != list.end(); ++i ) {
135 i->print( os, indent );
136 os << std::endl;
137 }
138 }
139
140 namespace {
141 void makeExprList( const AltList &in, std::list< Expression* > &out ) {
142 for ( AltList::const_iterator i = in.begin(); i != in.end(); ++i ) {
143 out.push_back( i->expr->clone() );
144 }
145 }
146
147 struct PruneStruct {
148 bool isAmbiguous;
149 AltList::iterator candidate;
150 PruneStruct() {}
151 PruneStruct( AltList::iterator candidate ): isAmbiguous( false ), candidate( candidate ) {}
152 };
153
154 /// Prunes a list of alternatives down to those that have the minimum conversion cost for a given return type; skips ambiguous interpretations
155 template< typename InputIterator, typename OutputIterator >
156 void pruneAlternatives( InputIterator begin, InputIterator end, OutputIterator out ) {
157 // select the alternatives that have the minimum conversion cost for a particular set of result types
158 std::map< std::string, PruneStruct > selected;
159 for ( AltList::iterator candidate = begin; candidate != end; ++candidate ) {
160 PruneStruct current( candidate );
161 std::string mangleName;
162 {
163 Type * newType = candidate->expr->get_result()->clone();
164 candidate->env.apply( newType );
165 mangleName = SymTab::Mangler::mangle( newType );
166 delete newType;
167 }
168 std::map< std::string, PruneStruct >::iterator mapPlace = selected.find( mangleName );
169 if ( mapPlace != selected.end() ) {
170 if ( candidate->cost < mapPlace->second.candidate->cost ) {
171 PRINT(
172 std::cerr << "cost " << candidate->cost << " beats " << mapPlace->second.candidate->cost << std::endl;
173 )
174 selected[ mangleName ] = current;
175 } else if ( candidate->cost == mapPlace->second.candidate->cost ) {
176 // if one of the candidates contains a deleted identifier, can pick the other, since
177 // deleted expressions should not be ambiguous if there is another option that is at least as good
178 if ( findDeletedExpr( candidate->expr ) ) {
179 // do nothing
180 PRINT( std::cerr << "candidate is deleted" << std::endl; )
181 } else if ( findDeletedExpr( mapPlace->second.candidate->expr ) ) {
182 PRINT( std::cerr << "current is deleted" << std::endl; )
183 selected[ mangleName ] = current;
184 } else {
185 PRINT(
186 std::cerr << "marking ambiguous" << std::endl;
187 )
188 mapPlace->second.isAmbiguous = true;
189 }
190 } else {
191 PRINT(
192 std::cerr << "cost " << candidate->cost << " loses to " << mapPlace->second.candidate->cost << std::endl;
193 )
194 }
195 } else {
196 selected[ mangleName ] = current;
197 }
198 }
199
200 // accept the alternatives that were unambiguous
201 for ( std::map< std::string, PruneStruct >::iterator target = selected.begin(); target != selected.end(); ++target ) {
202 if ( ! target->second.isAmbiguous ) {
203 Alternative &alt = *target->second.candidate;
204 alt.env.applyFree( alt.expr->get_result() );
205 *out++ = alt;
206 }
207 }
208 }
209
210 void renameTypes( Expression *expr ) {
211 renameTyVars( expr->result );
212 }
213 } // namespace
214
215 void referenceToRvalueConversion( Expression *& expr, Cost & cost ) {
216 if ( dynamic_cast< ReferenceType * >( expr->get_result() ) ) {
217 // cast away reference from expr
218 expr = new CastExpr( expr, expr->get_result()->stripReferences()->clone() );
219 cost.incReference();
220 }
221 }
222
223 template< typename InputIterator, typename OutputIterator >
224 void AlternativeFinder::findSubExprs( InputIterator begin, InputIterator end, OutputIterator out ) {
225 while ( begin != end ) {
226 AlternativeFinder finder( indexer, env );
227 finder.findWithAdjustment( *begin );
228 // XXX either this
229 //Designators::fixDesignations( finder, (*begin++)->get_argName() );
230 // or XXX this
231 begin++;
232 PRINT(
233 std::cerr << "findSubExprs" << std::endl;
234 printAlts( finder.alternatives, std::cerr );
235 )
236 *out++ = finder;
237 }
238 }
239
240 AlternativeFinder::AlternativeFinder( const SymTab::Indexer &indexer, const TypeEnvironment &env )
241 : indexer( indexer ), env( env ) {
242 }
243
244 void AlternativeFinder::find( Expression *expr, ResolvMode mode ) {
245 PassVisitor<Finder> finder( *this );
246 expr->accept( finder );
247 if ( mode.failFast && alternatives.empty() ) {
248 PRINT(
249 std::cerr << "No reasonable alternatives for expression " << expr << std::endl;
250 )
251 SemanticError( expr, "No reasonable alternatives for expression " );
252 }
253 if ( mode.satisfyAssns || mode.prune ) {
254 // trim candidates just to those where the assertions resolve
255 // - necessary pre-requisite to pruning
256 AltList candidates;
257 std::list<std::string> errors;
258 for ( unsigned i = 0; i < alternatives.size(); ++i ) {
259 resolveAssertions( alternatives[i], indexer, candidates, errors );
260 }
261 // fail early if none such
262 if ( mode.failFast && candidates.empty() ) {
263 std::ostringstream stream;
264 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
265 // << "Alternatives with failing assertions are:\n";
266 // printAlts( alternatives, stream, 1 );
267 for ( const auto& err : errors ) {
268 stream << err;
269 }
270 SemanticError( expr->location, stream.str() );
271 }
272 // reset alternatives
273 alternatives = std::move( candidates );
274 }
275 if ( mode.prune ) {
276 auto oldsize = alternatives.size();
277 PRINT(
278 std::cerr << "alternatives before prune:" << std::endl;
279 printAlts( alternatives, std::cerr );
280 )
281 AltList pruned;
282 pruneAlternatives( alternatives.begin(), alternatives.end(), back_inserter( pruned ) );
283 if ( mode.failFast && pruned.empty() ) {
284 std::ostringstream stream;
285 AltList winners;
286 findMinCost( alternatives.begin(), alternatives.end(), back_inserter( winners ) );
287 stream << "Cannot choose between " << winners.size() << " alternatives for expression\n";
288 expr->print( stream );
289 stream << " Alternatives are:\n";
290 printAlts( winners, stream, 1 );
291 SemanticError( expr->location, stream.str() );
292 }
293 alternatives = move(pruned);
294 PRINT(
295 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;
296 )
297 PRINT(
298 std::cerr << "there are " << alternatives.size() << " alternatives after elimination" << std::endl;
299 )
300 }
301 // adjust types after pruning so that types substituted by pruneAlternatives are correctly adjusted
302 if ( mode.adjust ) {
303 for ( Alternative& i : alternatives ) {
304 adjustExprType( i.expr->get_result(), i.env, indexer );
305 }
306 }
307
308 // Central location to handle gcc extension keyword, etc. for all expression types.
309 for ( Alternative &iter: alternatives ) {
310 iter.expr->set_extension( expr->get_extension() );
311 iter.expr->location = expr->location;
312 } // for
313 }
314
315 void AlternativeFinder::findWithAdjustment( Expression *expr ) {
316 find( expr, ResolvMode::withAdjustment() );
317 }
318
319 void AlternativeFinder::findWithoutPrune( Expression * expr ) {
320 find( expr, ResolvMode::withoutPrune() );
321 }
322
323 void AlternativeFinder::maybeFind( Expression * expr ) {
324 find( expr, ResolvMode::withoutFailFast() );
325 }
326
327 void AlternativeFinder::Finder::addAnonConversions( const Alternative & alt ) {
328 // adds anonymous member interpretations whenever an aggregate value type is seen.
329 // it's okay for the aggregate expression to have reference type -- cast it to the base type to treat the aggregate as the referenced value
330 std::unique_ptr<Expression> aggrExpr( alt.expr->clone() );
331 alt.env.apply( aggrExpr->result );
332 Type * aggrType = aggrExpr->result;
333 if ( dynamic_cast< ReferenceType * >( aggrType ) ) {
334 aggrType = aggrType->stripReferences();
335 aggrExpr.reset( new CastExpr( aggrExpr.release(), aggrType->clone() ) );
336 }
337
338 if ( StructInstType * structInst = dynamic_cast< StructInstType* >( aggrExpr->result ) ) {
339 addAggMembers( structInst, aggrExpr.get(), alt, alt.cost+Cost::safe, "" );
340 } else if ( UnionInstType * unionInst = dynamic_cast< UnionInstType* >( aggrExpr->result ) ) {
341 addAggMembers( unionInst, aggrExpr.get(), alt, alt.cost+Cost::safe, "" );
342 } // if
343 }
344
345 template< typename StructOrUnionType >
346 void AlternativeFinder::Finder::addAggMembers( StructOrUnionType * aggInst, Expression * expr, const Alternative& alt, const Cost &newCost, const std::string & name ) {
347 std::list< Declaration* > members;
348 aggInst->lookup( name, members );
349
350 for ( Declaration * decl : members ) {
351 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType* >( decl ) ) {
352 // addAnonAlternatives uses vector::push_back, which invalidates references to existing elements, so
353 // can't construct in place and use vector::back
354 Alternative newAlt{ alt, new MemberExpr{ dwt, expr->clone() }, newCost };
355 renameTypes( newAlt.expr );
356 addAnonConversions( newAlt ); // add anonymous member interpretations whenever an aggregate value type is seen as a member expression.
357 alternatives.push_back( std::move(newAlt) );
358 } else {
359 assert( false );
360 }
361 }
362 }
363
364 void AlternativeFinder::Finder::addTupleMembers( TupleType * tupleType, Expression * expr, const Alternative &alt, const Cost &newCost, Expression * member ) {
365 if ( ConstantExpr * constantExpr = dynamic_cast< ConstantExpr * >( member ) ) {
366 // get the value of the constant expression as an int, must be between 0 and the length of the tuple type to have meaning
367 auto val = constantExpr->intValue();
368 std::string tmp;
369 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {
370 alternatives.push_back( Alternative{
371 alt, new TupleIndexExpr( expr->clone(), val ), newCost } );
372 } // if
373 } // if
374 }
375
376 void AlternativeFinder::Finder::postvisit( ApplicationExpr * applicationExpr ) {
377 alternatives.push_back( Alternative{ applicationExpr->clone(), env } );
378 }
379
380 Cost computeConversionCost( Type * actualType, Type * formalType, bool actualIsLvalue,
381 const SymTab::Indexer &indexer, const TypeEnvironment & env ) {
382 PRINT(
383 std::cerr << std::endl << "converting ";
384 actualType->print( std::cerr, 8 );
385 std::cerr << std::endl << " to ";
386 formalType->print( std::cerr, 8 );
387 std::cerr << std::endl << "environment is: ";
388 env.print( std::cerr, 8 );
389 std::cerr << std::endl;
390 )
391 Cost convCost = conversionCost( actualType, formalType, actualIsLvalue, indexer, env );
392 PRINT(
393 std::cerr << std::endl << "cost is " << convCost << std::endl;
394 )
395 if ( convCost == Cost::infinity ) {
396 return convCost;
397 }
398 convCost.incPoly( polyCost( formalType, env, indexer ) + polyCost( actualType, env, indexer ) );
399 PRINT(
400 std::cerr << "cost with polycost is " << convCost << std::endl;
401 )
402 return convCost;
403 }
404
405 Cost computeExpressionConversionCost( Expression *& actualExpr, Type * formalType, const SymTab::Indexer &indexer, const TypeEnvironment & env ) {
406 Cost convCost = computeConversionCost(
407 actualExpr->result, formalType, actualExpr->get_lvalue(), indexer, env );
408
409 // if there is a non-zero conversion cost, ignoring poly cost, then the expression requires conversion.
410 // ignore poly cost for now, since this requires resolution of the cast to infer parameters and this
411 // does not currently work for the reason stated below.
412 Cost tmpCost = convCost;
413 tmpCost.incPoly( -tmpCost.get_polyCost() );
414 if ( tmpCost != Cost::zero ) {
415 Type *newType = formalType->clone();
416 env.apply( newType );
417 actualExpr = new CastExpr( actualExpr, newType );
418 // xxx - SHOULD be able to resolve this cast, but at the moment pointers are not castable to zero_t, but are implicitly convertible. This is clearly
419 // inconsistent, once this is fixed it should be possible to resolve the cast.
420 // xxx - this isn't working, it appears because type1 (the formal type) is seen as widenable, but it shouldn't be, because this makes the conversion from DT* to DT* since commontype(zero_t, DT*) is DT*, rather than just nothing.
421
422 // AlternativeFinder finder( indexer, env );
423 // finder.findWithAdjustment( actualExpr );
424 // assertf( finder.get_alternatives().size() > 0, "Somehow castable expression failed to find alternatives." );
425 // assertf( finder.get_alternatives().size() == 1, "Somehow got multiple alternatives for known cast expression." );
426 // Alternative & alt = finder.get_alternatives().front();
427 // delete actualExpr;
428 // actualExpr = alt.expr->clone();
429 }
430 return convCost;
431 }
432
433 Cost computeApplicationConversionCost( Alternative &alt, const SymTab::Indexer &indexer ) {
434 ApplicationExpr *appExpr = strict_dynamic_cast< ApplicationExpr* >( alt.expr );
435 PointerType *pointer = strict_dynamic_cast< PointerType* >( appExpr->function->result );
436 FunctionType *function = strict_dynamic_cast< FunctionType* >( pointer->base );
437
438 Cost convCost = Cost::zero;
439 std::list< DeclarationWithType* >& formals = function->parameters;
440 std::list< DeclarationWithType* >::iterator formal = formals.begin();
441 std::list< Expression* >& actuals = appExpr->args;
442
443 for ( Expression*& actualExpr : actuals ) {
444 Type * actualType = actualExpr->result;
445 PRINT(
446 std::cerr << "actual expression:" << std::endl;
447 actualExpr->print( std::cerr, 8 );
448 std::cerr << "--- results are" << std::endl;
449 actualType->print( std::cerr, 8 );
450 )
451 if ( formal == formals.end() ) {
452 if ( function->isVarArgs ) {
453 convCost.incUnsafe();
454 PRINT( std::cerr << "end of formals with varargs function: inc unsafe: " << convCost << std::endl; ; )
455 // convert reference-typed expressions to value-typed expressions
456 referenceToRvalueConversion( actualExpr, convCost );
457 continue;
458 } else {
459 return Cost::infinity;
460 }
461 }
462 if ( DefaultArgExpr * def = dynamic_cast< DefaultArgExpr * >( actualExpr ) ) {
463 // default arguments should be free - don't include conversion cost.
464 // Unwrap them here because they are not relevant to the rest of the system.
465 actualExpr = def->expr;
466 ++formal;
467 continue;
468 }
469 // mark conversion cost to formal and also specialization cost of formal type
470 Type * formalType = (*formal)->get_type();
471 convCost += computeExpressionConversionCost( actualExpr, formalType, indexer, alt.env );
472 convCost.decSpec( specCost( formalType ) );
473 ++formal; // can't be in for-loop update because of the continue
474 }
475 if ( formal != formals.end() ) {
476 return Cost::infinity;
477 }
478
479 // specialization cost of return types can't be accounted for directly, it disables
480 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:
481 //
482 // forall(otype OS) {
483 // void ?|?(OS&, int); // with newline
484 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization
485 // }
486
487 // mark type variable and specialization cost of forall clause
488 convCost.incVar( function->forall.size() );
489 for ( TypeDecl* td : function->forall ) {
490 convCost.decSpec( td->assertions.size() );
491 }
492
493 return convCost;
494 }
495
496 /// Adds type variables to the open variable set and marks their assertions
497 void makeUnifiableVars( Type *type, OpenVarSet &unifiableVars, AssertionSet &needAssertions ) {
498 for ( Type::ForallList::const_iterator tyvar = type->forall.begin(); tyvar != type->forall.end(); ++tyvar ) {
499 unifiableVars[ (*tyvar)->get_name() ] = TypeDecl::Data{ *tyvar };
500 for ( std::list< DeclarationWithType* >::iterator assert = (*tyvar)->assertions.begin(); assert != (*tyvar)->assertions.end(); ++assert ) {
501 needAssertions[ *assert ].isUsed = true;
502 }
503 }
504 }
505
506 /// Unique identifier for matching expression resolutions to their requesting expression (located in CandidateFinder.cpp)
507 extern UniqueId globalResnSlot;
508
509 template< typename OutputIterator >
510 void AlternativeFinder::Finder::inferParameters( Alternative &newAlt, OutputIterator out ) {
511 // Set need bindings for any unbound assertions
512 UniqueId crntResnSlot = 0; // matching ID for this expression's assertions
513 for ( auto& assn : newAlt.need ) {
514 // skip already-matched assertions
515 if ( assn.info.resnSlot != 0 ) continue;
516 // assign slot for expression if needed
517 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }
518 // fix slot to assertion
519 assn.info.resnSlot = crntResnSlot;
520 }
521 // pair slot to expression
522 if ( crntResnSlot != 0 ) { newAlt.expr->resnSlots.push_back( crntResnSlot ); }
523
524 // add to output list, assertion resolution is deferred
525 *out++ = newAlt;
526 }
527
528 /// Gets a default value from an initializer, nullptr if not present
529 ConstantExpr* getDefaultValue( Initializer* init ) {
530 if ( SingleInit* si = dynamic_cast<SingleInit*>( init ) ) {
531 if ( CastExpr* ce = dynamic_cast<CastExpr*>( si->value ) ) {
532 return dynamic_cast<ConstantExpr*>( ce->arg );
533 } else {
534 return dynamic_cast<ConstantExpr*>( si->value );
535 }
536 }
537 return nullptr;
538 }
539
540 /// State to iteratively build a match of parameter expressions to arguments
541 struct ArgPack {
542 std::size_t parent; ///< Index of parent pack
543 std::unique_ptr<Expression> expr; ///< The argument stored here
544 Cost cost; ///< The cost of this argument
545 TypeEnvironment env; ///< Environment for this pack
546 AssertionSet need; ///< Assertions outstanding for this pack
547 AssertionSet have; ///< Assertions found for this pack
548 OpenVarSet openVars; ///< Open variables for this pack
549 unsigned nextArg; ///< Index of next argument in arguments list
550 unsigned tupleStart; ///< Number of tuples that start at this index
551 unsigned nextExpl; ///< Index of next exploded element
552 unsigned explAlt; ///< Index of alternative for nextExpl > 0
553
554 ArgPack()
555 : parent(0), expr(), cost(Cost::zero), env(), need(), have(), openVars(), nextArg(0),
556 tupleStart(0), nextExpl(0), explAlt(0) {}
557
558 ArgPack(const TypeEnvironment& env, const AssertionSet& need, const AssertionSet& have,
559 const OpenVarSet& openVars)
560 : parent(0), expr(), cost(Cost::zero), env(env), need(need), have(have),
561 openVars(openVars), nextArg(0), tupleStart(0), nextExpl(0), explAlt(0) {}
562
563 ArgPack(std::size_t parent, Expression* expr, TypeEnvironment&& env, AssertionSet&& need,
564 AssertionSet&& have, OpenVarSet&& openVars, unsigned nextArg,
565 unsigned tupleStart = 0, Cost cost = Cost::zero, unsigned nextExpl = 0,
566 unsigned explAlt = 0 )
567 : parent(parent), expr(expr->clone()), cost(cost), env(move(env)), need(move(need)),
568 have(move(have)), openVars(move(openVars)), nextArg(nextArg), tupleStart(tupleStart),
569 nextExpl(nextExpl), explAlt(explAlt) {}
570
571 ArgPack(const ArgPack& o, TypeEnvironment&& env, AssertionSet&& need, AssertionSet&& have,
572 OpenVarSet&& openVars, unsigned nextArg, Cost added )
573 : parent(o.parent), expr(o.expr ? o.expr->clone() : nullptr), cost(o.cost + added),
574 env(move(env)), need(move(need)), have(move(have)), openVars(move(openVars)),
575 nextArg(nextArg), tupleStart(o.tupleStart), nextExpl(0), explAlt(0) {}
576
577 /// true iff this pack is in the middle of an exploded argument
578 bool hasExpl() const { return nextExpl > 0; }
579
580 /// Gets the list of exploded alternatives for this pack
581 const ExplodedActual& getExpl( const ExplodedArgs_old& args ) const {
582 return args[nextArg-1][explAlt];
583 }
584
585 /// Ends a tuple expression, consolidating the appropriate actuals
586 void endTuple( const std::vector<ArgPack>& packs ) {
587 // add all expressions in tuple to list, summing cost
588 std::list<Expression*> exprs;
589 const ArgPack* pack = this;
590 if ( expr ) { exprs.push_front( expr.release() ); }
591 while ( pack->tupleStart == 0 ) {
592 pack = &packs[pack->parent];
593 exprs.push_front( pack->expr->clone() );
594 cost += pack->cost;
595 }
596 // reset pack to appropriate tuple
597 expr.reset( new TupleExpr( exprs ) );
598 tupleStart = pack->tupleStart - 1;
599 parent = pack->parent;
600 }
601 };
602
603 /// Instantiates an argument to match a formal, returns false if no results left
604 bool instantiateArgument( Type* formalType, Initializer* initializer,
605 const ExplodedArgs_old& args, std::vector<ArgPack>& results, std::size_t& genStart,
606 const SymTab::Indexer& indexer, unsigned nTuples = 0 ) {
607 if ( TupleType * tupleType = dynamic_cast<TupleType*>( formalType ) ) {
608 // formalType is a TupleType - group actuals into a TupleExpr
609 ++nTuples;
610 for ( Type* type : *tupleType ) {
611 // xxx - dropping initializer changes behaviour from previous, but seems correct
612 // ^^^ need to handle the case where a tuple has a default argument
613 if ( ! instantiateArgument(
614 type, nullptr, args, results, genStart, indexer, nTuples ) )
615 return false;
616 nTuples = 0;
617 }
618 // re-consititute tuples for final generation
619 for ( auto i = genStart; i < results.size(); ++i ) {
620 results[i].endTuple( results );
621 }
622 return true;
623 } else if ( TypeInstType * ttype = Tuples::isTtype( formalType ) ) {
624 // formalType is a ttype, consumes all remaining arguments
625 // xxx - mixing default arguments with variadic??
626
627 // completed tuples; will be spliced to end of results to finish
628 std::vector<ArgPack> finalResults{};
629
630 // iterate until all results completed
631 std::size_t genEnd;
632 ++nTuples;
633 do {
634 genEnd = results.size();
635
636 // add another argument to results
637 for ( std::size_t i = genStart; i < genEnd; ++i ) {
638 auto nextArg = results[i].nextArg;
639
640 // use next element of exploded tuple if present
641 if ( results[i].hasExpl() ) {
642 const ExplodedActual& expl = results[i].getExpl( args );
643
644 unsigned nextExpl = results[i].nextExpl + 1;
645 if ( nextExpl == expl.exprs.size() ) {
646 nextExpl = 0;
647 }
648
649 results.emplace_back(
650 i, expl.exprs[results[i].nextExpl].get(), copy(results[i].env),
651 copy(results[i].need), copy(results[i].have),
652 copy(results[i].openVars), nextArg, nTuples, Cost::zero, nextExpl,
653 results[i].explAlt );
654
655 continue;
656 }
657
658 // finish result when out of arguments
659 if ( nextArg >= args.size() ) {
660 ArgPack newResult{
661 results[i].env, results[i].need, results[i].have,
662 results[i].openVars };
663 newResult.nextArg = nextArg;
664 Type* argType;
665
666 if ( nTuples > 0 || ! results[i].expr ) {
667 // first iteration or no expression to clone,
668 // push empty tuple expression
669 newResult.parent = i;
670 std::list<Expression*> emptyList;
671 newResult.expr.reset( new TupleExpr( emptyList ) );
672 argType = newResult.expr->get_result();
673 } else {
674 // clone result to collect tuple
675 newResult.parent = results[i].parent;
676 newResult.cost = results[i].cost;
677 newResult.tupleStart = results[i].tupleStart;
678 newResult.expr.reset( results[i].expr->clone() );
679 argType = newResult.expr->get_result();
680
681 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {
682 // the case where a ttype value is passed directly is special,
683 // e.g. for argument forwarding purposes
684 // xxx - what if passing multiple arguments, last of which is
685 // ttype?
686 // xxx - what would happen if unify was changed so that unifying
687 // tuple
688 // types flattened both before unifying lists? then pass in
689 // TupleType (ttype) below.
690 --newResult.tupleStart;
691 } else {
692 // collapse leftover arguments into tuple
693 newResult.endTuple( results );
694 argType = newResult.expr->get_result();
695 }
696 }
697
698 // check unification for ttype before adding to final
699 if ( unify( ttype, argType, newResult.env, newResult.need, newResult.have,
700 newResult.openVars, indexer ) ) {
701 finalResults.push_back( move(newResult) );
702 }
703
704 continue;
705 }
706
707 // add each possible next argument
708 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
709 const ExplodedActual& expl = args[nextArg][j];
710
711 // fresh copies of parent parameters for this iteration
712 TypeEnvironment env = results[i].env;
713 OpenVarSet openVars = results[i].openVars;
714
715 env.addActual( expl.env, openVars );
716
717 // skip empty tuple arguments by (near-)cloning parent into next gen
718 if ( expl.exprs.empty() ) {
719 results.emplace_back(
720 results[i], move(env), copy(results[i].need),
721 copy(results[i].have), move(openVars), nextArg + 1, expl.cost );
722
723 continue;
724 }
725
726 // add new result
727 results.emplace_back(
728 i, expl.exprs.front().get(), move(env), copy(results[i].need),
729 copy(results[i].have), move(openVars), nextArg + 1,
730 nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
731 }
732 }
733
734 // reset for next round
735 genStart = genEnd;
736 nTuples = 0;
737 } while ( genEnd != results.size() );
738
739 // splice final results onto results
740 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {
741 results.push_back( move(finalResults[i]) );
742 }
743 return ! finalResults.empty();
744 }
745
746 // iterate each current subresult
747 std::size_t genEnd = results.size();
748 for ( std::size_t i = genStart; i < genEnd; ++i ) {
749 auto nextArg = results[i].nextArg;
750
751 // use remainder of exploded tuple if present
752 if ( results[i].hasExpl() ) {
753 const ExplodedActual& expl = results[i].getExpl( args );
754 Expression* expr = expl.exprs[results[i].nextExpl].get();
755
756 TypeEnvironment env = results[i].env;
757 AssertionSet need = results[i].need, have = results[i].have;
758 OpenVarSet openVars = results[i].openVars;
759
760 Type* actualType = expr->get_result();
761
762 PRINT(
763 std::cerr << "formal type is ";
764 formalType->print( std::cerr );
765 std::cerr << std::endl << "actual type is ";
766 actualType->print( std::cerr );
767 std::cerr << std::endl;
768 )
769
770 if ( unify( formalType, actualType, env, need, have, openVars, indexer ) ) {
771 unsigned nextExpl = results[i].nextExpl + 1;
772 if ( nextExpl == expl.exprs.size() ) {
773 nextExpl = 0;
774 }
775
776 results.emplace_back(
777 i, expr, move(env), move(need), move(have), move(openVars), nextArg,
778 nTuples, Cost::zero, nextExpl, results[i].explAlt );
779 }
780
781 continue;
782 }
783
784 // use default initializers if out of arguments
785 if ( nextArg >= args.size() ) {
786 if ( ConstantExpr* cnstExpr = getDefaultValue( initializer ) ) {
787 if ( Constant* cnst = dynamic_cast<Constant*>( cnstExpr->get_constant() ) ) {
788 TypeEnvironment env = results[i].env;
789 AssertionSet need = results[i].need, have = results[i].have;
790 OpenVarSet openVars = results[i].openVars;
791
792 if ( unify( formalType, cnst->get_type(), env, need, have, openVars,
793 indexer ) ) {
794 results.emplace_back(
795 i, new DefaultArgExpr( cnstExpr ), move(env), move(need), move(have),
796 move(openVars), nextArg, nTuples );
797 }
798 }
799 }
800
801 continue;
802 }
803
804 // Check each possible next argument
805 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
806 const ExplodedActual& expl = args[nextArg][j];
807
808 // fresh copies of parent parameters for this iteration
809 TypeEnvironment env = results[i].env;
810 AssertionSet need = results[i].need, have = results[i].have;
811 OpenVarSet openVars = results[i].openVars;
812
813 env.addActual( expl.env, openVars );
814
815 // skip empty tuple arguments by (near-)cloning parent into next gen
816 if ( expl.exprs.empty() ) {
817 results.emplace_back(
818 results[i], move(env), move(need), move(have), move(openVars),
819 nextArg + 1, expl.cost );
820
821 continue;
822 }
823
824 // consider only first exploded actual
825 Expression* expr = expl.exprs.front().get();
826 Type* actualType = expr->result->clone();
827
828 PRINT(
829 std::cerr << "formal type is ";
830 formalType->print( std::cerr );
831 std::cerr << std::endl << "actual type is ";
832 actualType->print( std::cerr );
833 std::cerr << std::endl;
834 )
835
836 // attempt to unify types
837 if ( unify( formalType, actualType, env, need, have, openVars, indexer ) ) {
838 // add new result
839 results.emplace_back(
840 i, expr, move(env), move(need), move(have), move(openVars), nextArg + 1,
841 nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
842 }
843 }
844 }
845
846 // reset for next parameter
847 genStart = genEnd;
848
849 return genEnd != results.size();
850 }
851
852 template<typename OutputIterator>
853 void AlternativeFinder::Finder::validateFunctionAlternative( const Alternative &func, ArgPack& result,
854 const std::vector<ArgPack>& results, OutputIterator out ) {
855 ApplicationExpr *appExpr = new ApplicationExpr( func.expr->clone() );
856 // sum cost and accumulate actuals
857 std::list<Expression*>& args = appExpr->args;
858 Cost cost = func.cost;
859 const ArgPack* pack = &result;
860 while ( pack->expr ) {
861 args.push_front( pack->expr->clone() );
862 cost += pack->cost;
863 pack = &results[pack->parent];
864 }
865 // build and validate new alternative
866 Alternative newAlt{ appExpr, result.env, result.openVars, result.need, cost };
867 PRINT(
868 std::cerr << "instantiate function success: " << appExpr << std::endl;
869 std::cerr << "need assertions:" << std::endl;
870 printAssertionSet( result.need, std::cerr, 8 );
871 )
872 inferParameters( newAlt, out );
873 }
874
875 template<typename OutputIterator>
876 void AlternativeFinder::Finder::makeFunctionAlternatives( const Alternative &func,
877 FunctionType *funcType, const ExplodedArgs_old &args, OutputIterator out ) {
878 OpenVarSet funcOpenVars;
879 AssertionSet funcNeed, funcHave;
880 TypeEnvironment funcEnv( func.env );
881 makeUnifiableVars( funcType, funcOpenVars, funcNeed );
882 // add all type variables as open variables now so that those not used in the parameter
883 // list are still considered open.
884 funcEnv.add( funcType->forall );
885
886 if ( targetType && ! targetType->isVoid() && ! funcType->returnVals.empty() ) {
887 // attempt to narrow based on expected target type
888 Type * returnType = funcType->returnVals.front()->get_type();
889 if ( ! unify( returnType, targetType, funcEnv, funcNeed, funcHave, funcOpenVars,
890 indexer ) ) {
891 // unification failed, don't pursue this function alternative
892 return;
893 }
894 }
895
896 // iteratively build matches, one parameter at a time
897 std::vector<ArgPack> results;
898 results.push_back( ArgPack{ funcEnv, funcNeed, funcHave, funcOpenVars } );
899 std::size_t genStart = 0;
900
901 for ( DeclarationWithType* formal : funcType->parameters ) {
902 ObjectDecl* obj = strict_dynamic_cast< ObjectDecl* >( formal );
903 if ( ! instantiateArgument(
904 obj->type, obj->init, args, results, genStart, indexer ) )
905 return;
906 }
907
908 if ( funcType->get_isVarArgs() ) {
909 // append any unused arguments to vararg pack
910 std::size_t genEnd;
911 do {
912 genEnd = results.size();
913
914 // iterate results
915 for ( std::size_t i = genStart; i < genEnd; ++i ) {
916 auto nextArg = results[i].nextArg;
917
918 // use remainder of exploded tuple if present
919 if ( results[i].hasExpl() ) {
920 const ExplodedActual& expl = results[i].getExpl( args );
921
922 unsigned nextExpl = results[i].nextExpl + 1;
923 if ( nextExpl == expl.exprs.size() ) {
924 nextExpl = 0;
925 }
926
927 results.emplace_back(
928 i, expl.exprs[results[i].nextExpl].get(), copy(results[i].env),
929 copy(results[i].need), copy(results[i].have),
930 copy(results[i].openVars), nextArg, 0, Cost::zero, nextExpl,
931 results[i].explAlt );
932
933 continue;
934 }
935
936 // finish result when out of arguments
937 if ( nextArg >= args.size() ) {
938 validateFunctionAlternative( func, results[i], results, out );
939
940 continue;
941 }
942
943 // add each possible next argument
944 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
945 const ExplodedActual& expl = args[nextArg][j];
946
947 // fresh copies of parent parameters for this iteration
948 TypeEnvironment env = results[i].env;
949 OpenVarSet openVars = results[i].openVars;
950
951 env.addActual( expl.env, openVars );
952
953 // skip empty tuple arguments by (near-)cloning parent into next gen
954 if ( expl.exprs.empty() ) {
955 results.emplace_back(
956 results[i], move(env), copy(results[i].need),
957 copy(results[i].have), move(openVars), nextArg + 1, expl.cost );
958
959 continue;
960 }
961
962 // add new result
963 results.emplace_back(
964 i, expl.exprs.front().get(), move(env), copy(results[i].need),
965 copy(results[i].have), move(openVars), nextArg + 1, 0,
966 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
967 }
968 }
969
970 genStart = genEnd;
971 } while ( genEnd != results.size() );
972 } else {
973 // filter out results that don't use all the arguments
974 for ( std::size_t i = genStart; i < results.size(); ++i ) {
975 ArgPack& result = results[i];
976 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {
977 validateFunctionAlternative( func, result, results, out );
978 }
979 }
980 }
981 }
982
983 void AlternativeFinder::Finder::postvisit( UntypedExpr *untypedExpr ) {
984 AlternativeFinder funcFinder( indexer, env );
985 funcFinder.findWithAdjustment( untypedExpr->function );
986 // if there are no function alternatives, then proceeding is a waste of time.
987 // xxx - findWithAdjustment throws, so this check and others like it shouldn't be necessary.
988 if ( funcFinder.alternatives.empty() ) return;
989
990 std::vector< AlternativeFinder > argAlternatives;
991 altFinder.findSubExprs( untypedExpr->begin_args(), untypedExpr->end_args(),
992 back_inserter( argAlternatives ) );
993
994 // take care of possible tuple assignments
995 // if not tuple assignment, assignment is taken care of as a normal function call
996 Tuples::handleTupleAssignment( altFinder, untypedExpr, argAlternatives );
997
998 // find function operators
999 static NameExpr *opExpr = new NameExpr( "?()" );
1000 AlternativeFinder funcOpFinder( indexer, env );
1001 // it's ok if there aren't any defined function ops
1002 funcOpFinder.maybeFind( opExpr );
1003 PRINT(
1004 std::cerr << "known function ops:" << std::endl;
1005 printAlts( funcOpFinder.alternatives, std::cerr, 1 );
1006 )
1007
1008 // pre-explode arguments
1009 ExplodedArgs_old argExpansions;
1010 argExpansions.reserve( argAlternatives.size() );
1011
1012 for ( const AlternativeFinder& arg : argAlternatives ) {
1013 argExpansions.emplace_back();
1014 auto& argE = argExpansions.back();
1015 // argE.reserve( arg.alternatives.size() );
1016
1017 for ( const Alternative& actual : arg ) {
1018 argE.emplace_back( actual, indexer );
1019 }
1020 }
1021
1022 AltList candidates;
1023 SemanticErrorException errors;
1024 for ( AltList::iterator func = funcFinder.alternatives.begin(); func != funcFinder.alternatives.end(); ++func ) {
1025 try {
1026 PRINT(
1027 std::cerr << "working on alternative: " << std::endl;
1028 func->print( std::cerr, 8 );
1029 )
1030 // check if the type is pointer to function
1031 if ( PointerType *pointer = dynamic_cast< PointerType* >( func->expr->result->stripReferences() ) ) {
1032 if ( FunctionType *function = dynamic_cast< FunctionType* >( pointer->base ) ) {
1033 Alternative newFunc( *func );
1034 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
1035 makeFunctionAlternatives( newFunc, function, argExpansions,
1036 std::back_inserter( candidates ) );
1037 }
1038 } else if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( func->expr->result->stripReferences() ) ) { // handle ftype (e.g. *? on function pointer)
1039 if ( const EqvClass *eqvClass = func->env.lookup( typeInst->name ) ) {
1040 if ( FunctionType *function = dynamic_cast< FunctionType* >( eqvClass->type ) ) {
1041 Alternative newFunc( *func );
1042 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
1043 makeFunctionAlternatives( newFunc, function, argExpansions,
1044 std::back_inserter( candidates ) );
1045 } // if
1046 } // if
1047 }
1048 } catch ( SemanticErrorException &e ) {
1049 errors.append( e );
1050 }
1051 } // for
1052
1053 // try each function operator ?() with each function alternative
1054 if ( ! funcOpFinder.alternatives.empty() ) {
1055 // add exploded function alternatives to front of argument list
1056 std::vector<ExplodedActual> funcE;
1057 funcE.reserve( funcFinder.alternatives.size() );
1058 for ( const Alternative& actual : funcFinder ) {
1059 funcE.emplace_back( actual, indexer );
1060 }
1061 argExpansions.insert( argExpansions.begin(), move(funcE) );
1062
1063 for ( AltList::iterator funcOp = funcOpFinder.alternatives.begin();
1064 funcOp != funcOpFinder.alternatives.end(); ++funcOp ) {
1065 try {
1066 // check if type is a pointer to function
1067 if ( PointerType* pointer = dynamic_cast<PointerType*>(
1068 funcOp->expr->result->stripReferences() ) ) {
1069 if ( FunctionType* function =
1070 dynamic_cast<FunctionType*>( pointer->base ) ) {
1071 Alternative newFunc( *funcOp );
1072 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
1073 makeFunctionAlternatives( newFunc, function, argExpansions,
1074 std::back_inserter( candidates ) );
1075 }
1076 }
1077 } catch ( SemanticErrorException &e ) {
1078 errors.append( e );
1079 }
1080 }
1081 }
1082
1083 // Implement SFINAE; resolution errors are only errors if there aren't any non-erroneous resolutions
1084 if ( candidates.empty() && ! errors.isEmpty() ) { throw errors; }
1085
1086 // compute conversionsion costs
1087 for ( Alternative& withFunc : candidates ) {
1088 Cost cvtCost = computeApplicationConversionCost( withFunc, indexer );
1089
1090 PRINT(
1091 ApplicationExpr *appExpr = strict_dynamic_cast< ApplicationExpr* >( withFunc.expr );
1092 PointerType *pointer = strict_dynamic_cast< PointerType* >( appExpr->function->result );
1093 FunctionType *function = strict_dynamic_cast< FunctionType* >( pointer->base );
1094 std::cerr << "Case +++++++++++++ " << appExpr->function << std::endl;
1095 std::cerr << "formals are:" << std::endl;
1096 printAll( function->parameters, std::cerr, 8 );
1097 std::cerr << "actuals are:" << std::endl;
1098 printAll( appExpr->args, std::cerr, 8 );
1099 std::cerr << "bindings are:" << std::endl;
1100 withFunc.env.print( std::cerr, 8 );
1101 std::cerr << "cost is: " << withFunc.cost << std::endl;
1102 std::cerr << "cost of conversion is:" << cvtCost << std::endl;
1103 )
1104 if ( cvtCost != Cost::infinity ) {
1105 withFunc.cvtCost = cvtCost;
1106 alternatives.push_back( withFunc );
1107 } // if
1108 } // for
1109
1110 candidates = move(alternatives);
1111
1112 // use a new list so that alternatives are not examined by addAnonConversions twice.
1113 AltList winners;
1114 findMinCost( candidates.begin(), candidates.end(), std::back_inserter( winners ) );
1115
1116 // function may return struct or union value, in which case we need to add alternatives
1117 // for implicit conversions to each of the anonymous members, must happen after findMinCost
1118 // since anon conversions are never the cheapest expression
1119 for ( const Alternative & alt : winners ) {
1120 addAnonConversions( alt );
1121 }
1122 spliceBegin( alternatives, winners );
1123
1124 if ( alternatives.empty() && targetType && ! targetType->isVoid() ) {
1125 // xxx - this is a temporary hack. If resolution is unsuccessful with a target type, try again without a
1126 // target type, since it will sometimes succeed when it wouldn't easily with target type binding. For example,
1127 // forall( otype T ) lvalue T ?[?]( T *, ptrdiff_t );
1128 // const char * x = "hello world";
1129 // unsigned char ch = x[0];
1130 // Fails with simple return type binding. First, T is bound to unsigned char, then (x: const char *) is unified
1131 // with unsigned char *, which fails because pointer base types must be unified exactly. The new resolver should
1132 // fix this issue in a more robust way.
1133 targetType = nullptr;
1134 postvisit( untypedExpr );
1135 }
1136 }
1137
1138 bool isLvalue( Expression *expr ) {
1139 // xxx - recurse into tuples?
1140 return expr->result && ( expr->get_lvalue() || dynamic_cast< ReferenceType * >( expr->result ) );
1141 }
1142
1143 void AlternativeFinder::Finder::postvisit( AddressExpr *addressExpr ) {
1144 AlternativeFinder finder( indexer, env );
1145 finder.find( addressExpr->get_arg() );
1146 for ( Alternative& alt : finder.alternatives ) {
1147 if ( isLvalue( alt.expr ) ) {
1148 alternatives.push_back(
1149 Alternative{ alt, new AddressExpr( alt.expr->clone() ), alt.cost } );
1150 } // if
1151 } // for
1152 }
1153
1154 void AlternativeFinder::Finder::postvisit( LabelAddressExpr * expr ) {
1155 alternatives.push_back( Alternative{ expr->clone(), env } );
1156 }
1157
1158 Expression * restructureCast( Expression * argExpr, Type * toType, bool isGenerated ) {
1159 if ( argExpr->get_result()->size() > 1 && ! toType->isVoid() && ! dynamic_cast<ReferenceType *>( toType ) ) {
1160 // Argument expression is a tuple and the target type is not void and not a reference type.
1161 // Cast each member of the tuple to its corresponding target type, producing the tuple of those
1162 // cast expressions. If there are more components of the tuple than components in the target type,
1163 // then excess components do not come out in the result expression (but UniqueExprs ensure that
1164 // side effects will still be done).
1165 if ( Tuples::maybeImpureIgnoreUnique( argExpr ) ) {
1166 // expressions which may contain side effects require a single unique instance of the expression.
1167 argExpr = new UniqueExpr( argExpr );
1168 }
1169 std::list< Expression * > componentExprs;
1170 for ( unsigned int i = 0; i < toType->size(); i++ ) {
1171 // cast each component
1172 TupleIndexExpr * idx = new TupleIndexExpr( argExpr->clone(), i );
1173 componentExprs.push_back( restructureCast( idx, toType->getComponent( i ), isGenerated ) );
1174 }
1175 delete argExpr;
1176 assert( componentExprs.size() > 0 );
1177 // produce the tuple of casts
1178 return new TupleExpr( componentExprs );
1179 } else {
1180 // handle normally
1181 CastExpr * ret = new CastExpr( argExpr, toType->clone() );
1182 ret->isGenerated = isGenerated;
1183 return ret;
1184 }
1185 }
1186
1187 void AlternativeFinder::Finder::postvisit( CastExpr *castExpr ) {
1188 Type *& toType = castExpr->get_result();
1189 assert( toType );
1190 toType = resolveTypeof( toType, indexer );
1191 assert(!dynamic_cast<TypeofType *>(toType));
1192 SymTab::validateType( toType, &indexer );
1193 adjustExprType( toType, env, indexer );
1194
1195 AlternativeFinder finder( indexer, env );
1196 finder.targetType = toType;
1197 finder.findWithAdjustment( castExpr->arg );
1198
1199 AltList candidates;
1200 for ( Alternative & alt : finder.alternatives ) {
1201 AssertionSet needAssertions( alt.need.begin(), alt.need.end() );
1202 AssertionSet haveAssertions;
1203 OpenVarSet openVars{ alt.openVars };
1204
1205 alt.env.extractOpenVars( openVars );
1206
1207 // It's possible that a cast can throw away some values in a multiply-valued expression. (An example is a
1208 // cast-to-void, which casts from one value to zero.) Figure out the prefix of the subexpression results
1209 // that are cast directly. The candidate is invalid if it has fewer results than there are types to cast
1210 // to.
1211 int discardedValues = alt.expr->result->size() - castExpr->result->size();
1212 if ( discardedValues < 0 ) continue;
1213 // xxx - may need to go into tuple types and extract relevant types and use unifyList. Note that currently, this does not
1214 // allow casting a tuple to an atomic type (e.g. (int)([1, 2, 3]))
1215 // unification run for side-effects
1216 unify( castExpr->result, alt.expr->result, alt.env, needAssertions,
1217 haveAssertions, openVars, indexer );
1218 Cost thisCost = castCost( alt.expr->result, castExpr->result, alt.expr->get_lvalue(),
1219 indexer, alt.env );
1220 PRINT(
1221 std::cerr << "working on cast with result: " << castExpr->result << std::endl;
1222 std::cerr << "and expr type: " << alt.expr->result << std::endl;
1223 std::cerr << "env: " << alt.env << std::endl;
1224 )
1225 if ( thisCost != Cost::infinity ) {
1226 PRINT(
1227 std::cerr << "has finite cost." << std::endl;
1228 )
1229 // count one safe conversion for each value that is thrown away
1230 thisCost.incSafe( discardedValues );
1231 Alternative newAlt{
1232 restructureCast( alt.expr->clone(), toType, castExpr->isGenerated ),
1233 alt.env, openVars, needAssertions, alt.cost, alt.cost + thisCost };
1234 inferParameters( newAlt, back_inserter( candidates ) );
1235 } // if
1236 } // for
1237
1238 // findMinCost selects the alternatives with the lowest "cost" members, but has the side effect of copying the
1239 // cvtCost member to the cost member (since the old cost is now irrelevant). Thus, calling findMinCost twice
1240 // selects first based on argument cost, then on conversion cost.
1241 AltList minArgCost;
1242 findMinCost( candidates.begin(), candidates.end(), std::back_inserter( minArgCost ) );
1243 findMinCost( minArgCost.begin(), minArgCost.end(), std::back_inserter( alternatives ) );
1244 }
1245
1246 void AlternativeFinder::Finder::postvisit( VirtualCastExpr * castExpr ) {
1247 assertf( castExpr->get_result(), "Implicit virtual cast targets not yet supported." );
1248 AlternativeFinder finder( indexer, env );
1249 // don't prune here, since it's guaranteed all alternatives will have the same type
1250 finder.findWithoutPrune( castExpr->get_arg() );
1251 for ( Alternative & alt : finder.alternatives ) {
1252 alternatives.push_back( Alternative{
1253 alt, new VirtualCastExpr{ alt.expr->clone(), castExpr->get_result()->clone() },
1254 alt.cost } );
1255 }
1256 }
1257
1258 void AlternativeFinder::Finder::postvisit( KeywordCastExpr * castExpr ) {
1259 assertf( castExpr->get_result(), "Cast target should have been set in Validate." );
1260 auto ref = dynamic_cast<ReferenceType*>(castExpr->get_result());
1261 assert(ref);
1262 auto inst = dynamic_cast<StructInstType*>(ref->base);
1263 assert(inst);
1264 auto target = inst->baseStruct;
1265
1266 AlternativeFinder finder( indexer, env );
1267
1268 auto pick_alternatives = [target, this](AltList & found, bool expect_ref) {
1269 for(auto & alt : found) {
1270 Type * expr = alt.expr->get_result();
1271 if(expect_ref) {
1272 auto res = dynamic_cast<ReferenceType*>(expr);
1273 if(!res) { continue; }
1274 expr = res->base;
1275 }
1276
1277 if(auto insttype = dynamic_cast<TypeInstType*>(expr)) {
1278 auto td = alt.env.lookup(insttype->name);
1279 if(!td) { continue; }
1280 expr = td->type;
1281 }
1282
1283 if(auto base = dynamic_cast<StructInstType*>(expr)) {
1284 if(base->baseStruct == target) {
1285 alternatives.push_back(
1286 std::move(alt)
1287 );
1288 }
1289 }
1290 }
1291 };
1292
1293 try {
1294 // Attempt 1 : turn (thread&)X into ($thread&)X.__thrd
1295 // Clone is purely for memory management
1296 std::unique_ptr<Expression> tech1 { new UntypedMemberExpr(new NameExpr(castExpr->concrete_target.field), castExpr->arg->clone()) };
1297
1298 // don't prune here, since it's guaranteed all alternatives will have the same type
1299 finder.findWithoutPrune( tech1.get() );
1300 pick_alternatives(finder.alternatives, false);
1301
1302 return;
1303 } catch(SemanticErrorException & ) {}
1304
1305 // Fallback : turn (thread&)X into ($thread&)get_thread(X)
1306 std::unique_ptr<Expression> fallback { UntypedExpr::createDeref( new UntypedExpr(new NameExpr(castExpr->concrete_target.getter), { castExpr->arg->clone() })) };
1307 // don't prune here, since it's guaranteed all alternatives will have the same type
1308 finder.findWithoutPrune( fallback.get() );
1309
1310 pick_alternatives(finder.alternatives, true);
1311
1312 // Whatever happens here, we have no more fallbacks
1313 }
1314
1315 namespace {
1316 /// Gets name from untyped member expression (member must be NameExpr)
1317 const std::string& get_member_name( UntypedMemberExpr *memberExpr ) {
1318 if ( dynamic_cast< ConstantExpr * >( memberExpr->get_member() ) ) {
1319 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );
1320 } // if
1321 NameExpr * nameExpr = dynamic_cast< NameExpr * >( memberExpr->get_member() );
1322 assert( nameExpr );
1323 return nameExpr->get_name();
1324 }
1325 }
1326
1327 void AlternativeFinder::Finder::postvisit( UntypedMemberExpr *memberExpr ) {
1328 AlternativeFinder funcFinder( indexer, env );
1329 funcFinder.findWithAdjustment( memberExpr->get_aggregate() );
1330 for ( AltList::const_iterator agg = funcFinder.alternatives.begin(); agg != funcFinder.alternatives.end(); ++agg ) {
1331 // it's okay for the aggregate expression to have reference type -- cast it to the base type to treat the aggregate as the referenced value
1332 Cost cost = agg->cost;
1333 Expression * aggrExpr = agg->expr->clone();
1334 referenceToRvalueConversion( aggrExpr, cost );
1335 std::unique_ptr<Expression> guard( aggrExpr );
1336
1337 // find member of the given type
1338 if ( StructInstType *structInst = dynamic_cast< StructInstType* >( aggrExpr->get_result() ) ) {
1339 addAggMembers( structInst, aggrExpr, *agg, cost, get_member_name(memberExpr) );
1340 } else if ( UnionInstType *unionInst = dynamic_cast< UnionInstType* >( aggrExpr->get_result() ) ) {
1341 addAggMembers( unionInst, aggrExpr, *agg, cost, get_member_name(memberExpr) );
1342 } else if ( TupleType * tupleType = dynamic_cast< TupleType * >( aggrExpr->get_result() ) ) {
1343 addTupleMembers( tupleType, aggrExpr, *agg, cost, memberExpr->get_member() );
1344 } // if
1345 } // for
1346 }
1347
1348 void AlternativeFinder::Finder::postvisit( MemberExpr *memberExpr ) {
1349 alternatives.push_back( Alternative{ memberExpr->clone(), env } );
1350 }
1351
1352 void AlternativeFinder::Finder::postvisit( NameExpr *nameExpr ) {
1353 std::list< SymTab::Indexer::IdData > declList;
1354 indexer.lookupId( nameExpr->name, declList );
1355 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )
1356 for ( auto & data : declList ) {
1357 Cost cost = Cost::zero;
1358 Expression * newExpr = data.combine( cost );
1359
1360 // addAnonAlternatives uses vector::push_back, which invalidates references to existing elements, so
1361 // can't construct in place and use vector::back
1362 Alternative newAlt{ newExpr, env, OpenVarSet{}, AssertionList{}, Cost::zero, cost };
1363 PRINT(
1364 std::cerr << "decl is ";
1365 data.id->print( std::cerr );
1366 std::cerr << std::endl;
1367 std::cerr << "newExpr is ";
1368 newExpr->print( std::cerr );
1369 std::cerr << std::endl;
1370 )
1371 renameTypes( newAlt.expr );
1372 addAnonConversions( newAlt ); // add anonymous member interpretations whenever an aggregate value type is seen as a name expression.
1373 alternatives.push_back( std::move(newAlt) );
1374 } // for
1375 }
1376
1377 void AlternativeFinder::Finder::postvisit( VariableExpr *variableExpr ) {
1378 // not sufficient to clone here, because variable's type may have changed
1379 // since the VariableExpr was originally created.
1380 alternatives.push_back( Alternative{ new VariableExpr{ variableExpr->var }, env } );
1381 }
1382
1383 void AlternativeFinder::Finder::postvisit( ConstantExpr *constantExpr ) {
1384 alternatives.push_back( Alternative{ constantExpr->clone(), env } );
1385 }
1386
1387 void AlternativeFinder::Finder::postvisit( SizeofExpr *sizeofExpr ) {
1388 if ( sizeofExpr->get_isType() ) {
1389 Type * newType = sizeofExpr->get_type()->clone();
1390 alternatives.push_back( Alternative{
1391 new SizeofExpr{ resolveTypeof( newType, indexer ) }, env } );
1392 } else {
1393 // find all alternatives for the argument to sizeof
1394 AlternativeFinder finder( indexer, env );
1395 finder.find( sizeofExpr->get_expr() );
1396 // find the lowest cost alternative among the alternatives, otherwise ambiguous
1397 AltList winners;
1398 findMinCost( finder.alternatives.begin(), finder.alternatives.end(), back_inserter( winners ) );
1399 if ( winners.size() != 1 ) {
1400 SemanticError( sizeofExpr->get_expr(), "Ambiguous expression in sizeof operand: " );
1401 } // if
1402 // return the lowest cost alternative for the argument
1403 Alternative &choice = winners.front();
1404 referenceToRvalueConversion( choice.expr, choice.cost );
1405 alternatives.push_back( Alternative{
1406 choice, new SizeofExpr( choice.expr->clone() ), Cost::zero } );
1407 } // if
1408 }
1409
1410 void AlternativeFinder::Finder::postvisit( AlignofExpr *alignofExpr ) {
1411 if ( alignofExpr->get_isType() ) {
1412 Type * newType = alignofExpr->get_type()->clone();
1413 alternatives.push_back( Alternative{
1414 new AlignofExpr{ resolveTypeof( newType, indexer ) }, env } );
1415 } else {
1416 // find all alternatives for the argument to sizeof
1417 AlternativeFinder finder( indexer, env );
1418 finder.find( alignofExpr->get_expr() );
1419 // find the lowest cost alternative among the alternatives, otherwise ambiguous
1420 AltList winners;
1421 findMinCost( finder.alternatives.begin(), finder.alternatives.end(), back_inserter( winners ) );
1422 if ( winners.size() != 1 ) {
1423 SemanticError( alignofExpr->get_expr(), "Ambiguous expression in alignof operand: " );
1424 } // if
1425 // return the lowest cost alternative for the argument
1426 Alternative &choice = winners.front();
1427 referenceToRvalueConversion( choice.expr, choice.cost );
1428 alternatives.push_back( Alternative{
1429 choice, new AlignofExpr{ choice.expr->clone() }, Cost::zero } );
1430 } // if
1431 }
1432
1433 template< typename StructOrUnionType >
1434 void AlternativeFinder::Finder::addOffsetof( StructOrUnionType *aggInst, const std::string &name ) {
1435 std::list< Declaration* > members;
1436 aggInst->lookup( name, members );
1437 for ( std::list< Declaration* >::const_iterator i = members.begin(); i != members.end(); ++i ) {
1438 if ( DeclarationWithType *dwt = dynamic_cast< DeclarationWithType* >( *i ) ) {
1439 alternatives.push_back( Alternative{
1440 new OffsetofExpr{ aggInst->clone(), dwt }, env } );
1441 renameTypes( alternatives.back().expr );
1442 } else {
1443 assert( false );
1444 }
1445 }
1446 }
1447
1448 void AlternativeFinder::Finder::postvisit( UntypedOffsetofExpr *offsetofExpr ) {
1449 AlternativeFinder funcFinder( indexer, env );
1450 // xxx - resolveTypeof?
1451 if ( StructInstType *structInst = dynamic_cast< StructInstType* >( offsetofExpr->get_type() ) ) {
1452 addOffsetof( structInst, offsetofExpr->member );
1453 } else if ( UnionInstType *unionInst = dynamic_cast< UnionInstType* >( offsetofExpr->get_type() ) ) {
1454 addOffsetof( unionInst, offsetofExpr->member );
1455 }
1456 }
1457
1458 void AlternativeFinder::Finder::postvisit( OffsetofExpr *offsetofExpr ) {
1459 alternatives.push_back( Alternative{ offsetofExpr->clone(), env } );
1460 }
1461
1462 void AlternativeFinder::Finder::postvisit( OffsetPackExpr *offsetPackExpr ) {
1463 alternatives.push_back( Alternative{ offsetPackExpr->clone(), env } );
1464 }
1465
1466 void AlternativeFinder::Finder::postvisit( LogicalExpr * logicalExpr ) {
1467 AlternativeFinder firstFinder( indexer, env );
1468 firstFinder.findWithAdjustment( logicalExpr->get_arg1() );
1469 if ( firstFinder.alternatives.empty() ) return;
1470 AlternativeFinder secondFinder( indexer, env );
1471 secondFinder.findWithAdjustment( logicalExpr->get_arg2() );
1472 if ( secondFinder.alternatives.empty() ) return;
1473 for ( const Alternative & first : firstFinder.alternatives ) {
1474 for ( const Alternative & second : secondFinder.alternatives ) {
1475 TypeEnvironment compositeEnv{ first.env };
1476 compositeEnv.simpleCombine( second.env );
1477 OpenVarSet openVars{ first.openVars };
1478 mergeOpenVars( openVars, second.openVars );
1479 AssertionSet need;
1480 cloneAll( first.need, need );
1481 cloneAll( second.need, need );
1482
1483 LogicalExpr *newExpr = new LogicalExpr{
1484 first.expr->clone(), second.expr->clone(), logicalExpr->get_isAnd() };
1485 alternatives.push_back( Alternative{
1486 newExpr, std::move(compositeEnv), std::move(openVars),
1487 AssertionList( need.begin(), need.end() ), first.cost + second.cost } );
1488 }
1489 }
1490 }
1491
1492 void AlternativeFinder::Finder::postvisit( ConditionalExpr *conditionalExpr ) {
1493 // find alternatives for condition
1494 AlternativeFinder firstFinder( indexer, env );
1495 firstFinder.findWithAdjustment( conditionalExpr->arg1 );
1496 if ( firstFinder.alternatives.empty() ) return;
1497 // find alternatives for true expression
1498 AlternativeFinder secondFinder( indexer, env );
1499 secondFinder.findWithAdjustment( conditionalExpr->arg2 );
1500 if ( secondFinder.alternatives.empty() ) return;
1501 // find alterantives for false expression
1502 AlternativeFinder thirdFinder( indexer, env );
1503 thirdFinder.findWithAdjustment( conditionalExpr->arg3 );
1504 if ( thirdFinder.alternatives.empty() ) return;
1505 for ( const Alternative & first : firstFinder.alternatives ) {
1506 for ( const Alternative & second : secondFinder.alternatives ) {
1507 for ( const Alternative & third : thirdFinder.alternatives ) {
1508 TypeEnvironment compositeEnv{ first.env };
1509 compositeEnv.simpleCombine( second.env );
1510 compositeEnv.simpleCombine( third.env );
1511 OpenVarSet openVars{ first.openVars };
1512 mergeOpenVars( openVars, second.openVars );
1513 mergeOpenVars( openVars, third.openVars );
1514 AssertionSet need;
1515 cloneAll( first.need, need );
1516 cloneAll( second.need, need );
1517 cloneAll( third.need, need );
1518 AssertionSet have;
1519
1520 // unify true and false types, then infer parameters to produce new alternatives
1521 Type* commonType = nullptr;
1522 if ( unify( second.expr->result, third.expr->result, compositeEnv,
1523 need, have, openVars, indexer, commonType ) ) {
1524 ConditionalExpr *newExpr = new ConditionalExpr{
1525 first.expr->clone(), second.expr->clone(), third.expr->clone() };
1526 newExpr->result = commonType ? commonType : second.expr->result->clone();
1527 // convert both options to the conditional result type
1528 Cost cost = first.cost + second.cost + third.cost;
1529 cost += computeExpressionConversionCost(
1530 newExpr->arg2, newExpr->result, indexer, compositeEnv );
1531 cost += computeExpressionConversionCost(
1532 newExpr->arg3, newExpr->result, indexer, compositeEnv );
1533 // output alternative
1534 Alternative newAlt{
1535 newExpr, std::move(compositeEnv), std::move(openVars),
1536 AssertionList( need.begin(), need.end() ), cost };
1537 inferParameters( newAlt, back_inserter( alternatives ) );
1538 } // if
1539 } // for
1540 } // for
1541 } // for
1542 }
1543
1544 void AlternativeFinder::Finder::postvisit( CommaExpr *commaExpr ) {
1545 TypeEnvironment newEnv( env );
1546 Expression *newFirstArg = resolveInVoidContext( commaExpr->get_arg1(), indexer, newEnv );
1547 AlternativeFinder secondFinder( indexer, newEnv );
1548 secondFinder.findWithAdjustment( commaExpr->get_arg2() );
1549 for ( const Alternative & alt : secondFinder.alternatives ) {
1550 alternatives.push_back( Alternative{
1551 alt, new CommaExpr{ newFirstArg->clone(), alt.expr->clone() }, alt.cost } );
1552 } // for
1553 delete newFirstArg;
1554 }
1555
1556 void AlternativeFinder::Finder::postvisit( RangeExpr * rangeExpr ) {
1557 // resolve low and high, accept alternatives whose low and high types unify
1558 AlternativeFinder firstFinder( indexer, env );
1559 firstFinder.findWithAdjustment( rangeExpr->low );
1560 if ( firstFinder.alternatives.empty() ) return;
1561 AlternativeFinder secondFinder( indexer, env );
1562 secondFinder.findWithAdjustment( rangeExpr->high );
1563 if ( secondFinder.alternatives.empty() ) return;
1564 for ( const Alternative & first : firstFinder.alternatives ) {
1565 for ( const Alternative & second : secondFinder.alternatives ) {
1566 TypeEnvironment compositeEnv{ first.env };
1567 compositeEnv.simpleCombine( second.env );
1568 OpenVarSet openVars{ first.openVars };
1569 mergeOpenVars( openVars, second.openVars );
1570 AssertionSet need;
1571 cloneAll( first.need, need );
1572 cloneAll( second.need, need );
1573 AssertionSet have;
1574
1575 Type* commonType = nullptr;
1576 if ( unify( first.expr->result, second.expr->result, compositeEnv, need, have,
1577 openVars, indexer, commonType ) ) {
1578 RangeExpr * newExpr =
1579 new RangeExpr{ first.expr->clone(), second.expr->clone() };
1580 newExpr->result = commonType ? commonType : first.expr->result->clone();
1581 Alternative newAlt{
1582 newExpr, std::move(compositeEnv), std::move(openVars),
1583 AssertionList( need.begin(), need.end() ), first.cost + second.cost };
1584 inferParameters( newAlt, back_inserter( alternatives ) );
1585 } // if
1586 } // for
1587 } // for
1588 }
1589
1590 void AlternativeFinder::Finder::postvisit( UntypedTupleExpr *tupleExpr ) {
1591 std::vector< AlternativeFinder > subExprAlternatives;
1592 altFinder.findSubExprs( tupleExpr->get_exprs().begin(), tupleExpr->get_exprs().end(),
1593 back_inserter( subExprAlternatives ) );
1594 std::vector< AltList > possibilities;
1595 combos( subExprAlternatives.begin(), subExprAlternatives.end(),
1596 back_inserter( possibilities ) );
1597 for ( const AltList& alts : possibilities ) {
1598 std::list< Expression * > exprs;
1599 makeExprList( alts, exprs );
1600
1601 TypeEnvironment compositeEnv;
1602 OpenVarSet openVars;
1603 AssertionSet need;
1604 for ( const Alternative& alt : alts ) {
1605 compositeEnv.simpleCombine( alt.env );
1606 mergeOpenVars( openVars, alt.openVars );
1607 cloneAll( alt.need, need );
1608 }
1609
1610 alternatives.push_back( Alternative{
1611 new TupleExpr{ exprs }, std::move(compositeEnv), std::move(openVars),
1612 AssertionList( need.begin(), need.end() ), sumCost( alts ) } );
1613 } // for
1614 }
1615
1616 void AlternativeFinder::Finder::postvisit( TupleExpr *tupleExpr ) {
1617 alternatives.push_back( Alternative{ tupleExpr->clone(), env } );
1618 }
1619
1620 void AlternativeFinder::Finder::postvisit( ImplicitCopyCtorExpr * impCpCtorExpr ) {
1621 alternatives.push_back( Alternative{ impCpCtorExpr->clone(), env } );
1622 }
1623
1624 void AlternativeFinder::Finder::postvisit( ConstructorExpr * ctorExpr ) {
1625 AlternativeFinder finder( indexer, env );
1626 // don't prune here, since it's guaranteed all alternatives will have the same type
1627 // (giving the alternatives different types is half of the point of ConstructorExpr nodes)
1628 finder.findWithoutPrune( ctorExpr->get_callExpr() );
1629 for ( Alternative & alt : finder.alternatives ) {
1630 alternatives.push_back( Alternative{
1631 alt, new ConstructorExpr( alt.expr->clone() ), alt.cost } );
1632 }
1633 }
1634
1635 void AlternativeFinder::Finder::postvisit( TupleIndexExpr *tupleExpr ) {
1636 alternatives.push_back( Alternative{ tupleExpr->clone(), env } );
1637 }
1638
1639 void AlternativeFinder::Finder::postvisit( TupleAssignExpr *tupleAssignExpr ) {
1640 alternatives.push_back( Alternative{ tupleAssignExpr->clone(), env } );
1641 }
1642
1643 void AlternativeFinder::Finder::postvisit( UniqueExpr *unqExpr ) {
1644 AlternativeFinder finder( indexer, env );
1645 finder.findWithAdjustment( unqExpr->get_expr() );
1646 for ( Alternative & alt : finder.alternatives ) {
1647 // ensure that the id is passed on to the UniqueExpr alternative so that the expressions are "linked"
1648 UniqueExpr * newUnqExpr = new UniqueExpr( alt.expr->clone(), unqExpr->get_id() );
1649 alternatives.push_back( Alternative{ alt, newUnqExpr, alt.cost } );
1650 }
1651 }
1652
1653 void AlternativeFinder::Finder::postvisit( StmtExpr *stmtExpr ) {
1654 StmtExpr * newStmtExpr = stmtExpr->clone();
1655 ResolvExpr::resolveStmtExpr( newStmtExpr, indexer );
1656 // xxx - this env is almost certainly wrong, and needs to somehow contain the combined environments from all of the statements in the stmtExpr...
1657 alternatives.push_back( Alternative{ newStmtExpr, env } );
1658 }
1659
1660 void AlternativeFinder::Finder::postvisit( UntypedInitExpr *initExpr ) {
1661 // handle each option like a cast
1662 AltList candidates;
1663 PRINT(
1664 std::cerr << "untyped init expr: " << initExpr << std::endl;
1665 )
1666 // O(N^2) checks of d-types with e-types
1667 for ( InitAlternative & initAlt : initExpr->get_initAlts() ) {
1668 Type * toType = resolveTypeof( initAlt.type->clone(), indexer );
1669 SymTab::validateType( toType, &indexer );
1670 adjustExprType( toType, env, indexer );
1671 // Ideally the call to findWithAdjustment could be moved out of the loop, but unfortunately it currently has to occur inside or else
1672 // polymorphic return types are not properly bound to the initialization type, since return type variables are only open for the duration of resolving
1673 // the UntypedExpr. This is only actually an issue in initialization contexts that allow more than one possible initialization type, but it is still suboptimal.
1674 AlternativeFinder finder( indexer, env );
1675 finder.targetType = toType;
1676 finder.findWithAdjustment( initExpr->expr );
1677 for ( Alternative & alt : finder.get_alternatives() ) {
1678 TypeEnvironment newEnv( alt.env );
1679 AssertionSet need;
1680 cloneAll( alt.need, need );
1681 AssertionSet have;
1682 OpenVarSet openVars( alt.openVars );
1683 // xxx - find things in env that don't have a "representative type" and claim
1684 // those are open vars?
1685 PRINT(
1686 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;
1687 )
1688 // It's possible that a cast can throw away some values in a multiply-valued
1689 // expression. (An example is a cast-to-void, which casts from one value to
1690 // zero.) Figure out the prefix of the subexpression results that are cast
1691 // directly. The candidate is invalid if it has fewer results than there are
1692 // types to cast to.
1693 int discardedValues = alt.expr->result->size() - toType->size();
1694 if ( discardedValues < 0 ) continue;
1695 // xxx - may need to go into tuple types and extract relevant types and use
1696 // unifyList. Note that currently, this does not allow casting a tuple to an
1697 // atomic type (e.g. (int)([1, 2, 3]))
1698
1699 // unification run for side-effects
1700 unify( toType, alt.expr->result, newEnv, need, have, openVars, indexer );
1701 // xxx - do some inspecting on this line... why isn't result bound to initAlt.type?
1702
1703 Cost thisCost = castCost( alt.expr->result, toType, alt.expr->get_lvalue(),
1704 indexer, newEnv );
1705 if ( thisCost != Cost::infinity ) {
1706 // count one safe conversion for each value that is thrown away
1707 thisCost.incSafe( discardedValues );
1708 Alternative newAlt{
1709 new InitExpr{
1710 restructureCast( alt.expr->clone(), toType, true ), initAlt.designation->clone() },
1711 std::move(newEnv), std::move(openVars),
1712 AssertionList( need.begin(), need.end() ), alt.cost, thisCost };
1713 inferParameters( newAlt, back_inserter( candidates ) );
1714 }
1715 }
1716 }
1717
1718 // findMinCost selects the alternatives with the lowest "cost" members, but has the side effect of copying the
1719 // cvtCost member to the cost member (since the old cost is now irrelevant). Thus, calling findMinCost twice
1720 // selects first based on argument cost, then on conversion cost.
1721 AltList minArgCost;
1722 findMinCost( candidates.begin(), candidates.end(), std::back_inserter( minArgCost ) );
1723 findMinCost( minArgCost.begin(), minArgCost.end(), std::back_inserter( alternatives ) );
1724 }
1725
1726 void AlternativeFinder::Finder::postvisit( InitExpr * ) {
1727 assertf( false, "AlternativeFinder should never see a resolved InitExpr." );
1728 }
1729
1730 void AlternativeFinder::Finder::postvisit( DeletedExpr * ) {
1731 assertf( false, "AlternativeFinder should never see a DeletedExpr." );
1732 }
1733
1734 void AlternativeFinder::Finder::postvisit( GenericExpr * ) {
1735 assertf( false, "_Generic is not yet supported." );
1736 }
1737} // namespace ResolvExpr
1738
1739// Local Variables: //
1740// tab-width: 4 //
1741// mode: c++ //
1742// compile-command: "make install" //
1743// End: //
Note: See TracBrowser for help on using the repository browser.