source: src/Parser/StatementNode.cc @ e4612e3

ADTarm-ehast-experimentalenumforall-pointer-decayjacob/cs343-translationnew-ast-unique-exprpthread-emulationqualifiedEnum
Last change on this file since e4612e3 was a025ea8, checked in by Peter A. Buhr <pabuhr@…>, 4 years ago

add maybe_build_compound to always build a compound statement for control structures with a single statement

  • Property mode set to 100644
File size: 13.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// StatementNode.cc --
8//
9// Author           : Rodolfo G. Esteves
10// Created On       : Sat May 16 14:59:41 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Sat Oct 24 04:20:55 2020
13// Update Count     : 383
14//
15
16#include <cassert>                 // for assert, strict_dynamic_cast, assertf
17#include <list>                    // for list
18#include <memory>                  // for unique_ptr
19#include <string>                  // for string
20
21#include "Common/SemanticError.h"  // for SemanticError
22#include "Common/utility.h"        // for maybeMoveBuild, maybeBuild
23#include "ParseNode.h"             // for StatementNode, ExpressionNode, bui...
24#include "SynTree/Expression.h"    // for Expression, ConstantExpr
25#include "SynTree/Label.h"         // for Label, noLabels
26#include "SynTree/Declaration.h"
27#include "SynTree/Statement.h"     // for Statement, BranchStmt, CaseStmt
28#include "parserutility.h"         // for notZeroExpr
29
30class Declaration;
31
32using namespace std;
33
34
35StatementNode::StatementNode( DeclarationNode * decl ) {
36        assert( decl );
37        DeclarationNode * agg = decl->extractAggregate();
38        if ( agg ) {
39                StatementNode * nextStmt = new StatementNode( new DeclStmt( maybeBuild< Declaration >( decl ) ) );
40                set_next( nextStmt );
41                if ( decl->get_next() ) {
42                        get_next()->set_next( new StatementNode( dynamic_cast< DeclarationNode * >(decl->get_next()) ) );
43                        decl->set_next( 0 );
44                } // if
45        } else {
46                if ( decl->get_next() ) {
47                        set_next( new StatementNode( dynamic_cast< DeclarationNode * >( decl->get_next() ) ) );
48                        decl->set_next( 0 );
49                } // if
50                agg = decl;
51        } // if
52        stmt.reset( new DeclStmt( maybeMoveBuild< Declaration >(agg) ) );
53} // StatementNode::StatementNode
54
55StatementNode * StatementNode::append_last_case( StatementNode * stmt ) {
56        StatementNode * prev = this;
57        // find end of list and maintain previous pointer
58        for ( StatementNode * curr = prev; curr != nullptr; curr = (StatementNode *)curr->get_next() ) {
59                StatementNode * node = strict_dynamic_cast< StatementNode * >(curr);
60                assert( dynamic_cast< CaseStmt * >(node->stmt.get()) );
61                prev = curr;
62        } // for
63        // convert from StatementNode list to Statement list
64        StatementNode * node = dynamic_cast< StatementNode * >(prev);
65        std::list< Statement * > stmts;
66        buildMoveList( stmt, stmts );
67        // splice any new Statements to end of current Statements
68        CaseStmt * caseStmt = dynamic_cast< CaseStmt * >(node->stmt.get());
69        caseStmt->get_statements().splice( caseStmt->get_statements().end(), stmts );
70        return this;
71} // StatementNode::append_last_case
72
73Statement * build_expr( ExpressionNode * ctl ) {
74        Expression * e = maybeMoveBuild< Expression >( ctl );
75
76        if ( e ) return new ExprStmt( e );
77        else return new NullStmt();
78} // build_expr
79
80Expression * build_if_control( IfCtrl * ctl, std::list< Statement * > & init ) {
81        if ( ctl->init != 0 ) {
82                buildMoveList( ctl->init, init );
83        } // if
84
85        Expression * cond = nullptr;
86        if ( ctl->condition ) {
87                // compare the provided condition against 0
88                cond = notZeroExpr( maybeMoveBuild< Expression >(ctl->condition) );
89        } else {
90                for ( Statement * stmt : init ) {
91                        // build the && of all of the declared variables compared against 0
92                        DeclStmt * declStmt = strict_dynamic_cast< DeclStmt * >( stmt );
93                        DeclarationWithType * dwt = strict_dynamic_cast< DeclarationWithType * >( declStmt->decl );
94                        Expression * nze = notZeroExpr( new VariableExpr( dwt ) );
95                        cond = cond ? new LogicalExpr( cond, nze, true ) : nze;
96                }
97        }
98        delete ctl;
99        return cond;
100} // build_if_control
101
102Statement * build_if( IfCtrl * ctl, StatementNode * then_stmt, StatementNode * else_stmt ) {
103        Statement * thenb, * elseb = nullptr;
104        std::list< Statement * > branches;
105        buildMoveList< Statement, StatementNode >( then_stmt, branches );
106        assert( branches.size() == 1 );
107        thenb = branches.front();
108
109        if ( else_stmt ) {
110                std::list< Statement * > branches;
111                buildMoveList< Statement, StatementNode >( else_stmt, branches );
112                assert( branches.size() == 1 );
113                elseb = branches.front();
114        } // if
115
116        std::list< Statement * > init;
117        Expression * cond = build_if_control( ctl, init );
118        return new IfStmt( cond, thenb, elseb, init );
119} // build_if
120
121Statement * build_switch( bool isSwitch, ExpressionNode * ctl, StatementNode * stmt ) {
122        std::list< Statement * > branches;
123        buildMoveList< Statement, StatementNode >( stmt, branches );
124        if ( ! isSwitch ) {                                                                             // choose statement
125                for ( Statement * stmt : branches ) {
126                        CaseStmt * caseStmt = strict_dynamic_cast< CaseStmt * >( stmt );
127                        if ( ! caseStmt->stmts.empty() ) {                      // code after "case" => end of case list
128                                CompoundStmt * block = strict_dynamic_cast< CompoundStmt * >( caseStmt->stmts.front() );
129                                block->kids.push_back( new BranchStmt( "", BranchStmt::Break ) );
130                        } // if
131                } // for
132        } // if
133        // branches.size() == 0 for switch (...) {}, i.e., no declaration or statements
134        return new SwitchStmt( maybeMoveBuild< Expression >(ctl), branches );
135} // build_switch
136
137Statement * build_case( ExpressionNode * ctl ) {
138        std::list< Statement * > branches;
139        return new CaseStmt( maybeMoveBuild< Expression >(ctl), branches );
140} // build_case
141
142Statement * build_default() {
143        std::list< Statement * > branches;
144        return new CaseStmt( nullptr, branches, true );
145} // build_default
146
147Statement * build_while( IfCtrl * ctl, StatementNode * stmt ) {
148        std::list< Statement * > branches;
149        buildMoveList< Statement, StatementNode >( stmt, branches );
150        assert( branches.size() == 1 );
151
152        std::list< Statement * > init;
153        Expression * cond = build_if_control( ctl, init );
154        return new WhileStmt( cond, branches.front(), init, false );
155} // build_while
156
157Statement * build_do_while( ExpressionNode * ctl, StatementNode * stmt ) {
158        std::list< Statement * > branches;
159        buildMoveList< Statement, StatementNode >( stmt, branches );
160        assert( branches.size() == 1 );
161
162        std::list< Statement * > init;
163        return new WhileStmt( notZeroExpr( maybeMoveBuild< Expression >(ctl) ), branches.front(), init, true );
164} // build_do_while
165
166Statement * build_for( ForCtrl * forctl, StatementNode * stmt ) {
167        std::list< Statement * > branches;
168        buildMoveList< Statement, StatementNode >( stmt, branches );
169        assert( branches.size() == 1 );
170
171        std::list< Statement * > init;
172        if ( forctl->init != 0 ) {
173                buildMoveList( forctl->init, init );
174        } // if
175
176        Expression * cond = 0;
177        if ( forctl->condition != 0 )
178                cond = notZeroExpr( maybeMoveBuild< Expression >(forctl->condition) );
179
180        Expression * incr = 0;
181        if ( forctl->change != 0 )
182                incr = maybeMoveBuild< Expression >(forctl->change);
183
184        delete forctl;
185        return new ForStmt( init, cond, incr, branches.front() );
186} // build_for
187
188Statement * build_branch( BranchStmt::Type kind ) {
189        Statement * ret = new BranchStmt( "", kind );
190        return ret;
191} // build_branch
192
193Statement * build_branch( std::string * identifier, BranchStmt::Type kind ) {
194        Statement * ret = new BranchStmt( * identifier, kind );
195        delete identifier;                                                                      // allocated by lexer
196        return ret;
197} // build_branch
198
199Statement * build_computedgoto( ExpressionNode * ctl ) {
200        return new BranchStmt( maybeMoveBuild< Expression >(ctl), BranchStmt::Goto );
201} // build_computedgoto
202
203Statement * build_return( ExpressionNode * ctl ) {
204        std::list< Expression * > exps;
205        buildMoveList( ctl, exps );
206        return new ReturnStmt( exps.size() > 0 ? exps.back() : nullptr );
207} // build_return
208
209Statement * build_throw( ExpressionNode * ctl ) {
210        std::list< Expression * > exps;
211        buildMoveList( ctl, exps );
212        assertf( exps.size() < 2, "This means we are leaking memory");
213        return new ThrowStmt( ThrowStmt::Terminate, !exps.empty() ? exps.back() : nullptr );
214} // build_throw
215
216Statement * build_resume( ExpressionNode * ctl ) {
217        std::list< Expression * > exps;
218        buildMoveList( ctl, exps );
219        assertf( exps.size() < 2, "This means we are leaking memory");
220        return new ThrowStmt( ThrowStmt::Resume, !exps.empty() ? exps.back() : nullptr );
221} // build_resume
222
223Statement * build_resume_at( ExpressionNode * ctl, ExpressionNode * target ) {
224        (void)ctl;
225        (void)target;
226        assertf( false, "resume at (non-local throw) is not yet supported," );
227} // build_resume_at
228
229Statement * build_try( StatementNode * try_stmt, StatementNode * catch_stmt, StatementNode * finally_stmt ) {
230        std::list< CatchStmt * > branches;
231        buildMoveList< CatchStmt, StatementNode >( catch_stmt, branches );
232        CompoundStmt * tryBlock = strict_dynamic_cast< CompoundStmt * >(maybeMoveBuild< Statement >(try_stmt));
233        FinallyStmt * finallyBlock = dynamic_cast< FinallyStmt * >(maybeMoveBuild< Statement >(finally_stmt) );
234        return new TryStmt( tryBlock, branches, finallyBlock );
235} // build_try
236
237Statement * build_catch( CatchStmt::Kind kind, DeclarationNode * decl, ExpressionNode * cond, StatementNode * body ) {
238        std::list< Statement * > branches;
239        buildMoveList< Statement, StatementNode >( body, branches );
240        assert( branches.size() == 1 );
241        return new CatchStmt( kind, maybeMoveBuild< Declaration >(decl), maybeMoveBuild< Expression >(cond), branches.front() );
242} // build_catch
243
244Statement * build_finally( StatementNode * stmt ) {
245        std::list< Statement * > branches;
246        buildMoveList< Statement, StatementNode >( stmt, branches );
247        assert( branches.size() == 1 );
248        return new FinallyStmt( dynamic_cast< CompoundStmt * >( branches.front() ) );
249} // build_finally
250
251SuspendStmt * build_suspend( StatementNode * then, SuspendStmt::Type type ) {
252        auto node = new SuspendStmt();
253
254        node->type = type;
255
256        std::list< Statement * > stmts;
257        buildMoveList< Statement, StatementNode >( then, stmts );
258        if(!stmts.empty()) {
259                assert( stmts.size() == 1 );
260                node->then = dynamic_cast< CompoundStmt * >( stmts.front() );
261        }
262
263        return node;
264}
265
266WaitForStmt * build_waitfor( ExpressionNode * targetExpr, StatementNode * stmt, ExpressionNode * when ) {
267        auto node = new WaitForStmt();
268
269        WaitForStmt::Target target;
270        target.function = maybeBuild<Expression>( targetExpr );
271
272        ExpressionNode * next = dynamic_cast<ExpressionNode *>( targetExpr->get_next() );
273        targetExpr->set_next( nullptr );
274        buildMoveList< Expression >( next, target.arguments );
275
276        delete targetExpr;
277
278        node->clauses.push_back( WaitForStmt::Clause{
279                target,
280                maybeMoveBuild<Statement >( stmt ),
281                notZeroExpr( maybeMoveBuild<Expression>( when ) )
282        });
283
284        return node;
285} // build_waitfor
286
287WaitForStmt * build_waitfor( ExpressionNode * targetExpr, StatementNode * stmt, ExpressionNode * when, WaitForStmt * node ) {
288        WaitForStmt::Target target;
289        target.function = maybeBuild<Expression>( targetExpr );
290
291        ExpressionNode * next = dynamic_cast<ExpressionNode *>( targetExpr->get_next() );
292        targetExpr->set_next( nullptr );
293        buildMoveList< Expression >( next, target.arguments );
294
295        delete targetExpr;
296
297        node->clauses.insert( node->clauses.begin(), WaitForStmt::Clause{
298                std::move( target ),
299                maybeMoveBuild<Statement >( stmt ),
300                notZeroExpr( maybeMoveBuild<Expression>( when ) )
301        });
302
303        return node;
304} // build_waitfor
305
306WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when ) {
307        auto node = new WaitForStmt();
308
309        if( timeout ) {
310                node->timeout.time      = maybeMoveBuild<Expression>( timeout );
311                node->timeout.statement = maybeMoveBuild<Statement >( stmt    );
312                node->timeout.condition = notZeroExpr( maybeMoveBuild<Expression>( when ) );
313        } else {
314                node->orelse.statement  = maybeMoveBuild<Statement >( stmt );
315                node->orelse.condition  = notZeroExpr( maybeMoveBuild<Expression>( when ) );
316        } // if
317
318        return node;
319} // build_waitfor_timeout
320
321WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when,  StatementNode * else_stmt, ExpressionNode * else_when ) {
322        auto node = new WaitForStmt();
323
324        node->timeout.time      = maybeMoveBuild<Expression>( timeout );
325        node->timeout.statement = maybeMoveBuild<Statement >( stmt    );
326        node->timeout.condition = notZeroExpr( maybeMoveBuild<Expression>( when ) );
327
328        node->orelse.statement  = maybeMoveBuild<Statement >( else_stmt );
329        node->orelse.condition  = notZeroExpr( maybeMoveBuild<Expression>( else_when ) );
330
331        return node;
332} // build_waitfor_timeout
333
334Statement * build_with( ExpressionNode * exprs, StatementNode * stmt ) {
335        std::list< Expression * > e;
336        buildMoveList( exprs, e );
337        Statement * s = maybeMoveBuild<Statement>( stmt );
338        return new DeclStmt( new WithStmt( e, s ) );
339} // build_with
340
341Statement * build_compound( StatementNode * first ) {
342        CompoundStmt * cs = new CompoundStmt();
343        buildMoveList( first, cs->get_kids() );
344        return cs;
345} // build_compound
346
347// A single statement in a control structure is always converted to a compound statement so subsequent generated code
348// can be placed within this compound statement. Otherwise, code generation has to constantly check for a single
349// statement and wrap it into a compound statement to insert additional code. Hence, all control structures have a
350// conical form for code generation.
351StatementNode * maybe_build_compound( StatementNode * first ) {
352        // Optimization: if the control-structure statement is a compound statement, do not wrap it.
353        // e.g., if (...) {...} do not wrap the existing compound statement.
354        if ( ! dynamic_cast<CompoundStmt *>( first->stmt.get() ) ) { // unique_ptr
355                CompoundStmt * cs = new CompoundStmt();
356                buildMoveList( first, cs->get_kids() );
357                return new StatementNode( cs );
358        } // if
359        return first;
360} // maybe_build_compound
361
362Statement * build_asm( bool voltile, Expression * instruction, ExpressionNode * output, ExpressionNode * input, ExpressionNode * clobber, LabelNode * gotolabels ) {
363        std::list< Expression * > out, in;
364        std::list< ConstantExpr * > clob;
365
366        buildMoveList( output, out );
367        buildMoveList( input, in );
368        buildMoveList( clobber, clob );
369        return new AsmStmt( voltile, instruction, out, in, clob, gotolabels ? gotolabels->labels : noLabels );
370} // build_asm
371
372Statement * build_directive( string * directive ) {
373        return new DirectiveStmt( *directive );
374} // build_directive
375
376// Local Variables: //
377// tab-width: 4 //
378// mode: c++ //
379// compile-command: "make install" //
380// End: //
Note: See TracBrowser for help on using the repository browser.