source: src/Parser/StatementNode.cc@ 1931bb01

ADT ast-experimental pthread-emulation qualifiedEnum
Last change on this file since 1931bb01 was f135b50, checked in by JiadaL <j82liang@…>, 4 years ago

The compiler is now trying to pass the value of enum const to code gen; but it won't work cause we must be able to evaluate the const_expr in compiler time. It is not currently passed as a Expression but won't be able to evaluate at compile time

  • Property mode set to 100644
File size: 14.9 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// StatementNode.cc -- Transform from parse data-structures to AST data-structures, usually deleting the parse
8// data-structure after the transformation.
9//
10// Author : Rodolfo G. Esteves
11// Created On : Sat May 16 14:59:41 2015
12// Last Modified By : Peter A. Buhr
13// Last Modified On : Wed Feb 2 20:29:30 2022
14// Update Count : 425
15//
16
17#include <cassert> // for assert, strict_dynamic_cast, assertf
18#include <list> // for list
19#include <memory> // for unique_ptr
20#include <string> // for string
21
22#include "Common/SemanticError.h" // for SemanticError
23#include "Common/utility.h" // for maybeMoveBuild, maybeBuild
24#include "ParseNode.h" // for StatementNode, ExpressionNode, bui...
25#include "SynTree/Expression.h" // for Expression, ConstantExpr
26#include "SynTree/Label.h" // for Label, noLabels
27#include "SynTree/Declaration.h"
28#include "SynTree/Statement.h" // for Statement, BranchStmt, CaseStmt
29#include "parserutility.h" // for notZeroExpr
30
31class Declaration;
32
33using namespace std;
34
35
36StatementNode::StatementNode( DeclarationNode * decl ) {
37 assert( decl );
38 DeclarationNode * agg = decl->extractAggregate();
39 if ( agg ) {
40 StatementNode * nextStmt = new StatementNode( new DeclStmt( maybeBuild< Declaration >( decl ) ) );
41 set_next( nextStmt );
42 if ( decl->get_next() ) {
43 get_next()->set_next( new StatementNode( dynamic_cast< DeclarationNode * >(decl->get_next()) ) );
44 decl->set_next( 0 );
45 } // if
46 } else {
47 if ( decl->get_next() ) {
48 set_next( new StatementNode( dynamic_cast< DeclarationNode * >( decl->get_next() ) ) );
49 decl->set_next( 0 );
50 } // if
51 agg = decl;
52 } // if
53 stmt.reset( new DeclStmt( maybeMoveBuild< Declaration >(agg) ) );
54} // StatementNode::StatementNode
55
56StatementNode * StatementNode::append_last_case( StatementNode * stmt ) {
57 StatementNode * prev = this;
58 // find end of list and maintain previous pointer
59 for ( StatementNode * curr = prev; curr != nullptr; curr = (StatementNode *)curr->get_next() ) {
60 StatementNode * node = strict_dynamic_cast< StatementNode * >(curr);
61 assert( dynamic_cast< CaseStmt * >(node->stmt.get()) );
62 prev = curr;
63 } // for
64 // convert from StatementNode list to Statement list
65 StatementNode * node = dynamic_cast< StatementNode * >(prev);
66 list< Statement * > stmts;
67 buildMoveList( stmt, stmts );
68 // splice any new Statements to end of current Statements
69 CaseStmt * caseStmt = dynamic_cast< CaseStmt * >(node->stmt.get());
70 caseStmt->get_statements().splice( caseStmt->get_statements().end(), stmts );
71 return this;
72} // StatementNode::append_last_case
73
74Statement * build_expr( ExpressionNode * ctl ) {
75 Expression * e = maybeMoveBuild< Expression >( ctl );
76
77 if ( e ) return new ExprStmt( e );
78 else return new NullStmt();
79} // build_expr
80
81Expression * build_if_control( CondCtl * ctl, list< Statement * > & init ) {
82 if ( ctl->init != 0 ) {
83 buildMoveList( ctl->init, init );
84 } // if
85
86 Expression * cond = nullptr;
87 if ( ctl->condition ) {
88 // compare the provided condition against 0
89 cond = notZeroExpr( maybeMoveBuild< Expression >(ctl->condition) );
90 } else {
91 for ( Statement * stmt : init ) {
92 // build the && of all of the declared variables compared against 0
93 DeclStmt * declStmt = strict_dynamic_cast< DeclStmt * >( stmt );
94 DeclarationWithType * dwt = strict_dynamic_cast< DeclarationWithType * >( declStmt->decl );
95 Expression * nze = notZeroExpr( new VariableExpr( dwt ) );
96 cond = cond ? new LogicalExpr( cond, nze, true ) : nze;
97 }
98 }
99 delete ctl;
100 return cond;
101} // build_if_control
102
103Statement * build_if( CondCtl * ctl, StatementNode * then, StatementNode * else_ ) {
104 list< Statement * > astinit; // maybe empty
105 Expression * astcond = build_if_control( ctl, astinit ); // ctl deleted, cond/init set
106
107 Statement * astthen, * astelse = nullptr;
108 list< Statement * > aststmt;
109 buildMoveList< Statement, StatementNode >( then, aststmt );
110 assert( aststmt.size() == 1 );
111 astthen = aststmt.front();
112
113 if ( else_ ) {
114 list< Statement * > aststmt;
115 buildMoveList< Statement, StatementNode >( else_, aststmt );
116 assert( aststmt.size() == 1 );
117 astelse = aststmt.front();
118 } // if
119
120 return new IfStmt( astcond, astthen, astelse, astinit );
121} // build_if
122
123Statement * build_switch( bool isSwitch, ExpressionNode * ctl, StatementNode * stmt ) {
124 list< Statement * > aststmt;
125 buildMoveList< Statement, StatementNode >( stmt, aststmt );
126 if ( ! isSwitch ) { // choose statement
127 for ( Statement * stmt : aststmt ) {
128 CaseStmt * caseStmt = strict_dynamic_cast< CaseStmt * >( stmt );
129 if ( ! caseStmt->stmts.empty() ) { // code after "case" => end of case list
130 CompoundStmt * block = strict_dynamic_cast< CompoundStmt * >( caseStmt->stmts.front() );
131 block->kids.push_back( new BranchStmt( "", BranchStmt::Break ) );
132 } // if
133 } // for
134 } // if
135 // aststmt.size() == 0 for switch (...) {}, i.e., no declaration or statements
136 return new SwitchStmt( maybeMoveBuild< Expression >(ctl), aststmt );
137} // build_switch
138
139Statement * build_case( ExpressionNode * ctl ) {
140 return new CaseStmt( maybeMoveBuild< Expression >(ctl), {} ); // stmt starts empty and then added to
141} // build_case
142
143Statement * build_default() {
144 return new CaseStmt( nullptr, {}, true ); // stmt starts empty and then added to
145} // build_default
146
147Statement * build_while( CondCtl * ctl, StatementNode * stmt, StatementNode * else_ ) {
148 list< Statement * > astinit; // maybe empty
149 Expression * astcond = build_if_control( ctl, astinit ); // ctl deleted, cond/init set
150
151 list< Statement * > aststmt; // loop body, compound created if empty
152 buildMoveList< Statement, StatementNode >( stmt, aststmt );
153 assert( aststmt.size() == 1 );
154
155 list< Statement * > astelse; // else clause, maybe empty
156 buildMoveList< Statement, StatementNode >( else_, astelse );
157
158 return new WhileDoStmt( astcond, aststmt.front(), astelse.front(), astinit, false );
159} // build_while
160
161Statement * build_do_while( ExpressionNode * ctl, StatementNode * stmt, StatementNode * else_ ) {
162 list< Statement * > aststmt; // loop body, compound created if empty
163 buildMoveList< Statement, StatementNode >( stmt, aststmt );
164 assert( aststmt.size() == 1 ); // compound created if empty
165
166 list< Statement * > astelse; // else clause, maybe empty
167 buildMoveList< Statement, StatementNode >( else_, astelse );
168
169 // do-while cannot have declarations in the contitional, so init is always empty
170 return new WhileDoStmt( notZeroExpr( maybeMoveBuild< Expression >(ctl) ), aststmt.front(), astelse.front(), {}, true );
171} // build_do_while
172
173Statement * build_for( ForCtrl * forctl, StatementNode * stmt, StatementNode * else_ ) {
174 list< Statement * > astinit; // maybe empty
175 buildMoveList( forctl->init, astinit );
176
177 Expression * astcond = nullptr; // maybe empty
178 astcond = notZeroExpr( maybeMoveBuild< Expression >(forctl->condition) );
179
180 Expression * astincr = nullptr; // maybe empty
181 astincr = maybeMoveBuild< Expression >(forctl->change);
182 delete forctl;
183
184 list< Statement * > aststmt; // loop body, compound created if empty
185 buildMoveList< Statement, StatementNode >( stmt, aststmt );
186 assert( aststmt.size() == 1 );
187
188 list< Statement * > astelse; // else clause, maybe empty
189 buildMoveList< Statement, StatementNode >( else_, astelse );
190
191 return new ForStmt( astinit, astcond, astincr, aststmt.front(), astelse.front() );
192} // build_for
193
194Statement * build_branch( BranchStmt::Type kind ) {
195 Statement * ret = new BranchStmt( "", kind );
196 return ret;
197} // build_branch
198
199Statement * build_branch( string * identifier, BranchStmt::Type kind ) {
200 Statement * ret = new BranchStmt( * identifier, kind );
201 delete identifier; // allocated by lexer
202 return ret;
203} // build_branch
204
205Statement * build_computedgoto( ExpressionNode * ctl ) {
206 return new BranchStmt( maybeMoveBuild< Expression >(ctl), BranchStmt::Goto );
207} // build_computedgoto
208
209Statement * build_return( ExpressionNode * ctl ) {
210 list< Expression * > exps;
211 buildMoveList( ctl, exps );
212 return new ReturnStmt( exps.size() > 0 ? exps.back() : nullptr );
213} // build_return
214
215Statement * build_throw( ExpressionNode * ctl ) {
216 list< Expression * > exps;
217 buildMoveList( ctl, exps );
218 assertf( exps.size() < 2, "CFA internal error: leaking memory" );
219 return new ThrowStmt( ThrowStmt::Terminate, !exps.empty() ? exps.back() : nullptr );
220} // build_throw
221
222Statement * build_resume( ExpressionNode * ctl ) {
223 list< Expression * > exps;
224 buildMoveList( ctl, exps );
225 assertf( exps.size() < 2, "CFA internal error: leaking memory" );
226 return new ThrowStmt( ThrowStmt::Resume, !exps.empty() ? exps.back() : nullptr );
227} // build_resume
228
229Statement * build_resume_at( ExpressionNode * ctl, ExpressionNode * target ) {
230 (void)ctl;
231 (void)target;
232 assertf( false, "resume at (non-local throw) is not yet supported," );
233} // build_resume_at
234
235Statement * build_try( StatementNode * try_, StatementNode * catch_, StatementNode * finally_ ) {
236 list< CatchStmt * > aststmt;
237 buildMoveList< CatchStmt, StatementNode >( catch_, aststmt );
238 CompoundStmt * tryBlock = strict_dynamic_cast< CompoundStmt * >(maybeMoveBuild< Statement >(try_));
239 FinallyStmt * finallyBlock = dynamic_cast< FinallyStmt * >(maybeMoveBuild< Statement >(finally_) );
240 return new TryStmt( tryBlock, aststmt, finallyBlock );
241} // build_try
242
243Statement * build_catch( CatchStmt::Kind kind, DeclarationNode * decl, ExpressionNode * cond, StatementNode * body ) {
244 list< Statement * > aststmt;
245 buildMoveList< Statement, StatementNode >( body, aststmt );
246 assert( aststmt.size() == 1 );
247 return new CatchStmt( kind, maybeMoveBuild< Declaration >(decl), maybeMoveBuild< Expression >(cond), aststmt.front() );
248} // build_catch
249
250Statement * build_finally( StatementNode * stmt ) {
251 list< Statement * > aststmt;
252 buildMoveList< Statement, StatementNode >( stmt, aststmt );
253 assert( aststmt.size() == 1 );
254 return new FinallyStmt( dynamic_cast< CompoundStmt * >( aststmt.front() ) );
255} // build_finally
256
257SuspendStmt * build_suspend( StatementNode * then, SuspendStmt::Type type ) {
258 auto node = new SuspendStmt();
259
260 node->type = type;
261
262 list< Statement * > stmts;
263 buildMoveList< Statement, StatementNode >( then, stmts );
264 if(!stmts.empty()) {
265 assert( stmts.size() == 1 );
266 node->then = dynamic_cast< CompoundStmt * >( stmts.front() );
267 }
268
269 return node;
270}
271
272WaitForStmt * build_waitfor( ExpressionNode * targetExpr, StatementNode * stmt, ExpressionNode * when ) {
273 auto node = new WaitForStmt();
274
275 WaitForStmt::Target target;
276 target.function = maybeBuild<Expression>( targetExpr );
277
278 ExpressionNode * next = dynamic_cast<ExpressionNode *>( targetExpr->get_next() );
279 targetExpr->set_next( nullptr );
280 buildMoveList< Expression >( next, target.arguments );
281
282 delete targetExpr;
283
284 node->clauses.push_back( WaitForStmt::Clause{
285 target,
286 maybeMoveBuild<Statement >( stmt ),
287 notZeroExpr( maybeMoveBuild<Expression>( when ) )
288 });
289
290 return node;
291} // build_waitfor
292
293WaitForStmt * build_waitfor( ExpressionNode * targetExpr, StatementNode * stmt, ExpressionNode * when, WaitForStmt * node ) {
294 WaitForStmt::Target target;
295 target.function = maybeBuild<Expression>( targetExpr );
296
297 ExpressionNode * next = dynamic_cast<ExpressionNode *>( targetExpr->get_next() );
298 targetExpr->set_next( nullptr );
299 buildMoveList< Expression >( next, target.arguments );
300
301 delete targetExpr;
302
303 node->clauses.insert( node->clauses.begin(), WaitForStmt::Clause{
304 std::move( target ),
305 maybeMoveBuild<Statement >( stmt ),
306 notZeroExpr( maybeMoveBuild<Expression>( when ) )
307 });
308
309 return node;
310} // build_waitfor
311
312WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when ) {
313 auto node = new WaitForStmt();
314
315 if( timeout ) {
316 node->timeout.time = maybeMoveBuild<Expression>( timeout );
317 node->timeout.statement = maybeMoveBuild<Statement >( stmt );
318 node->timeout.condition = notZeroExpr( maybeMoveBuild<Expression>( when ) );
319 } else {
320 node->orelse.statement = maybeMoveBuild<Statement >( stmt );
321 node->orelse.condition = notZeroExpr( maybeMoveBuild<Expression>( when ) );
322 } // if
323
324 return node;
325} // build_waitfor_timeout
326
327WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when, StatementNode * else_, ExpressionNode * else_when ) {
328 auto node = new WaitForStmt();
329
330 node->timeout.time = maybeMoveBuild<Expression>( timeout );
331 node->timeout.statement = maybeMoveBuild<Statement >( stmt );
332 node->timeout.condition = notZeroExpr( maybeMoveBuild<Expression>( when ) );
333
334 node->orelse.statement = maybeMoveBuild<Statement >( else_ );
335 node->orelse.condition = notZeroExpr( maybeMoveBuild<Expression>( else_when ) );
336
337 return node;
338} // build_waitfor_timeout
339
340Statement * build_with( ExpressionNode * exprs, StatementNode * stmt ) {
341 list< Expression * > e;
342 buildMoveList( exprs, e );
343 Statement * s = maybeMoveBuild<Statement>( stmt );
344 return new DeclStmt( new WithStmt( e, s ) );
345} // build_with
346
347Statement * build_compound( StatementNode * first ) {
348 CompoundStmt * cs = new CompoundStmt();
349 buildMoveList( first, cs->get_kids() );
350 return cs;
351} // build_compound
352
353// A single statement in a control structure is always converted to a compound statement so subsequent generated code
354// can be placed within this compound statement. Otherwise, code generation has to constantly check for a single
355// statement and wrap it into a compound statement to insert additional code. Hence, all control structures have a
356// conical form for code generation.
357StatementNode * maybe_build_compound( StatementNode * first ) {
358 // Optimization: if the control-structure statement is a compound statement, do not wrap it.
359 // e.g., if (...) {...} do not wrap the existing compound statement.
360 if ( ! dynamic_cast<CompoundStmt *>( first->stmt.get() ) ) { // unique_ptr
361 CompoundStmt * cs = new CompoundStmt();
362 buildMoveList( first, cs->get_kids() );
363 return new StatementNode( cs );
364 } // if
365 return first;
366} // maybe_build_compound
367
368// Question
369Statement * build_asm( bool voltile, Expression * instruction, ExpressionNode * output, ExpressionNode * input, ExpressionNode * clobber, LabelNode * gotolabels ) {
370 list< Expression * > out, in;
371 list< ConstantExpr * > clob;
372
373 buildMoveList( output, out );
374 buildMoveList( input, in );
375 buildMoveList( clobber, clob );
376 return new AsmStmt( voltile, instruction, out, in, clob, gotolabels ? gotolabels->labels : noLabels );
377} // build_asm
378
379Statement * build_directive( string * directive ) {
380 return new DirectiveStmt( *directive );
381} // build_directive
382
383Statement * build_mutex( ExpressionNode * exprs, StatementNode * stmt ) {
384 list< Expression * > expList;
385 buildMoveList( exprs, expList );
386 Statement * body = maybeMoveBuild<Statement>( stmt );
387 return new MutexStmt( body, expList );
388} // build_mutex
389
390// Local Variables: //
391// tab-width: 4 //
392// mode: c++ //
393// compile-command: "make install" //
394// End: //
Note: See TracBrowser for help on using the repository browser.