source: src/Parser/ExpressionNode.cc@ 99cadc60

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 99cadc60 was c36298d, checked in by Michael Brooks <mlbrooks@…>, 6 years ago

Fixed handling of "literals.cfa" string-detail test cases by simplifying constant analysis. Now a ConstantExpr is a minial passthrough from parser to code generator, with special-case analysis only for integer values. Awareness of how to build a string-constant type is back in ExpressionNode.cc; now, this knowlede is only needed there. AST conversion no longer specializes string-int-float constants; it just converts types and passes values through. Unused constant API features are removed, notably from-to-float and from-string.

  • Property mode set to 100644
File size: 22.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// ExpressionNode.cc --
8//
9// Author : Peter A. Buhr
10// Created On : Sat May 16 13:17:07 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Sun Mar 10 16:10:32 2019
13// Update Count : 976
14//
15
16#include <cassert> // for assert
17#include <stdio.h> // for sscanf, size_t
18#include <climits> // for LLONG_MAX, LONG_MAX, INT_MAX, UINT...
19#include <list> // for list
20#include <sstream> // for basic_istream::operator>>, basic_i...
21#include <string> // for string, operator+, operator==
22
23#include "Common/SemanticError.h" // for SemanticError
24#include "Common/utility.h" // for maybeMoveBuild, maybeBuild, CodeLo...
25#include "ParseNode.h" // for ExpressionNode, maybeMoveBuildType
26#include "SynTree/Constant.h" // for Constant
27#include "SynTree/Declaration.h" // for EnumDecl, StructDecl, UnionDecl
28#include "SynTree/Expression.h" // for Expression, ConstantExpr, NameExpr
29#include "SynTree/Statement.h" // for CompoundStmt, Statement
30#include "SynTree/Type.h" // for BasicType, Type, Type::Qualifiers
31#include "parserutility.h" // for notZeroExpr
32
33class Initializer;
34
35using namespace std;
36
37//##############################################################################
38
39// Difficult to separate extra parts of constants during lexing because actions are not allow in the middle of patterns:
40//
41// prefix action constant action suffix
42//
43// Alternatively, breaking a pattern using BEGIN does not work if the following pattern can be empty:
44//
45// constant BEGIN CONT ...
46// <CONT>(...)? BEGIN 0 ... // possible empty suffix
47//
48// because the CONT rule is NOT triggered if the pattern is empty. Hence, constants are reparsed here to determine their
49// type.
50
51extern const Type::Qualifiers noQualifiers; // no qualifiers on constants
52
53// static inline bool checkH( char c ) { return c == 'h' || c == 'H'; }
54// static inline bool checkZ( char c ) { return c == 'z' || c == 'Z'; }
55// static inline bool checkU( char c ) { return c == 'u' || c == 'U'; }
56static inline bool checkF( char c ) { return c == 'f' || c == 'F'; }
57static inline bool checkD( char c ) { return c == 'd' || c == 'D'; }
58static inline bool checkF80( char c ) { return c == 'w' || c == 'W'; }
59static inline bool checkF128( char c ) { return c == 'q' || c == 'Q'; }
60static inline bool checkL( char c ) { return c == 'l' || c == 'L'; }
61static inline bool checkI( char c ) { return c == 'i' || c == 'I'; }
62static inline bool checkB( char c ) { return c == 'b' || c == 'B'; }
63static inline bool checkX( char c ) { return c == 'x' || c == 'X'; }
64// static inline bool checkN( char c ) { return c == 'n' || c == 'N'; }
65
66void lnthSuffix( string & str, int & type, int & ltype ) {
67 string::size_type posn = str.find_last_of( "lL" );
68
69 if ( posn == string::npos ) return; // no suffix
70 if ( posn == str.length() - 1 ) { type = 3; return; } // no length => long
71
72 string::size_type next = posn + 1; // advance to length
73 if ( str[next] == '3' ) { // 32
74 type = ltype = 2;
75 } else if ( str[next] == '6' ) { // 64
76 type = ltype = 3;
77 } else if ( str[next] == '8' ) { // 8
78 type = ltype = 1;
79 } else if ( str[next] == '1' ) {
80 if ( str[next + 1] == '6' ) { // 16
81 type = ltype = 0;
82 } else { // 128
83 type = 5; ltype = 6;
84 } // if
85 } // if
86 // remove "lL" for these cases because it may not imply long
87 str.erase( posn ); // remove length
88} // lnthSuffix
89
90void valueToType( unsigned long long int & v, bool dec, int & type, bool & Unsigned ) {
91 // use value to determine type
92 if ( v <= INT_MAX ) { // signed int
93 type = 2;
94 } else if ( v <= UINT_MAX && ! dec ) { // unsigned int
95 type = 2;
96 Unsigned = true; // unsigned
97 } else if ( v <= LONG_MAX ) { // signed long int
98 type = 3;
99 } else if ( v <= ULONG_MAX && ( ! dec || LONG_MAX == LLONG_MAX ) ) { // signed long int
100 type = 3;
101 Unsigned = true; // unsigned long int
102 } else if ( v <= LLONG_MAX ) { // signed long long int
103 type = 4;
104 } else { // unsigned long long int
105 type = 4;
106 Unsigned = true; // unsigned long long int
107 } // if
108} // valueToType
109
110Expression * build_constantInteger( string & str ) {
111 static const BasicType::Kind kind[2][7] = {
112 // short (h) must be before char (hh) because shorter type has the longer suffix
113 { BasicType::ShortSignedInt, BasicType::SignedChar, BasicType::SignedInt, BasicType::LongSignedInt, BasicType::LongLongSignedInt, BasicType::SignedInt128, },
114 { BasicType::ShortUnsignedInt, BasicType::UnsignedChar, BasicType::UnsignedInt, BasicType::LongUnsignedInt, BasicType::LongLongUnsignedInt, BasicType::UnsignedInt128, },
115 };
116
117 static const char * lnthsInt[2][6] = {
118 { "int16_t", "int8_t", "int32_t", "int64_t", "size_t", "uintptr_t", },
119 { "uint16_t", "uint8_t", "uint32_t", "uint64_t", "size_t", "uintptr_t", },
120 }; // lnthsInt
121
122 unsigned long long int v; // converted integral value
123 size_t last = str.length() - 1; // last subscript of constant
124 Expression * ret;
125 //string fred( str );
126
127 int type = -1; // 0 => short, 1 => char, 2 => int, 3 => long int, 4 => long long int, 5 => int128
128 int ltype = -1; // 0 => 16 bits, 1 => 8 bits, 2 => 32 bits, 3 => 64 bits, 4 => size_t, 5 => intptr, 6 => pointer
129 bool dec = true, Unsigned = false; // decimal, unsigned constant
130
131 // special constants
132 if ( str == "0" ) {
133 ret = new ConstantExpr( Constant( (Type *)new ZeroType( noQualifiers ), str, (unsigned long long int)0 ) );
134 goto CLEANUP;
135 } // if
136 if ( str == "1" ) {
137 ret = new ConstantExpr( Constant( (Type *)new OneType( noQualifiers ), str, (unsigned long long int)1 ) );
138 goto CLEANUP;
139 } // if
140
141 // Cannot be just "0"/"1"; sscanf stops at the suffix, if any; value goes over the wall => always generate
142
143 if ( str[0] == '0' ) { // radix character ?
144 dec = false;
145 if ( checkX( str[1] ) ) { // hex constant ?
146 sscanf( (char *)str.c_str(), "%llx", &v );
147 //printf( "%llx %llu\n", v, v );
148 } else if ( checkB( str[1] ) ) { // binary constant ?
149 v = 0; // compute value
150 for ( unsigned int i = 2;; ) { // ignore prefix
151 if ( str[i] == '1' ) v |= 1;
152 i += 1;
153 if ( i == last - 1 || (str[i] != '0' && str[i] != '1') ) break;
154 v <<= 1;
155 } // for
156 //printf( "%#llx %llu\n", v, v );
157 } else { // octal constant
158 sscanf( (char *)str.c_str(), "%llo", &v );
159 //printf( "%#llo %llu\n", v, v );
160 } // if
161 } else { // decimal constant ?
162 sscanf( (char *)str.c_str(), "%llu", &v );
163 //printf( "%llu\n", v );
164 } // if
165
166 string::size_type posn;
167
168 if ( isdigit( str[last] ) ) { // no suffix ?
169 lnthSuffix( str, type, ltype ); // could have length suffix
170 if ( type == -1 ) { // no suffix
171 valueToType( v, dec, type, Unsigned );
172 } // if
173 } else {
174 // At least one digit in integer constant, so safe to backup while looking for suffix.
175
176 posn = str.find_last_of( "pP" );
177 if ( posn != string::npos ) { valueToType( v, dec, type, Unsigned ); ltype = 5; str.erase( posn, 1 ); goto FINI; }
178
179 posn = str.find_last_of( "zZ" );
180 if ( posn != string::npos ) { Unsigned = true; type = 2; ltype = 4; str.erase( posn, 1 ); goto FINI; }
181
182 // 'u' can appear before or after length suffix
183 if ( str.find_last_of( "uU" ) != string::npos ) Unsigned = true;
184
185 posn = str.rfind( "hh" );
186 if ( posn != string::npos ) { type = 1; str.erase( posn, 2 ); goto FINI; }
187
188 posn = str.rfind( "HH" );
189 if ( posn != string::npos ) { type = 1; str.erase( posn, 2 ); goto FINI; }
190
191 posn = str.find_last_of( "hH" );
192 if ( posn != string::npos ) { type = 0; str.erase( posn, 1 ); goto FINI; }
193
194 posn = str.find_last_of( "nN" );
195 if ( posn != string::npos ) { type = 2; str.erase( posn, 1 ); goto FINI; }
196
197 if ( str.rfind( "ll" ) != string::npos || str.rfind( "LL" ) != string::npos ) { type = 4; goto FINI; }
198
199 lnthSuffix( str, type, ltype ); // must be after check for "ll"
200 if ( type == -1 ) { // only 'u' suffix ?
201 valueToType( v, dec, type, Unsigned );
202 } // if
203 FINI: ;
204 } // if
205
206 //if ( !( 0 <= type && type <= 6 ) ) { printf( "%s %lu %d %s\n", fred.c_str(), fred.length(), type, str.c_str() ); }
207 assert( 0 <= type && type <= 6 );
208
209 // Constant type is correct for overload resolving.
210 ret = new ConstantExpr( Constant( new BasicType( noQualifiers, kind[Unsigned][type] ), str, v ) );
211 if ( Unsigned && type < 2 ) { // hh or h, less than int ?
212 // int i = -1uh => 65535 not -1, so cast is necessary for unsigned, which unfortunately eliminates warnings for large values.
213 ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[Unsigned][type] ), false );
214 } else if ( ltype != -1 ) { // explicit length ?
215 if ( ltype == 6 ) { // int128, (int128)constant
216 ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[Unsigned][type] ), false );
217 } else { // explicit length, (length_type)constant
218 ret = new CastExpr( ret, new TypeInstType( Type::Qualifiers(), lnthsInt[Unsigned][ltype], false ), false );
219 if ( ltype == 5 ) { // pointer, intptr( (uintptr_t)constant )
220 ret = build_func( new ExpressionNode( build_varref( new string( "intptr" ) ) ), new ExpressionNode( ret ) );
221 } // if
222 } // if
223 } // if
224
225 CLEANUP: ;
226 delete &str; // created by lex
227 return ret;
228} // build_constantInteger
229
230
231static inline void checkFnxFloat( string & str, size_t last, bool & explnth, int & type ) {
232 string::size_type posn;
233 // floating-point constant has minimum of 2 characters, 1. or .1, so safe to look ahead
234 if ( str[1] == 'x' ) { // hex ?
235 posn = str.find_last_of( "pP" ); // back for exponent (must have)
236 posn = str.find_first_of( "fF", posn + 1 ); // forward for size (fF allowed in hex constant)
237 } else {
238 posn = str.find_last_of( "fF" ); // back for size (fF not allowed)
239 } // if
240 if ( posn == string::npos ) return;
241 explnth = true;
242 posn += 1; // advance to size
243 if ( str[posn] == '3' ) { // 32
244 if ( str[last] != 'x' ) type = 6;
245 else type = 7;
246 } else if ( str[posn] == '6' ) { // 64
247 if ( str[last] != 'x' ) type = 8;
248 else type = 9;
249 } else if ( str[posn] == '8' ) { // 80
250 type = 3;
251 } else if ( str[posn] == '1' ) { // 16/128
252 if ( str[posn + 1] == '6' ) { // 16
253 type = 5;
254 } else { // 128
255 if ( str[last] != 'x' ) type = 10;
256 else type = 11;
257 } // if
258 } else {
259 assertf( false, "internal error, bad floating point length %s", str.c_str() );
260 } // if
261} // checkFnxFloat
262
263
264Expression * build_constantFloat( string & str ) {
265 static const BasicType::Kind kind[2][12] = {
266 { BasicType::Float, BasicType::Double, BasicType::LongDouble, BasicType::uuFloat80, BasicType::uuFloat128, BasicType::uFloat16, BasicType::uFloat32, BasicType::uFloat32x, BasicType::uFloat64, BasicType::uFloat64x, BasicType::uFloat128, BasicType::uFloat128x },
267 { BasicType::FloatComplex, BasicType::DoubleComplex, BasicType::LongDoubleComplex, (BasicType::Kind)-1, (BasicType::Kind)-1, BasicType::uFloat16Complex, BasicType::uFloat32Complex, BasicType::uFloat32xComplex, BasicType::uFloat64Complex, BasicType::uFloat64xComplex, BasicType::uFloat128Complex, BasicType::uFloat128xComplex },
268 };
269
270 // floating-point constant has minimum of 2 characters 1. or .1
271 size_t last = str.length() - 1;
272 double v;
273 int type; // 0 => float, 1 => double, 3 => long double, ...
274 bool complx = false; // real, complex
275 bool explnth = false; // explicit literal length
276
277 sscanf( str.c_str(), "%lg", &v );
278
279 if ( checkI( str[last] ) ) { // imaginary ?
280 complx = true;
281 last -= 1; // backup one character
282 } // if
283
284 if ( checkF( str[last] ) ) { // float ?
285 type = 0;
286 } else if ( checkD( str[last] ) ) { // double ?
287 type = 1;
288 } else if ( checkL( str[last] ) ) { // long double ?
289 type = 2;
290 } else if ( checkF80( str[last] ) ) { // __float80 ?
291 type = 3;
292 } else if ( checkF128( str[last] ) ) { // __float128 ?
293 type = 4;
294 } else {
295 type = 1; // double (default if no suffix)
296 checkFnxFloat( str, last, explnth, type );
297 } // if
298
299 if ( ! complx && checkI( str[last - 1] ) ) { // imaginary ?
300 complx = true;
301 } // if
302
303 assert( 0 <= type && type < 12 );
304 Expression * ret = new ConstantExpr( Constant( new BasicType( noQualifiers, kind[complx][type] ), str, v ) );
305 if ( explnth ) { // explicit length ?
306 ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[complx][type] ), false );
307 } // if
308
309 delete &str; // created by lex
310 return ret;
311} // build_constantFloat
312
313static void sepString( string & str, string & units, char delimit ) {
314 string::size_type posn = str.find_last_of( delimit ) + 1;
315 if ( posn != str.length() ) {
316 units = "?" + str.substr( posn ); // extract units
317 str.erase( posn ); // remove units
318 } // if
319} // sepString
320
321Expression * build_constantChar( string & str ) {
322 string units; // units
323 sepString( str, units, '\'' ); // separate constant from units
324
325 Expression * ret = new ConstantExpr( Constant( new BasicType( noQualifiers, BasicType::Char ), str, (unsigned long long int)(unsigned char)str[1] ) );
326 if ( units.length() != 0 ) {
327 ret = new UntypedExpr( new NameExpr( units ), { ret } );
328 } // if
329
330 delete &str; // created by lex
331 return ret;
332} // build_constantChar
333
334Expression * build_constantStr( string & str ) {
335 assert( str.length() > 0 );
336 string units; // units
337 sepString( str, units, '"' ); // separate constant from units
338
339 Type * strtype;
340 switch ( str[0] ) { // str has >= 2 characters, i.e, null string "" => safe to look at subscripts 0/1
341 case 'u':
342 if ( str[1] == '8' ) goto Default; // utf-8 characters => array of char
343 // lookup type of associated typedef
344 strtype = new TypeInstType( Type::Qualifiers( Type::Const ), "char16_t", false );
345 break;
346 case 'U':
347 strtype = new TypeInstType( Type::Qualifiers( Type::Const ), "char32_t", false );
348 break;
349 case 'L':
350 strtype = new TypeInstType( Type::Qualifiers( Type::Const ), "wchar_t", false );
351 break;
352 Default: // char default string type
353 default:
354 strtype = new BasicType( Type::Qualifiers( Type::Const ), BasicType::Char );
355 } // switch
356 ArrayType * at = new ArrayType( noQualifiers, strtype,
357 new ConstantExpr( Constant::from_ulong( str.size() + 1 - 2 ) ), // +1 for '\0' and -2 for '"'
358 false, false );
359 Expression * ret = new ConstantExpr( Constant( at, str, std::nullopt ) );
360 if ( units.length() != 0 ) {
361 ret = new UntypedExpr( new NameExpr( units ), { ret } );
362 } // if
363
364 delete &str; // created by lex
365 return ret;
366} // build_constantStr
367
368Expression * build_field_name_FLOATING_FRACTIONconstant( const string & str ) {
369 if ( str.find_first_not_of( "0123456789", 1 ) != string::npos ) SemanticError( yylloc, "invalid tuple index " + str );
370 Expression * ret = build_constantInteger( *new string( str.substr(1) ) );
371 delete &str;
372 return ret;
373} // build_field_name_FLOATING_FRACTIONconstant
374
375Expression * build_field_name_FLOATING_DECIMALconstant( const string & str ) {
376 if ( str[str.size()-1] != '.' ) SemanticError( yylloc, "invalid tuple index " + str );
377 Expression * ret = build_constantInteger( *new string( str.substr( 0, str.size()-1 ) ) );
378 delete &str;
379 return ret;
380} // build_field_name_FLOATING_DECIMALconstant
381
382Expression * build_field_name_FLOATINGconstant( const string & str ) {
383 // str is of the form A.B -> separate at the . and return member expression
384 int a, b;
385 char dot;
386 stringstream ss( str );
387 ss >> a >> dot >> b;
388 UntypedMemberExpr * ret = new UntypedMemberExpr( new ConstantExpr( Constant::from_int( b ) ), new ConstantExpr( Constant::from_int( a ) ) );
389 delete &str;
390 return ret;
391} // build_field_name_FLOATINGconstant
392
393Expression * make_field_name_fraction_constants( Expression * fieldName, Expression * fracts ) {
394 if ( fracts ) {
395 if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( fracts ) ) {
396 memberExpr->set_member( make_field_name_fraction_constants( fieldName, memberExpr->get_aggregate() ) );
397 return memberExpr;
398 } else {
399 return new UntypedMemberExpr( fracts, fieldName );
400 } // if
401 } // if
402 return fieldName;
403} // make_field_name_fraction_constants
404
405Expression * build_field_name_fraction_constants( Expression * fieldName, ExpressionNode * fracts ) {
406 return make_field_name_fraction_constants( fieldName, maybeMoveBuild< Expression >( fracts ) );
407} // build_field_name_fraction_constants
408
409NameExpr * build_varref( const string * name ) {
410 NameExpr * expr = new NameExpr( *name );
411 delete name;
412 return expr;
413} // build_varref
414
415// TODO: get rid of this and OperKinds and reuse code from OperatorTable
416static const char * OperName[] = { // must harmonize with OperKinds
417 // diadic
418 "SizeOf", "AlignOf", "OffsetOf", "?+?", "?-?", "?\\?", "?*?", "?/?", "?%?", "||", "&&",
419 "?|?", "?&?", "?^?", "Cast", "?<<?", "?>>?", "?<?", "?>?", "?<=?", "?>=?", "?==?", "?!=?",
420 "?=?", "?@=?", "?\\=?", "?*=?", "?/=?", "?%=?", "?+=?", "?-=?", "?<<=?", "?>>=?", "?&=?", "?^=?", "?|=?",
421 "?[?]", "...",
422 // monadic
423 "+?", "-?", "AddressOf", "*?", "!?", "~?", "++?", "?++", "--?", "?--",
424}; // OperName
425
426Expression * build_cast( DeclarationNode * decl_node, ExpressionNode * expr_node ) {
427 Type * targetType = maybeMoveBuildType( decl_node );
428 if ( dynamic_cast< VoidType * >( targetType ) ) {
429 delete targetType;
430 return new CastExpr( maybeMoveBuild< Expression >(expr_node), false );
431 } else {
432 return new CastExpr( maybeMoveBuild< Expression >(expr_node), targetType, false );
433 } // if
434} // build_cast
435
436Expression * build_keyword_cast( KeywordCastExpr::Target target, ExpressionNode * expr_node ) {
437 return new KeywordCastExpr( maybeMoveBuild< Expression >(expr_node), target );
438}
439
440Expression * build_virtual_cast( DeclarationNode * decl_node, ExpressionNode * expr_node ) {
441 return new VirtualCastExpr( maybeMoveBuild< Expression >( expr_node ), maybeMoveBuildType( decl_node ) );
442} // build_virtual_cast
443
444Expression * build_fieldSel( ExpressionNode * expr_node, Expression * member ) {
445 return new UntypedMemberExpr( member, maybeMoveBuild< Expression >(expr_node) );
446} // build_fieldSel
447
448Expression * build_pfieldSel( ExpressionNode * expr_node, Expression * member ) {
449 UntypedExpr * deref = new UntypedExpr( new NameExpr( "*?" ) );
450 deref->location = expr_node->location;
451 deref->get_args().push_back( maybeMoveBuild< Expression >(expr_node) );
452 UntypedMemberExpr * ret = new UntypedMemberExpr( member, deref );
453 return ret;
454} // build_pfieldSel
455
456Expression * build_offsetOf( DeclarationNode * decl_node, NameExpr * member ) {
457 Expression * ret = new UntypedOffsetofExpr( maybeMoveBuildType( decl_node ), member->get_name() );
458 delete member;
459 return ret;
460} // build_offsetOf
461
462Expression * build_and_or( ExpressionNode * expr_node1, ExpressionNode * expr_node2, bool kind ) {
463 return new LogicalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), notZeroExpr( maybeMoveBuild< Expression >(expr_node2) ), kind );
464} // build_and_or
465
466Expression * build_unary_val( OperKinds op, ExpressionNode * expr_node ) {
467 list< Expression * > args;
468 args.push_back( maybeMoveBuild< Expression >(expr_node) );
469 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
470} // build_unary_val
471
472Expression * build_unary_ptr( OperKinds op, ExpressionNode * expr_node ) {
473 list< Expression * > args;
474 args.push_back( maybeMoveBuild< Expression >(expr_node) ); // xxx -- this is exactly the same as the val case now, refactor this code.
475 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
476} // build_unary_ptr
477
478Expression * build_binary_val( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 ) {
479 list< Expression * > args;
480 args.push_back( maybeMoveBuild< Expression >(expr_node1) );
481 args.push_back( maybeMoveBuild< Expression >(expr_node2) );
482 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
483} // build_binary_val
484
485Expression * build_binary_ptr( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 ) {
486 list< Expression * > args;
487 args.push_back( maybeMoveBuild< Expression >(expr_node1) );
488 args.push_back( maybeMoveBuild< Expression >(expr_node2) );
489 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
490} // build_binary_ptr
491
492Expression * build_cond( ExpressionNode * expr_node1, ExpressionNode * expr_node2, ExpressionNode * expr_node3 ) {
493 return new ConditionalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), maybeMoveBuild< Expression >(expr_node2), maybeMoveBuild< Expression >(expr_node3) );
494} // build_cond
495
496Expression * build_tuple( ExpressionNode * expr_node ) {
497 list< Expression * > exprs;
498 buildMoveList( expr_node, exprs );
499 return new UntypedTupleExpr( exprs );;
500} // build_tuple
501
502Expression * build_func( ExpressionNode * function, ExpressionNode * expr_node ) {
503 list< Expression * > args;
504 buildMoveList( expr_node, args );
505 return new UntypedExpr( maybeMoveBuild< Expression >(function), args );
506} // build_func
507
508Expression * build_compoundLiteral( DeclarationNode * decl_node, InitializerNode * kids ) {
509 Declaration * newDecl = maybeBuild< Declaration >(decl_node); // compound literal type
510 if ( DeclarationWithType * newDeclWithType = dynamic_cast< DeclarationWithType * >( newDecl ) ) { // non-sue compound-literal type
511 return new CompoundLiteralExpr( newDeclWithType->get_type(), maybeMoveBuild< Initializer >(kids) );
512 // these types do not have associated type information
513 } else if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( newDecl ) ) {
514 if ( newDeclStructDecl->has_body() ) {
515 return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl ), maybeMoveBuild< Initializer >(kids) );
516 } else {
517 return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
518 } // if
519 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( newDecl ) ) {
520 if ( newDeclUnionDecl->has_body() ) {
521 return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl ), maybeMoveBuild< Initializer >(kids) );
522 } else {
523 return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
524 } // if
525 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( newDecl ) ) {
526 if ( newDeclEnumDecl->has_body() ) {
527 return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl ), maybeMoveBuild< Initializer >(kids) );
528 } else {
529 return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
530 } // if
531 } else {
532 assert( false );
533 } // if
534} // build_compoundLiteral
535
536// Local Variables: //
537// tab-width: 4 //
538// mode: c++ //
539// compile-command: "make install" //
540// End: //
Note: See TracBrowser for help on using the repository browser.