source: src/Parser/ExpressionNode.cc@ 982f95d

new-env
Last change on this file since 982f95d was 1cdfa82, checked in by Aaron Moss <a3moss@…>, 7 years ago

Merge remote-tracking branch 'origin/master' into with_gc

  • Property mode set to 100644
File size: 20.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// ExpressionNode.cc --
8//
9// Author : Peter A. Buhr
10// Created On : Sat May 16 13:17:07 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Mar 22 11:57:39 2018
13// Update Count : 801
14//
15
16#include <cassert> // for assert
17#include <stdio.h> // for sscanf, size_t
18#include <climits> // for LLONG_MAX, LONG_MAX, INT_MAX, UINT...
19#include <list> // for list
20#include <sstream> // for basic_istream::operator>>, basic_i...
21#include <string> // for string, operator+, operator==
22
23#include "Common/SemanticError.h" // for SemanticError
24#include "Common/utility.h" // for maybeMoveBuild, maybeBuild, CodeLo...
25#include "ParseNode.h" // for ExpressionNode, maybeMoveBuildType
26#include "SynTree/Constant.h" // for Constant
27#include "SynTree/Declaration.h" // for EnumDecl, StructDecl, UnionDecl
28#include "SynTree/Expression.h" // for Expression, ConstantExpr, NameExpr
29#include "SynTree/Statement.h" // for CompoundStmt, Statement
30#include "SynTree/Type.h" // for BasicType, Type, Type::Qualifiers
31#include "parserutility.h" // for notZeroExpr
32
33class Initializer;
34
35using namespace std;
36
37//##############################################################################
38
39// Difficult to separate extra parts of constants during lexing because actions are not allow in the middle of patterns:
40//
41// prefix action constant action suffix
42//
43// Alternatively, breaking a pattern using BEGIN does not work if the following pattern can be empty:
44//
45// constant BEGIN CONT ...
46// <CONT>(...)? BEGIN 0 ... // possible empty suffix
47//
48// because the CONT rule is NOT triggered if the pattern is empty. Hence, constants are reparsed here to determine their
49// type.
50
51extern const Type::Qualifiers noQualifiers; // no qualifiers on constants
52
53static inline bool checkH( char c ) { return c == 'h' || c == 'H'; }
54static inline bool checkL( char c ) { return c == 'l' || c == 'L'; }
55static inline bool checkZ( char c ) { return c == 'z' || c == 'Z'; }
56static inline bool checkU( char c ) { return c == 'u' || c == 'U'; }
57static inline bool checkF( char c ) { return c == 'f' || c == 'F'; }
58static inline bool checkD( char c ) { return c == 'd' || c == 'D'; }
59static inline bool checkI( char c ) { return c == 'i' || c == 'I'; }
60static inline bool checkB( char c ) { return c == 'b' || c == 'B'; }
61static inline bool checkX( char c ) { return c == 'x' || c == 'X'; }
62
63static const char * lnthsInt[2][6] = {
64 { "int8_t", "int16_t", "int32_t", "int64_t", "size_t", },
65 { "uint8_t", "uint16_t", "uint32_t", "uint64_t", "size_t", }
66}; // lnthsInt
67
68static inline void checkLNInt( string & str, int & lnth, int & size ) {
69 string::size_type posn = str.find_first_of( "lL" ), start = posn;
70 if ( posn == string::npos ) return;
71 size = 4; // assume largest size
72 posn += 1; // advance to size
73 if ( str[posn] == '8' ) { // 8
74 lnth = 0;
75 } else if ( str[posn] == '1' ) {
76 posn += 1;
77 if ( str[posn] == '6' ) { // 16
78 lnth = 1;
79 } else { // 128
80 posn += 1;
81 lnth = 5;
82 } // if
83 } else {
84 if ( str[posn] == '3' ) { // 32
85 lnth = 2;
86 } else if ( str[posn] == '6' ) { // 64
87 lnth = 3;
88 } else {
89 assertf( false, "internal error, bad integral length %s", str.c_str() );
90 } // if
91 posn += 1;
92 } // if
93 str.erase( start, posn - start + 1 ); // remove length suffix
94} // checkLNInt
95
96Expression * build_constantInteger( string & str ) {
97 static const BasicType::Kind kind[2][6] = {
98 // short (h) must be before char (hh)
99 { BasicType::ShortSignedInt, BasicType::SignedChar, BasicType::SignedInt, BasicType::LongSignedInt, BasicType::LongLongSignedInt, BasicType::SignedInt128, },
100 { BasicType::ShortUnsignedInt, BasicType::UnsignedChar, BasicType::UnsignedInt, BasicType::LongUnsignedInt, BasicType::LongLongUnsignedInt, BasicType::UnsignedInt128, },
101 };
102
103 bool dec = true, Unsigned = false; // decimal, unsigned constant
104 int size; // 0 => short, 1 => char, 2 => int, 3 => long int, 4 => long long int, 5 => int128
105 int lnth = -1; // literal length
106
107 unsigned long long int v; // converted integral value
108 size_t last = str.length() - 1; // last subscript of constant
109 Expression * ret;
110
111 // special constants
112 if ( str == "0" ) {
113 ret = new ConstantExpr( Constant( (Type *)new ZeroType( noQualifiers ), str, (unsigned long long int)0 ) );
114 goto CLEANUP;
115 } // if
116 if ( str == "1" ) {
117 ret = new ConstantExpr( Constant( (Type *)new OneType( noQualifiers ), str, (unsigned long long int)1 ) );
118 goto CLEANUP;
119 } // if
120
121 // Cannot be "0"
122
123 if ( str[0] == '0' ) { // radix character ?
124 dec = false;
125 if ( checkX( str[1] ) ) { // hex constant ?
126 sscanf( (char *)str.c_str(), "%llx", &v );
127 //printf( "%llx %llu\n", v, v );
128 } else if ( checkB( str[1] ) ) { // binary constant ?
129 v = 0;
130 for ( unsigned int i = 2;; i += 1 ) { // compute value
131 if ( str[i] == '1' ) v |= 1;
132 if ( i == last ) break;
133 v <<= 1;
134 } // for
135 //printf( "%llx %llu\n", v, v );
136 } else { // octal constant
137 sscanf( (char *)str.c_str(), "%llo", &v );
138 //printf( "%llo %llu\n", v, v );
139 } // if
140 } else { // decimal constant ?
141 sscanf( (char *)str.c_str(), "%llu", &v );
142 //printf( "%llu %llu\n", v, v );
143 } // if
144
145 if ( v <= INT_MAX ) { // signed int
146 size = 2;
147 } else if ( v <= UINT_MAX && ! dec ) { // unsigned int
148 size = 2;
149 Unsigned = true; // unsigned
150 } else if ( v <= LONG_MAX ) { // signed long int
151 size = 3;
152 } else if ( v <= ULONG_MAX && ( ! dec || LONG_MAX == LLONG_MAX ) ) { // signed long int
153 size = 3;
154 Unsigned = true; // unsigned long int
155 } else if ( v <= LLONG_MAX ) { // signed long long int
156 size = 4;
157 } else { // unsigned long long int
158 size = 4;
159 Unsigned = true; // unsigned long long int
160 } // if
161
162 // At least one digit in integer constant, so safe to backup while looking for suffix.
163
164 if ( checkU( str[last] ) ) { // suffix 'u' ?
165 Unsigned = true;
166 if ( checkL( str[last - 1] ) ) { // suffix 'l' ?
167 size = 3;
168 if ( checkL( str[last - 2] ) ) { // suffix "ll" ?
169 size = 4;
170 } // if
171 } else if ( checkH( str[last - 1] ) ) { // suffix 'h' ?
172 size = 0;
173 if ( checkH( str[last - 2] ) ) { // suffix "hh" ?
174 size = 1;
175 } // if
176 str.erase( last - size - 1, size + 1 ); // remove 'h'/"hh"
177 } else { // suffix "ln" ?
178 checkLNInt( str, lnth, size );
179 } // if
180 } else if ( checkL( str[ last ] ) ) { // suffix 'l' ?
181 size = 3;
182 if ( checkL( str[last - 1] ) ) { // suffix 'll' ?
183 size = 4;
184 if ( checkU( str[last - 2] ) ) { // suffix 'u' ?
185 Unsigned = true;
186 } // if
187 } else if ( checkU( str[last - 1] ) ) { // suffix 'u' ?
188 Unsigned = true;
189 } // if
190 } else if ( checkH( str[ last ] ) ) { // suffix 'h' ?
191 size = 0;
192 if ( checkH( str[last - 1] ) ) { // suffix "hh" ?
193 size = 1;
194 if ( checkU( str[last - 2] ) ) { // suffix 'u' ?
195 Unsigned = true;
196 } // if
197 } else if ( checkU( str[last - 1] ) ) { // suffix 'u' ?
198 Unsigned = true;
199 } // if
200 str.erase( last - size, size + 1 ); // remove 'h'/"hh"
201 } else if ( checkZ( str[last] ) ) { // suffix 'z' ?
202 lnth = 4;
203 str.erase( last, 1 ); // remove 'z'
204 } else { // suffix "ln" ?
205 checkLNInt( str, lnth, size );
206 } // if
207
208 assert( 0 <= size && size < 6 );
209 // Constant type is correct for overload resolving.
210 ret = new ConstantExpr( Constant( new BasicType( noQualifiers, kind[Unsigned][size] ), str, v ) );
211 if ( Unsigned && size < 2 ) { // hh or h, less than int ?
212 // int i = -1uh => 65535 not -1, so cast is necessary for unsigned, which unfortunately eliminates warnings for large values.
213 ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[Unsigned][size] ), false );
214 } else if ( lnth != -1 ) { // explicit length ?
215 if ( lnth == 5 ) { // int128 ?
216 size = 5;
217 ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[Unsigned][size] ), false );
218 } else {
219 ret = new CastExpr( ret, new TypeInstType( Type::Qualifiers(), lnthsInt[Unsigned][lnth], false ), false );
220 } // if
221 } // if
222 CLEANUP:
223
224 delete &str; // created by lex
225 return ret;
226} // build_constantInteger
227
228
229static inline void checkLNFloat( string & str, int & lnth, int & size ) {
230 string::size_type posn = str.find_first_of( "lL" ), start = posn;
231 if ( posn == string::npos ) return;
232 size = 2; // assume largest size
233 lnth = 0;
234 posn += 1; // advance to size
235 if ( str[posn] == '3' ) { // 32
236 size = 0;
237 } else if ( str[posn] == '6' ) { // 64
238 size = 1;
239 } else if ( str[posn] == '8' || str[posn] == '1' ) { // 80, 128
240 size = 2;
241 if ( str[posn] == '1' ) posn += 1;
242 } else {
243 assertf( false, "internal error, bad floating point length %s", str.c_str() );
244 } // if
245 posn += 1;
246 str.erase( start, posn - start + 1 ); // remove length suffix
247} // checkLNFloat
248
249
250Expression * build_constantFloat( string & str ) {
251 static const BasicType::Kind kind[2][3] = {
252 { BasicType::Float, BasicType::Double, BasicType::LongDouble },
253 { BasicType::FloatComplex, BasicType::DoubleComplex, BasicType::LongDoubleComplex },
254 };
255
256 bool complx = false; // real, complex
257 int size = 1; // 0 => float, 1 => double, 2 => long double
258 int lnth = -1; // literal length
259 // floating-point constant has minimum of 2 characters: 1. or .1
260 size_t last = str.length() - 1;
261 double v;
262
263 sscanf( str.c_str(), "%lg", &v );
264
265 if ( checkI( str[last] ) ) { // imaginary ?
266 complx = true;
267 last -= 1; // backup one character
268 } // if
269
270 if ( checkF( str[last] ) ) { // float ?
271 size = 0;
272 } else if ( checkD( str[last] ) ) { // double ?
273 size = 1;
274 } else if ( checkL( str[last] ) ) { // long double ?
275 size = 2;
276 } else {
277 size = 1; // double (default)
278 checkLNFloat( str, lnth, size );
279 } // if
280 if ( ! complx && checkI( str[last - 1] ) ) { // imaginary ?
281 complx = true;
282 } // if
283
284 assert( 0 <= size && size < 3 );
285 Expression * ret = new ConstantExpr( Constant( new BasicType( noQualifiers, kind[complx][size] ), str, v ) );
286 if ( lnth != -1 ) { // explicit length ?
287 ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[complx][size] ), false );
288 } // if
289
290 delete &str; // created by lex
291 return ret;
292} // build_constantFloat
293
294static void sepString( string & str, string & units, char delimit ) {
295 string::size_type posn = str.find_last_of( delimit ) + 1;
296 if ( posn != str.length() ) {
297 units = "?" + str.substr( posn ); // extract units
298 str.erase( posn ); // remove units
299 } // if
300} // sepString
301
302Expression * build_constantChar( string & str ) {
303 string units; // units
304 sepString( str, units, '\'' ); // separate constant from units
305
306 Expression * ret = new ConstantExpr( Constant( new BasicType( noQualifiers, BasicType::Char ), str, (unsigned long long int)(unsigned char)str[1] ) );
307 if ( units.length() != 0 ) {
308 ret = new UntypedExpr( new NameExpr( units ), { ret } );
309 } // if
310
311 delete &str; // created by lex
312 return ret;
313} // build_constantChar
314
315Expression * build_constantStr( string & str ) {
316 string units; // units
317 sepString( str, units, '"' ); // separate constant from units
318
319 Type * strtype;
320 switch ( str[0] ) { // str has >= 2 characters, i.e, null string "" => safe to look at subscripts 0/1
321 case 'u':
322 if ( str[1] == '8' ) goto Default; // utf-8 characters => array of char
323 // lookup type of associated typedef
324 strtype = new TypeInstType( Type::Qualifiers( Type::Const ), "char16_t", false );
325 break;
326 case 'U':
327 strtype = new TypeInstType( Type::Qualifiers( Type::Const ), "char32_t", false );
328 break;
329 case 'L':
330 strtype = new TypeInstType( Type::Qualifiers( Type::Const ), "wchar_t", false );
331 break;
332 Default: // char default string type
333 default:
334 strtype = new BasicType( Type::Qualifiers( Type::Const ), BasicType::Char );
335 } // switch
336 ArrayType * at = new ArrayType( noQualifiers, strtype,
337 new ConstantExpr( Constant::from_ulong( str.size() + 1 - 2 ) ), // +1 for '\0' and -2 for '"'
338 false, false );
339 Expression * ret = new ConstantExpr( Constant( at, str, (unsigned long long int)0 ) ); // constant 0 is ignored for pure string value
340 if ( units.length() != 0 ) {
341 ret = new UntypedExpr( new NameExpr( units ), { ret } );
342 } // if
343
344 delete &str; // created by lex
345 return ret;
346} // build_constantStr
347
348Expression * build_field_name_FLOATING_FRACTIONconstant( const string & str ) {
349 if ( str.find_first_not_of( "0123456789", 1 ) != string::npos ) SemanticError( yylloc, "invalid tuple index " + str );
350 Expression * ret = build_constantInteger( *new string( str.substr(1) ) );
351 delete &str;
352 return ret;
353} // build_field_name_FLOATING_FRACTIONconstant
354
355Expression * build_field_name_FLOATING_DECIMALconstant( const string & str ) {
356 if ( str[str.size()-1] != '.' ) SemanticError( yylloc, "invalid tuple index " + str );
357 Expression * ret = build_constantInteger( *new string( str.substr( 0, str.size()-1 ) ) );
358 delete &str;
359 return ret;
360} // build_field_name_FLOATING_DECIMALconstant
361
362Expression * build_field_name_FLOATINGconstant( const string & str ) {
363 // str is of the form A.B -> separate at the . and return member expression
364 int a, b;
365 char dot;
366 stringstream ss( str );
367 ss >> a >> dot >> b;
368 UntypedMemberExpr * ret = new UntypedMemberExpr( new ConstantExpr( Constant::from_int( b ) ), new ConstantExpr( Constant::from_int( a ) ) );
369 delete &str;
370 return ret;
371} // build_field_name_FLOATINGconstant
372
373Expression * make_field_name_fraction_constants( Expression * fieldName, Expression * fracts ) {
374 if ( fracts ) {
375 if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( fracts ) ) {
376 memberExpr->set_member( make_field_name_fraction_constants( fieldName, memberExpr->get_aggregate() ) );
377 return memberExpr;
378 } else {
379 return new UntypedMemberExpr( fracts, fieldName );
380 } // if
381 } // if
382 return fieldName;
383} // make_field_name_fraction_constants
384
385Expression * build_field_name_fraction_constants( Expression * fieldName, ExpressionNode * fracts ) {
386 return make_field_name_fraction_constants( fieldName, maybeMoveBuild< Expression >( fracts ) );
387} // build_field_name_fraction_constants
388
389NameExpr * build_varref( const string * name ) {
390 NameExpr * expr = new NameExpr( *name );
391 delete name;
392 return expr;
393} // build_varref
394
395// TODO: get rid of this and OperKinds and reuse code from OperatorTable
396static const char * OperName[] = { // must harmonize with OperKinds
397 // diadic
398 "SizeOf", "AlignOf", "OffsetOf", "?+?", "?-?", "?\\?", "?*?", "?/?", "?%?", "||", "&&",
399 "?|?", "?&?", "?^?", "Cast", "?<<?", "?>>?", "?<?", "?>?", "?<=?", "?>=?", "?==?", "?!=?",
400 "?=?", "?@=?", "?\\=?", "?*=?", "?/=?", "?%=?", "?+=?", "?-=?", "?<<=?", "?>>=?", "?&=?", "?^=?", "?|=?",
401 "?[?]", "...",
402 // monadic
403 "+?", "-?", "AddressOf", "*?", "!?", "~?", "++?", "?++", "--?", "?--",
404}; // OperName
405
406Expression * build_cast( DeclarationNode * decl_node, ExpressionNode * expr_node ) {
407 Type * targetType = maybeMoveBuildType( decl_node );
408 if ( dynamic_cast< VoidType * >( targetType ) ) {
409 return new CastExpr( maybeMoveBuild< Expression >(expr_node), false );
410 } else {
411 return new CastExpr( maybeMoveBuild< Expression >(expr_node), targetType, false );
412 } // if
413} // build_cast
414
415Expression * build_keyword_cast( KeywordCastExpr::Target target, ExpressionNode * expr_node ) {
416 return new KeywordCastExpr( maybeMoveBuild< Expression >(expr_node), target );
417}
418
419Expression * build_virtual_cast( DeclarationNode * decl_node, ExpressionNode * expr_node ) {
420 return new VirtualCastExpr( maybeMoveBuild< Expression >( expr_node ), maybeMoveBuildType( decl_node ) );
421} // build_virtual_cast
422
423Expression * build_fieldSel( ExpressionNode * expr_node, Expression * member ) {
424 return new UntypedMemberExpr( member, maybeMoveBuild< Expression >(expr_node) );
425} // build_fieldSel
426
427Expression * build_pfieldSel( ExpressionNode * expr_node, Expression * member ) {
428 UntypedExpr * deref = new UntypedExpr( new NameExpr( "*?" ) );
429 deref->location = expr_node->location;
430 deref->get_args().push_back( maybeMoveBuild< Expression >(expr_node) );
431 UntypedMemberExpr * ret = new UntypedMemberExpr( member, deref );
432 return ret;
433} // build_pfieldSel
434
435Expression * build_offsetOf( DeclarationNode * decl_node, NameExpr * member ) {
436 return new UntypedOffsetofExpr{ maybeMoveBuildType( decl_node ), member->get_name() };
437} // build_offsetOf
438
439Expression * build_and_or( ExpressionNode * expr_node1, ExpressionNode * expr_node2, bool kind ) {
440 return new LogicalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), notZeroExpr( maybeMoveBuild< Expression >(expr_node2) ), kind );
441} // build_and_or
442
443Expression * build_unary_val( OperKinds op, ExpressionNode * expr_node ) {
444 list< Expression * > args;
445 args.push_back( maybeMoveBuild< Expression >(expr_node) );
446 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
447} // build_unary_val
448
449Expression * build_unary_ptr( OperKinds op, ExpressionNode * expr_node ) {
450 list< Expression * > args;
451 args.push_back( maybeMoveBuild< Expression >(expr_node) ); // xxx -- this is exactly the same as the val case now, refactor this code.
452 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
453} // build_unary_ptr
454
455Expression * build_binary_val( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 ) {
456 list< Expression * > args;
457 args.push_back( maybeMoveBuild< Expression >(expr_node1) );
458 args.push_back( maybeMoveBuild< Expression >(expr_node2) );
459 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
460} // build_binary_val
461
462Expression * build_binary_ptr( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 ) {
463 list< Expression * > args;
464 args.push_back( maybeMoveBuild< Expression >(expr_node1) );
465 args.push_back( maybeMoveBuild< Expression >(expr_node2) );
466 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
467} // build_binary_ptr
468
469Expression * build_cond( ExpressionNode * expr_node1, ExpressionNode * expr_node2, ExpressionNode * expr_node3 ) {
470 return new ConditionalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), maybeMoveBuild< Expression >(expr_node2), maybeMoveBuild< Expression >(expr_node3) );
471} // build_cond
472
473Expression * build_tuple( ExpressionNode * expr_node ) {
474 list< Expression * > exprs;
475 buildMoveList( expr_node, exprs );
476 return new UntypedTupleExpr( exprs );;
477} // build_tuple
478
479Expression * build_func( ExpressionNode * function, ExpressionNode * expr_node ) {
480 list< Expression * > args;
481 buildMoveList( expr_node, args );
482 return new UntypedExpr( maybeMoveBuild< Expression >(function), args );
483} // build_func
484
485Expression * build_compoundLiteral( DeclarationNode * decl_node, InitializerNode * kids ) {
486 Declaration * newDecl = maybeBuild< Declaration >(decl_node); // compound literal type
487 if ( DeclarationWithType * newDeclWithType = dynamic_cast< DeclarationWithType * >( newDecl ) ) { // non-sue compound-literal type
488 return new CompoundLiteralExpr( newDeclWithType->get_type(), maybeMoveBuild< Initializer >(kids) );
489 // these types do not have associated type information
490 } else if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( newDecl ) ) {
491 if ( newDeclStructDecl->has_body() ) {
492 return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl ), maybeMoveBuild< Initializer >(kids) );
493 } else {
494 return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
495 } // if
496 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( newDecl ) ) {
497 if ( newDeclUnionDecl->has_body() ) {
498 return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl ), maybeMoveBuild< Initializer >(kids) );
499 } else {
500 return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
501 } // if
502 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( newDecl ) ) {
503 if ( newDeclEnumDecl->has_body() ) {
504 return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl ), maybeMoveBuild< Initializer >(kids) );
505 } else {
506 return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
507 } // if
508 } else {
509 assert( false );
510 } // if
511} // build_compoundLiteral
512
513// Local Variables: //
514// tab-width: 4 //
515// mode: c++ //
516// compile-command: "make install" //
517// End: //
Note: See TracBrowser for help on using the repository browser.