source: src/Parser/ExpressionNode.cc@ 5f5083e

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 5f5083e was 8780e30, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

build appropriate nodes when parsing member tuple expressions

  • Property mode set to 100644
File size: 14.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// ExpressionNode.cc --
8//
9// Author : Rodolfo G. Esteves
10// Created On : Sat May 16 13:17:07 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Sep 16 16:27:44 2016
13// Update Count : 508
14//
15
16#include <cassert>
17#include <cctype>
18#include <climits>
19#include <cstdio>
20#include <algorithm>
21#include <sstream>
22
23#include "ParseNode.h"
24#include "TypeData.h"
25#include "SynTree/Constant.h"
26#include "SynTree/Expression.h"
27#include "SynTree/Declaration.h"
28#include "Common/UnimplementedError.h"
29#include "parseutility.h"
30#include "Common/utility.h"
31
32using namespace std;
33
34//##############################################################################
35
36// Difficult to separate extra parts of constants during lexing because actions are not allow in the middle of patterns:
37//
38// prefix action constant action suffix
39//
40// Alternatively, breaking a pattern using BEGIN does not work if the following pattern can be empty:
41//
42// constant BEGIN CONT ...
43// <CONT>(...)? BEGIN 0 ... // possible empty suffix
44//
45// because the CONT rule is NOT triggered if the pattern is empty. Hence, constants are reparsed here to determine their
46// type.
47
48static Type::Qualifiers emptyQualifiers; // no qualifiers on constants
49
50static inline bool checkU( char c ) { return c == 'u' || c == 'U'; }
51static inline bool checkL( char c ) { return c == 'l' || c == 'L'; }
52static inline bool checkF( char c ) { return c == 'f' || c == 'F'; }
53static inline bool checkD( char c ) { return c == 'd' || c == 'D'; }
54static inline bool checkI( char c ) { return c == 'i' || c == 'I'; }
55static inline bool checkX( char c ) { return c == 'x' || c == 'X'; }
56
57Expression *build_constantInteger( const std::string & str ) {
58 static const BasicType::Kind kind[2][3] = {
59 { BasicType::SignedInt, BasicType::LongSignedInt, BasicType::LongLongSignedInt },
60 { BasicType::UnsignedInt, BasicType::LongUnsignedInt, BasicType::LongLongUnsignedInt },
61 };
62 bool dec = true, Unsigned = false; // decimal, unsigned constant
63 int size; // 0 => int, 1 => long, 2 => long long
64 unsigned long long v; // converted integral value
65 size_t last = str.length() - 1; // last character of constant
66
67 if ( str[0] == '0' ) { // octal/hex constant ?
68 dec = false;
69 if ( last != 0 && checkX( str[1] ) ) { // hex constant ?
70 sscanf( (char *)str.c_str(), "%llx", &v );
71 //printf( "%llx %llu\n", v, v );
72 } else { // octal constant
73 sscanf( (char *)str.c_str(), "%llo", &v );
74 //printf( "%llo %llu\n", v, v );
75 } // if
76 } else { // decimal constant ?
77 sscanf( (char *)str.c_str(), "%llu", &v );
78 //printf( "%llu %llu\n", v, v );
79 } // if
80
81 if ( v <= INT_MAX ) { // signed int
82 size = 0;
83 } else if ( v <= UINT_MAX && ! dec ) { // unsigned int
84 size = 0;
85 Unsigned = true; // unsigned
86 } else if ( v <= LONG_MAX ) { // signed long int
87 size = 1;
88 } else if ( v <= ULONG_MAX && ( ! dec || LONG_MAX == LLONG_MAX ) ) { // signed long int
89 size = 1;
90 Unsigned = true; // unsigned long int
91 } else if ( v <= LLONG_MAX ) { // signed long long int
92 size = 2;
93 } else { // unsigned long long int
94 size = 2;
95 Unsigned = true; // unsigned long long int
96 } // if
97
98 if ( checkU( str[last] ) ) { // suffix 'u' ?
99 Unsigned = true;
100 if ( last > 0 && checkL( str[last - 1] ) ) { // suffix 'l' ?
101 size = 1;
102 if ( last > 1 && checkL( str[last - 2] ) ) { // suffix 'll' ?
103 size = 2;
104 } // if
105 } // if
106 } else if ( checkL( str[ last ] ) ) { // suffix 'l' ?
107 size = 1;
108 if ( last > 0 && checkL( str[last - 1] ) ) { // suffix 'll' ?
109 size = 2;
110 if ( last > 1 && checkU( str[last - 2] ) ) { // suffix 'u' ?
111 Unsigned = true;
112 } // if
113 } else {
114 if ( last > 0 && checkU( str[last - 1] ) ) { // suffix 'u' ?
115 Unsigned = true;
116 } // if
117 } // if
118 } // if
119
120 Expression * ret = new ConstantExpr( Constant( new BasicType( emptyQualifiers, kind[Unsigned][size] ), str ) );
121 delete &str; // created by lex
122 return ret;
123} // build_constantInteger
124
125Expression *build_constantFloat( const std::string & str ) {
126 static const BasicType::Kind kind[2][3] = {
127 { BasicType::Float, BasicType::Double, BasicType::LongDouble },
128 { BasicType::FloatComplex, BasicType::DoubleComplex, BasicType::LongDoubleComplex },
129 };
130
131 bool complx = false; // real, complex
132 int size = 1; // 0 => float, 1 => double (default), 2 => long double
133 // floating-point constant has minimum of 2 characters: 1. or .1
134 size_t last = str.length() - 1;
135
136 if ( checkI( str[last] ) ) { // imaginary ?
137 complx = true;
138 last -= 1; // backup one character
139 } // if
140
141 if ( checkF( str[last] ) ) { // float ?
142 size = 0;
143 } else if ( checkD( str[last] ) ) { // double ?
144 size = 1;
145 } else if ( checkL( str[last] ) ) { // long double ?
146 size = 2;
147 } // if
148 if ( ! complx && checkI( str[last - 1] ) ) { // imaginary ?
149 complx = true;
150 } // if
151
152 Expression * ret = new ConstantExpr( Constant( new BasicType( emptyQualifiers, kind[complx][size] ), str ) );
153 delete &str; // created by lex
154 return ret;
155} // build_constantFloat
156
157Expression *build_constantChar( const std::string & str ) {
158 Expression * ret = new ConstantExpr( Constant( new BasicType( emptyQualifiers, BasicType::Char ), str ) );
159 delete &str; // created by lex
160 return ret;
161} // build_constantChar
162
163ConstantExpr *build_constantStr( const std::string & str ) {
164 // string should probably be a primitive type
165 ArrayType *at = new ArrayType( emptyQualifiers, new BasicType( emptyQualifiers, BasicType::Char ),
166 new ConstantExpr( Constant( new BasicType( emptyQualifiers, BasicType::UnsignedInt ),
167 toString( str.size()+1-2 ) ) ), // +1 for '\0' and -2 for '"'
168 false, false );
169 ConstantExpr * ret = new ConstantExpr( Constant( at, str ) );
170 delete &str; // created by lex
171 return ret;
172} // build_constantStr
173
174Expression * build_field_name_FLOATINGconstant( const std::string & str ) {
175 // str is of the form A.B -> separate at the . and return member expression
176 int a, b;
177 char dot;
178 std::stringstream ss( str );
179 ss >> a >> dot >> b;
180 UntypedMemberExpr * ret = new UntypedMemberExpr(
181 new ConstantExpr( Constant( new BasicType( emptyQualifiers, BasicType::SignedInt ), toString( b ) ) ),
182 new ConstantExpr( Constant( new BasicType( emptyQualifiers, BasicType::SignedInt ), toString( a ) ) ) );
183 delete &str;
184 return ret;
185} // build_field_name_FLOATINGconstant
186
187Expression * make_field_name_fraction_constants( Expression * fieldName, Expression * fracts ) {
188 if ( fracts ) {
189 if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( fracts ) ) {
190 memberExpr->set_member( make_field_name_fraction_constants( fieldName, memberExpr->get_aggregate() ) );
191 return memberExpr;
192 } else {
193 return new UntypedMemberExpr( fracts, fieldName );
194 }
195 }
196 return fieldName;
197} // make_field_name_fraction_constants
198
199Expression * build_field_name_fraction_constants( Expression * fieldName, ExpressionNode * fracts ) {
200 return make_field_name_fraction_constants( fieldName, maybeMoveBuild< Expression >( fracts ) );
201} // build_field_name_fraction_constants
202
203Expression * build_field_name_REALFRACTIONconstant( const std::string & str ) {
204 assert( str[0] == '.' );
205 Expression * ret = build_constantInteger( *new std::string( str.substr(1) ) );
206 delete &str;
207 return ret;
208} // build_field_name_REALFRACTIONconstant
209
210Expression * build_field_name_REALDECIMALconstant( const std::string & str ) {
211 assert( str[str.size()-1] == '.' );
212 Expression * ret = build_constantInteger( *new std::string( str.substr( 0, str.size()-1 ) ) );
213 delete &str;
214 return ret;
215} // build_field_name_REALDECIMALconstant
216
217NameExpr * build_varref( const string *name, bool labelp ) {
218 NameExpr *expr = new NameExpr( *name, nullptr );
219 delete name;
220 return expr;
221}
222
223static const char *OperName[] = {
224 // diadic
225 "SizeOf", "AlignOf", "OffsetOf", "?+?", "?-?", "?*?", "?/?", "?%?", "||", "&&",
226 "?|?", "?&?", "?^?", "Cast", "?<<?", "?>>?", "?<?", "?>?", "?<=?", "?>=?", "?==?", "?!=?",
227 "?=?", "?@=?", "?*=?", "?/=?", "?%=?", "?+=?", "?-=?", "?<<=?", "?>>=?", "?&=?", "?^=?", "?|=?",
228 "?[?]", "...",
229 // monadic
230 "+?", "-?", "AddressOf", "*?", "!?", "~?", "++?", "?++", "--?", "?--", "&&"
231};
232
233Expression *build_cast( DeclarationNode *decl_node, ExpressionNode *expr_node ) {
234 Type *targetType = maybeMoveBuildType( decl_node );
235 if ( dynamic_cast< VoidType * >( targetType ) ) {
236 delete targetType;
237 return new CastExpr( maybeMoveBuild< Expression >(expr_node) );
238 } else {
239 return new CastExpr( maybeMoveBuild< Expression >(expr_node), targetType );
240 } // if
241}
242
243Expression *build_fieldSel( ExpressionNode *expr_node, Expression *member ) {
244 UntypedMemberExpr *ret = new UntypedMemberExpr( member, maybeMoveBuild< Expression >(expr_node) );
245 return ret;
246}
247
248Expression *build_pfieldSel( ExpressionNode *expr_node, Expression *member ) {
249 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
250 deref->get_args().push_back( maybeMoveBuild< Expression >(expr_node) );
251 UntypedMemberExpr *ret = new UntypedMemberExpr( member, deref );
252 return ret;
253}
254
255Expression *build_addressOf( ExpressionNode *expr_node ) {
256 return new AddressExpr( maybeMoveBuild< Expression >(expr_node) );
257}
258Expression *build_sizeOfexpr( ExpressionNode *expr_node ) {
259 return new SizeofExpr( maybeMoveBuild< Expression >(expr_node) );
260}
261Expression *build_sizeOftype( DeclarationNode *decl_node ) {
262 return new SizeofExpr( maybeMoveBuildType( decl_node ) );
263}
264Expression *build_alignOfexpr( ExpressionNode *expr_node ) {
265 return new AlignofExpr( maybeMoveBuild< Expression >(expr_node) );
266}
267Expression *build_alignOftype( DeclarationNode *decl_node ) {
268 return new AlignofExpr( maybeMoveBuildType( decl_node) );
269}
270Expression *build_offsetOf( DeclarationNode *decl_node, NameExpr *member ) {
271 Expression* ret = new UntypedOffsetofExpr( maybeMoveBuildType( decl_node ), member->get_name() );
272 delete member;
273 return ret;
274}
275
276Expression *build_and_or( ExpressionNode *expr_node1, ExpressionNode *expr_node2, bool kind ) {
277 return new LogicalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), notZeroExpr( maybeMoveBuild< Expression >(expr_node2) ), kind );
278}
279
280Expression *build_unary_val( OperKinds op, ExpressionNode *expr_node ) {
281 std::list< Expression * > args;
282 args.push_back( maybeMoveBuild< Expression >(expr_node) );
283 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
284}
285Expression *build_unary_ptr( OperKinds op, ExpressionNode *expr_node ) {
286 std::list< Expression * > args;
287 args.push_back( new AddressExpr( maybeMoveBuild< Expression >(expr_node) ) );
288 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
289}
290Expression *build_binary_val( OperKinds op, ExpressionNode *expr_node1, ExpressionNode *expr_node2 ) {
291 std::list< Expression * > args;
292 args.push_back( maybeMoveBuild< Expression >(expr_node1) );
293 args.push_back( maybeMoveBuild< Expression >(expr_node2) );
294 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
295}
296Expression *build_binary_ptr( OperKinds op, ExpressionNode *expr_node1, ExpressionNode *expr_node2 ) {
297 std::list< Expression * > args;
298 args.push_back( new AddressExpr( maybeMoveBuild< Expression >(expr_node1) ) );
299 args.push_back( maybeMoveBuild< Expression >(expr_node2) );
300 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
301}
302
303Expression *build_cond( ExpressionNode *expr_node1, ExpressionNode *expr_node2, ExpressionNode *expr_node3 ) {
304 return new ConditionalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), maybeMoveBuild< Expression >(expr_node2), maybeMoveBuild< Expression >(expr_node3) );
305}
306
307Expression *build_comma( ExpressionNode *expr_node1, ExpressionNode *expr_node2 ) {
308 return new CommaExpr( maybeMoveBuild< Expression >(expr_node1), maybeMoveBuild< Expression >(expr_node2) );
309}
310
311Expression *build_attrexpr( NameExpr *var, ExpressionNode * expr_node ) {
312 return new AttrExpr( var, maybeMoveBuild< Expression >(expr_node) );
313}
314Expression *build_attrtype( NameExpr *var, DeclarationNode * decl_node ) {
315 return new AttrExpr( var, maybeMoveBuildType( decl_node ) );
316}
317
318Expression *build_tuple( ExpressionNode * expr_node ) {
319 TupleExpr *ret = new TupleExpr();
320 buildMoveList( expr_node, ret->get_exprs() );
321 return ret;
322}
323
324Expression *build_func( ExpressionNode * function, ExpressionNode * expr_node ) {
325 std::list< Expression * > args;
326 buildMoveList( expr_node, args );
327 return new UntypedExpr( maybeMoveBuild< Expression >(function), args, nullptr );
328}
329
330Expression *build_range( ExpressionNode * low, ExpressionNode *high ) {
331 return new RangeExpr( maybeMoveBuild< Expression >( low ), maybeMoveBuild< Expression >( high ) );
332}
333
334Expression *build_asmexpr( ExpressionNode *inout, ConstantExpr *constraint, ExpressionNode *operand ) {
335 return new AsmExpr( maybeMoveBuild< Expression >( inout ), constraint, maybeMoveBuild< Expression >(operand) );
336}
337
338Expression *build_valexpr( StatementNode *s ) {
339 return new UntypedValofExpr( maybeMoveBuild< Statement >(s), nullptr );
340}
341Expression *build_typevalue( DeclarationNode *decl ) {
342 return new TypeExpr( maybeMoveBuildType( decl ) );
343}
344
345Expression *build_compoundLiteral( DeclarationNode *decl_node, InitializerNode *kids ) {
346 Declaration * newDecl = maybeBuild< Declaration >(decl_node); // compound literal type
347 if ( DeclarationWithType * newDeclWithType = dynamic_cast< DeclarationWithType * >( newDecl ) ) { // non-sue compound-literal type
348 return new CompoundLiteralExpr( newDeclWithType->get_type(), maybeMoveBuild< Initializer >(kids) );
349 // these types do not have associated type information
350 } else if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( newDecl ) ) {
351 return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
352 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( newDecl ) ) {
353 return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
354 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( newDecl ) ) {
355 return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
356 } else {
357 assert( false );
358 } // if
359}
360
361// Local Variables: //
362// tab-width: 4 //
363// mode: c++ //
364// compile-command: "make install" //
365// End: //
Note: See TracBrowser for help on using the repository browser.