source: src/Parser/ExpressionNode.cc@ 79a6b17

ADT ast-experimental
Last change on this file since 79a6b17 was e874605, checked in by JiadaL <j82liang@…>, 3 years ago

Add class InlineValueDecl, which is a Declaration class that works as a placeholder for aggregration value inherited from other aggregration. Disable inline value overwrite.

  • Property mode set to 100644
File size: 28.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// ExpressionNode.cc --
8//
9// Author : Peter A. Buhr
10// Created On : Sat May 16 13:17:07 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Sat Aug 7 09:18:56 2021
13// Update Count : 1077
14//
15
16#include <cassert> // for assert
17#include <stdio.h> // for sscanf, size_t
18#include <climits> // for LLONG_MAX, LONG_MAX, INT_MAX, UINT...
19#include <list> // for list
20#include <sstream> // for basic_istream::operator>>, basic_i...
21#include <string> // for string, operator+, operator==
22
23#include "Common/SemanticError.h" // for SemanticError
24#include "Common/utility.h" // for maybeMoveBuild, maybeBuild, CodeLo...
25#include "ParseNode.h" // for ExpressionNode, maybeMoveBuildType
26#include "SynTree/Constant.h" // for Constant
27#include "SynTree/Declaration.h" // for EnumDecl, StructDecl, UnionDecl
28#include "SynTree/Expression.h" // for Expression, ConstantExpr, NameExpr
29#include "SynTree/Statement.h" // for CompoundStmt, Statement
30#include "SynTree/Type.h" // for BasicType, Type, Type::Qualifiers
31#include "parserutility.h" // for notZeroExpr
32
33class Initializer;
34
35using namespace std;
36
37//##############################################################################
38
39// Difficult to separate extra parts of constants during lexing because actions are not allow in the middle of patterns:
40//
41// prefix action constant action suffix
42//
43// Alternatively, breaking a pattern using BEGIN does not work if the following pattern can be empty:
44//
45// constant BEGIN CONT ...
46// <CONT>(...)? BEGIN 0 ... // possible empty suffix
47//
48// because the CONT rule is NOT triggered if the pattern is empty. Hence, constants are reparsed here to determine their
49// type.
50
51extern const Type::Qualifiers noQualifiers; // no qualifiers on constants
52
53// static inline bool checkH( char c ) { return c == 'h' || c == 'H'; }
54// static inline bool checkZ( char c ) { return c == 'z' || c == 'Z'; }
55// static inline bool checkU( char c ) { return c == 'u' || c == 'U'; }
56static inline bool checkF( char c ) { return c == 'f' || c == 'F'; }
57static inline bool checkD( char c ) { return c == 'd' || c == 'D'; }
58static inline bool checkF80( char c ) { return c == 'w' || c == 'W'; }
59static inline bool checkF128( char c ) { return c == 'q' || c == 'Q'; }
60static inline bool checkL( char c ) { return c == 'l' || c == 'L'; }
61static inline bool checkI( char c ) { return c == 'i' || c == 'I'; }
62static inline bool checkB( char c ) { return c == 'b' || c == 'B'; }
63static inline bool checkX( char c ) { return c == 'x' || c == 'X'; }
64// static inline bool checkN( char c ) { return c == 'n' || c == 'N'; }
65
66void lnthSuffix( string & str, int & type, int & ltype ) {
67 // 'u' can appear before or after length suffix
68 string::size_type posn = str.find_last_of( "lL" );
69
70 if ( posn == string::npos ) return; // no suffix
71 size_t end = str.length() - 1;
72 if ( posn == end ) { type = 3; return; } // no length after 'l' => long
73
74 string::size_type next = posn + 1; // advance to length
75 if ( str[next] == '3' ) { // 32
76 type = ltype = 2;
77 } else if ( str[next] == '6' ) { // 64
78 type = ltype = 3;
79 } else if ( str[next] == '8' ) { // 8
80 type = ltype = 1;
81 } else if ( str[next] == '1' ) {
82 if ( str[next + 1] == '6' ) { // 16
83 type = ltype = 0;
84 } else { // 128
85 type = 5; ltype = 6;
86 } // if
87 } // if
88
89 char fix = '\0';
90 if ( str[end] == 'u' || str[end] == 'U' ) fix = str[end]; // ends with 'uU' ?
91 str.erase( posn ); // remove length suffix and possibly uU
92 if ( type == 5 ) { // L128 does not need uU
93 end = str.length() - 1;
94 if ( str[end] == 'u' || str[end] == 'U' ) str.erase( end ); // ends with 'uU' ? remove
95 } else if ( fix != '\0' ) str += fix; // put 'uU' back if removed
96} // lnthSuffix
97
98void valueToType( unsigned long long int & v, bool dec, int & type, bool & Unsigned ) {
99 // use value to determine type
100 if ( v <= INT_MAX ) { // signed int
101 type = 2;
102 } else if ( v <= UINT_MAX && ! dec ) { // unsigned int
103 type = 2;
104 Unsigned = true; // unsigned
105 } else if ( v <= LONG_MAX ) { // signed long int
106 type = 3;
107 } else if ( v <= ULONG_MAX && ( ! dec || LONG_MAX == LLONG_MAX ) ) { // signed long int
108 type = 3;
109 Unsigned = true; // unsigned long int
110 } else if ( v <= LLONG_MAX ) { // signed long long int
111 type = 4;
112 } else { // unsigned long long int
113 type = 4;
114 Unsigned = true; // unsigned long long int
115 } // if
116} // valueToType
117
118static void scanbin( string & str, unsigned long long int & v ) {
119 v = 0;
120 size_t last = str.length() - 1; // last subscript of constant
121 for ( unsigned int i = 2;; ) { // ignore prefix
122 if ( str[i] == '1' ) v |= 1;
123 i += 1;
124 if ( i == last - 1 || (str[i] != '0' && str[i] != '1') ) break;
125 v <<= 1;
126 } // for
127} // scanbin
128
129Expression * build_constantInteger( string & str ) {
130 static const BasicType::Kind kind[2][6] = {
131 // short (h) must be before char (hh) because shorter type has the longer suffix
132 { BasicType::ShortSignedInt, BasicType::SignedChar, BasicType::SignedInt, BasicType::LongSignedInt, BasicType::LongLongSignedInt, /* BasicType::SignedInt128 */ BasicType::LongLongSignedInt, },
133 { BasicType::ShortUnsignedInt, BasicType::UnsignedChar, BasicType::UnsignedInt, BasicType::LongUnsignedInt, BasicType::LongLongUnsignedInt, /* BasicType::UnsignedInt128 */ BasicType::LongLongUnsignedInt, },
134 };
135
136 static const char * lnthsInt[2][6] = {
137 { "int16_t", "int8_t", "int32_t", "int64_t", "size_t", "uintptr_t", },
138 { "uint16_t", "uint8_t", "uint32_t", "uint64_t", "size_t", "uintptr_t", },
139 }; // lnthsInt
140
141 string str2( "0x0" );
142 unsigned long long int v, v2 = 0; // converted integral value
143 Expression * ret, * ret2;
144
145 int type = -1; // 0 => short, 1 => char, 2 => int, 3 => long int, 4 => long long int, 5 => int128
146 int ltype = -1; // 0 => 16 bits, 1 => 8 bits, 2 => 32 bits, 3 => 64 bits, 4 => size_t, 5 => intptr, 6 => pointer
147 bool dec = true, Unsigned = false; // decimal, unsigned constant
148
149 // special constants
150 if ( str == "0" ) {
151 ret = new ConstantExpr( Constant( (Type *)new ZeroType( noQualifiers ), str, (unsigned long long int)0 ) );
152 goto CLEANUP;
153 } // if
154 if ( str == "1" ) {
155 ret = new ConstantExpr( Constant( (Type *)new OneType( noQualifiers ), str, (unsigned long long int)1 ) );
156 goto CLEANUP;
157 } // if
158
159 string::size_type posn;
160
161 // 'u' can appear before or after length suffix
162 if ( str.find_last_of( "uU" ) != string::npos ) Unsigned = true;
163
164 if ( isdigit( str[str.length() - 1] ) ) { // no suffix ?
165 lnthSuffix( str, type, ltype ); // could have length suffix
166 } else {
167 // At least one digit in integer constant, so safe to backup while looking for suffix.
168
169 posn = str.find_last_of( "pP" ); // pointer value
170 if ( posn != string::npos ) { ltype = 5; str.erase( posn, 1 ); goto FINI; }
171
172 posn = str.find_last_of( "zZ" ); // size_t
173 if ( posn != string::npos ) { Unsigned = true; type = 2; ltype = 4; str.erase( posn, 1 ); goto FINI; }
174
175 posn = str.rfind( "hh" ); // char
176 if ( posn != string::npos ) { type = 1; str.erase( posn, 2 ); goto FINI; }
177
178 posn = str.rfind( "HH" ); // char
179 if ( posn != string::npos ) { type = 1; str.erase( posn, 2 ); goto FINI; }
180
181 posn = str.find_last_of( "hH" ); // short
182 if ( posn != string::npos ) { type = 0; str.erase( posn, 1 ); goto FINI; }
183
184 posn = str.find_last_of( "nN" ); // int (natural number)
185 if ( posn != string::npos ) { type = 2; str.erase( posn, 1 ); goto FINI; }
186
187 if ( str.rfind( "ll" ) != string::npos || str.rfind( "LL" ) != string::npos ) { type = 4; goto FINI; }
188
189 lnthSuffix( str, type, ltype ); // must be after check for "ll"
190 FINI: ;
191 } // if
192
193 // Cannot be just "0"/"1"; sscanf stops at the suffix, if any; value goes over the wall => always generate
194
195#if ! defined(__SIZEOF_INT128__)
196 if ( type == 5 ) SemanticError( yylloc, "int128 constant is not supported on this target " + str );
197#endif // ! __SIZEOF_INT128__
198
199 if ( str[0] == '0' ) { // radix character ?
200 dec = false;
201 if ( checkX( str[1] ) ) { // hex constant ?
202 if ( type < 5 ) { // not L128 ?
203 sscanf( (char *)str.c_str(), "%llx", &v );
204#if defined(__SIZEOF_INT128__)
205 } else { // hex int128 constant
206 unsigned int len = str.length();
207 if ( len > (2 + 16 + 16) ) SemanticError( yylloc, "128-bit hexadecimal constant to large " + str );
208 if ( len <= (2 + 16) ) goto FHEX1; // hex digits < 2^64
209 str2 = "0x" + str.substr( len - 16 );
210 sscanf( (char *)str2.c_str(), "%llx", &v2 );
211 str = str.substr( 0, len - 16 );
212 FHEX1: ;
213 sscanf( (char *)str.c_str(), "%llx", &v );
214#endif // __SIZEOF_INT128__
215 } // if
216 //printf( "%llx %llu\n", v, v );
217 } else if ( checkB( str[1] ) ) { // binary constant ?
218#if defined(__SIZEOF_INT128__)
219 unsigned int len = str.length();
220 if ( type == 5 && len > 2 + 64 ) {
221 if ( len > 2 + 64 + 64 ) SemanticError( yylloc, "128-bit binary constant to large " + str );
222 str2 = "0b" + str.substr( len - 64 );
223 str = str.substr( 0, len - 64 );
224 scanbin( str2, v2 );
225 } // if
226#endif // __SIZEOF_INT128__
227 scanbin( str, v );
228 //printf( "%#llx %llu\n", v, v );
229 } else { // octal constant
230 if ( type < 5 ) { // not L128 ?
231 sscanf( (char *)str.c_str(), "%llo", &v );
232#if defined(__SIZEOF_INT128__)
233 } else { // octal int128 constant
234 unsigned int len = str.length();
235 if ( len > 1 + 43 || (len == 1 + 43 && str[0] > '3') ) SemanticError( yylloc, "128-bit octal constant to large " + str );
236 char buf[32];
237 if ( len <= 1 + 21 ) { // value < 21 octal digitis
238 sscanf( (char *)str.c_str(), "%llo", &v );
239 } else {
240 sscanf( &str[len - 21], "%llo", &v );
241 __int128 val = v; // accumulate bits
242 str[len - 21] ='\0'; // shorten string
243 sscanf( &str[len == 43 ? 1 : 0], "%llo", &v );
244 val |= (__int128)v << 63; // store bits
245 if ( len == 1 + 43 ) { // most significant 2 bits ?
246 str[2] = '\0'; // shorten string
247 sscanf( &str[1], "%llo", &v ); // process most significant 2 bits
248 val |= (__int128)v << 126; // store bits
249 } // if
250 v = val >> 64; v2 = (uint64_t)val; // replace octal constant with 2 hex constants
251 sprintf( buf, "%#llx", v2 );
252 str2 = buf;
253 } // if
254 sprintf( buf, "%#llx", v );
255 str = buf;
256#endif // __SIZEOF_INT128__
257 } // if
258 //printf( "%#llo %llu\n", v, v );
259 } // if
260 } else { // decimal constant ?
261 if ( type < 5 ) { // not L128 ?
262 sscanf( (char *)str.c_str(), "%llu", &v );
263#if defined(__SIZEOF_INT128__)
264 } else { // decimal int128 constant
265 #define P10_UINT64 10'000'000'000'000'000'000ULL // 19 zeroes
266 unsigned int len = str.length();
267 if ( str.length() == 39 && str > (Unsigned ? "340282366920938463463374607431768211455" : "170141183460469231731687303715884105727") )
268 SemanticError( yylloc, "128-bit decimal constant to large " + str );
269 char buf[32];
270 if ( len <= 19 ) { // value < 19 decimal digitis
271 sscanf( (char *)str.c_str(), "%llu", &v );
272 } else {
273 sscanf( &str[len - 19], "%llu", &v );
274 __int128 val = v; // accumulate bits
275 str[len - 19] ='\0'; // shorten string
276 sscanf( &str[len == 39 ? 1 : 0], "%llu", &v );
277 val += (__int128)v * (__int128)P10_UINT64; // store bits
278 if ( len == 39 ) { // most significant 2 bits ?
279 str[1] = '\0'; // shorten string
280 sscanf( &str[0], "%llu", &v ); // process most significant 2 bits
281 val += (__int128)v * (__int128)P10_UINT64 * (__int128)P10_UINT64; // store bits
282 } // if
283 v = val >> 64; v2 = (uint64_t)val; // replace decimal constant with 2 hex constants
284 sprintf( buf, "%#llx", v2 );
285 str2 = buf;
286 } // if
287 sprintf( buf, "%#llx", v );
288 str = buf;
289#endif // __SIZEOF_INT128__
290 } // if
291 //printf( "%llu\n", v );
292 } // if
293
294 if ( type == -1 ) { // no suffix => determine type from value size
295 valueToType( v, dec, type, Unsigned );
296 } // if
297 /* printf( "%s %llo %s %llo\n", str.c_str(), v, str2.c_str(), v2 ); */
298
299 //if ( !( 0 <= type && type <= 6 ) ) { printf( "%s %lu %d %s\n", fred.c_str(), fred.length(), type, str.c_str() ); }
300 assert( 0 <= type && type <= 6 );
301
302 // Constant type is correct for overload resolving.
303 ret = new ConstantExpr( Constant( new BasicType( noQualifiers, kind[Unsigned][type] ), str, v ) );
304 if ( Unsigned && type < 2 ) { // hh or h, less than int ?
305 // int i = -1uh => 65535 not -1, so cast is necessary for unsigned, which unfortunately eliminates warnings for large values.
306 ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[Unsigned][type] ), false );
307 } else if ( ltype != -1 ) { // explicit length ?
308 if ( ltype == 6 ) { // int128, (int128)constant
309// ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[Unsigned][type] ), false );
310 ret2 = new ConstantExpr( Constant( new BasicType( noQualifiers, BasicType::LongLongSignedInt ), str2, v2 ) );
311 ret = build_compoundLiteral( DeclarationNode::newBasicType( DeclarationNode::Int128 )->addType( DeclarationNode::newSignedNess( DeclarationNode::Unsigned ) ),
312 new InitializerNode( (InitializerNode *)(new InitializerNode( new ExpressionNode( v2 == 0 ? ret2 : ret ) ))->set_last( new InitializerNode( new ExpressionNode( v2 == 0 ? ret : ret2 ) ) ), true ) );
313 } else { // explicit length, (length_type)constant
314 ret = new CastExpr( ret, new TypeInstType( Type::Qualifiers(), lnthsInt[Unsigned][ltype], false ), false );
315 if ( ltype == 5 ) { // pointer, intptr( (uintptr_t)constant )
316 ret = build_func( new ExpressionNode( build_varref( new string( "intptr" ) ) ), new ExpressionNode( ret ) );
317 } // if
318 } // if
319 } // if
320
321 CLEANUP: ;
322 delete &str; // created by lex
323 return ret;
324} // build_constantInteger
325
326
327static inline void checkFnxFloat( string & str, size_t last, bool & explnth, int & type ) {
328 string::size_type posn;
329 // floating-point constant has minimum of 2 characters, 1. or .1, so safe to look ahead
330 if ( str[1] == 'x' ) { // hex ?
331 posn = str.find_last_of( "pP" ); // back for exponent (must have)
332 posn = str.find_first_of( "fF", posn + 1 ); // forward for size (fF allowed in hex constant)
333 } else {
334 posn = str.find_last_of( "fF" ); // back for size (fF not allowed)
335 } // if
336 if ( posn == string::npos ) return;
337 explnth = true;
338 posn += 1; // advance to size
339 if ( str[posn] == '3' ) { // 32
340 if ( str[last] != 'x' ) type = 6;
341 else type = 7;
342 } else if ( str[posn] == '6' ) { // 64
343 if ( str[last] != 'x' ) type = 8;
344 else type = 9;
345 } else if ( str[posn] == '8' ) { // 80
346 type = 3;
347 } else if ( str[posn] == '1' ) { // 16/128
348 if ( str[posn + 1] == '6' ) { // 16
349 type = 5;
350 } else { // 128
351 if ( str[last] != 'x' ) type = 10;
352 else type = 11;
353 } // if
354 } else {
355 assertf( false, "internal error, bad floating point length %s", str.c_str() );
356 } // if
357} // checkFnxFloat
358
359
360Expression * build_constantFloat( string & str ) {
361 static const BasicType::Kind kind[2][12] = {
362 { BasicType::Float, BasicType::Double, BasicType::LongDouble, BasicType::uuFloat80, BasicType::uuFloat128, BasicType::uFloat16, BasicType::uFloat32, BasicType::uFloat32x, BasicType::uFloat64, BasicType::uFloat64x, BasicType::uFloat128, BasicType::uFloat128x },
363 { BasicType::FloatComplex, BasicType::DoubleComplex, BasicType::LongDoubleComplex, BasicType::NUMBER_OF_BASIC_TYPES, BasicType::NUMBER_OF_BASIC_TYPES, BasicType::uFloat16Complex, BasicType::uFloat32Complex, BasicType::uFloat32xComplex, BasicType::uFloat64Complex, BasicType::uFloat64xComplex, BasicType::uFloat128Complex, BasicType::uFloat128xComplex },
364 };
365
366 // floating-point constant has minimum of 2 characters 1. or .1
367 size_t last = str.length() - 1;
368 double v;
369 int type; // 0 => float, 1 => double, 3 => long double, ...
370 bool complx = false; // real, complex
371 bool explnth = false; // explicit literal length
372
373 sscanf( str.c_str(), "%lg", &v );
374
375 if ( checkI( str[last] ) ) { // imaginary ?
376 complx = true;
377 last -= 1; // backup one character
378 } // if
379
380 if ( checkF( str[last] ) ) { // float ?
381 type = 0;
382 } else if ( checkD( str[last] ) ) { // double ?
383 type = 1;
384 } else if ( checkL( str[last] ) ) { // long double ?
385 type = 2;
386 } else if ( checkF80( str[last] ) ) { // __float80 ?
387 type = 3;
388 } else if ( checkF128( str[last] ) ) { // __float128 ?
389 type = 4;
390 } else {
391 type = 1; // double (default if no suffix)
392 checkFnxFloat( str, last, explnth, type );
393 } // if
394
395 if ( ! complx && checkI( str[last - 1] ) ) { // imaginary ?
396 complx = true;
397 } // if
398
399 assert( 0 <= type && type < 12 );
400 Expression * ret = new ConstantExpr( Constant( new BasicType( noQualifiers, kind[complx][type] ), str, v ) );
401 if ( explnth ) { // explicit length ?
402 ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[complx][type] ), false );
403 } // if
404
405 delete &str; // created by lex
406 return ret;
407} // build_constantFloat
408
409static void sepString( string & str, string & units, char delimit ) {
410 string::size_type posn = str.find_last_of( delimit ) + 1;
411 if ( posn != str.length() ) {
412 units = "?" + str.substr( posn ); // extract units
413 str.erase( posn ); // remove units
414 } // if
415} // sepString
416
417Expression * build_constantChar( string & str ) {
418 string units; // units
419 sepString( str, units, '\'' ); // separate constant from units
420
421 Expression * ret = new ConstantExpr( Constant( new BasicType( noQualifiers, BasicType::Char ), str, (unsigned long long int)(unsigned char)str[1] ) );
422 if ( units.length() != 0 ) {
423 ret = new UntypedExpr( new NameExpr( units ), { ret } );
424 } // if
425
426 delete &str; // created by lex
427 return ret;
428} // build_constantChar
429
430Expression * build_constantStr( string & str ) {
431 assert( str.length() > 0 );
432 string units; // units
433 sepString( str, units, '"' ); // separate constant from units
434
435 Type * strtype;
436 switch ( str[0] ) { // str has >= 2 characters, i.e, null string "" => safe to look at subscripts 0/1
437 case 'u':
438 if ( str[1] == '8' ) goto Default; // utf-8 characters => array of char
439 // lookup type of associated typedef
440 strtype = new TypeInstType( Type::Qualifiers( ), "char16_t", false );
441 break;
442 case 'U':
443 strtype = new TypeInstType( Type::Qualifiers( ), "char32_t", false );
444 break;
445 case 'L':
446 strtype = new TypeInstType( Type::Qualifiers( ), "wchar_t", false );
447 break;
448 Default: // char default string type
449 default:
450 strtype = new BasicType( Type::Qualifiers( ), BasicType::Char );
451 } // switch
452 ArrayType * at = new ArrayType( noQualifiers, strtype,
453 new ConstantExpr( Constant::from_ulong( str.size() + 1 - 2 ) ), // +1 for '\0' and -2 for '"'
454 false, false );
455 Expression * ret = new ConstantExpr( Constant( at, str, std::nullopt ) );
456 if ( units.length() != 0 ) {
457 ret = new UntypedExpr( new NameExpr( units ), { ret } );
458 } // if
459
460 delete &str; // created by lex
461 return ret;
462} // build_constantStr
463
464Expression * build_field_name_FLOATING_FRACTIONconstant( const string & str ) {
465 if ( str.find_first_not_of( "0123456789", 1 ) != string::npos ) SemanticError( yylloc, "invalid tuple index " + str );
466 Expression * ret = build_constantInteger( *new string( str.substr(1) ) );
467 delete &str;
468 return ret;
469} // build_field_name_FLOATING_FRACTIONconstant
470
471Expression * build_field_name_FLOATING_DECIMALconstant( const string & str ) {
472 if ( str[str.size() - 1] != '.' ) SemanticError( yylloc, "invalid tuple index " + str );
473 Expression * ret = build_constantInteger( *new string( str.substr( 0, str.size()-1 ) ) );
474 delete &str;
475 return ret;
476} // build_field_name_FLOATING_DECIMALconstant
477
478Expression * build_field_name_FLOATINGconstant( const string & str ) {
479 // str is of the form A.B -> separate at the . and return member expression
480 int a, b;
481 char dot;
482 stringstream ss( str );
483 ss >> a >> dot >> b;
484 UntypedMemberExpr * ret = new UntypedMemberExpr( new ConstantExpr( Constant::from_int( b ) ), new ConstantExpr( Constant::from_int( a ) ) );
485 delete &str;
486 return ret;
487} // build_field_name_FLOATINGconstant
488
489Expression * make_field_name_fraction_constants( Expression * fieldName, Expression * fracts ) {
490 if ( fracts ) {
491 if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( fracts ) ) {
492 memberExpr->set_member( make_field_name_fraction_constants( fieldName, memberExpr->get_aggregate() ) );
493 return memberExpr;
494 } else {
495 return new UntypedMemberExpr( fracts, fieldName );
496 } // if
497 } // if
498 return fieldName;
499} // make_field_name_fraction_constants
500
501Expression * build_field_name_fraction_constants( Expression * fieldName, ExpressionNode * fracts ) {
502 return make_field_name_fraction_constants( fieldName, maybeMoveBuild< Expression >( fracts ) );
503} // build_field_name_fraction_constants
504
505NameExpr * build_varref( const string * name ) {
506 NameExpr * expr = new NameExpr( *name );
507 delete name;
508 return expr;
509} // build_varref
510
511QualifiedNameExpr * build_qualified_expr( const DeclarationNode * decl_node, const NameExpr * name ) {
512 Declaration * newDecl = maybeBuild< Declaration >(decl_node);
513 if ( DeclarationWithType * newDeclWithType = dynamic_cast< DeclarationWithType * >( newDecl ) ) {
514 const Type * t = newDeclWithType->get_type();
515 if ( t ) {
516 if ( const TypeInstType * typeInst = dynamic_cast<const TypeInstType *>( t ) ) {
517 newDecl= new EnumDecl( typeInst->name );
518 }
519 }
520 }
521 return new QualifiedNameExpr( newDecl, name->name );
522}
523
524QualifiedNameExpr * build_qualified_expr( const EnumDecl * decl_node, const NameExpr * name ) {
525 EnumDecl * newDecl = const_cast< EnumDecl * >( decl_node );
526 return new QualifiedNameExpr( newDecl, name->name );
527}
528
529DimensionExpr * build_dimensionref( const string * name ) {
530 DimensionExpr * expr = new DimensionExpr( *name );
531 delete name;
532 return expr;
533} // build_varref
534
535// TODO: get rid of this and OperKinds and reuse code from OperatorTable
536static const char * OperName[] = { // must harmonize with OperKinds
537 // diadic
538 "SizeOf", "AlignOf", "OffsetOf", "?+?", "?-?", "?\\?", "?*?", "?/?", "?%?", "||", "&&",
539 "?|?", "?&?", "?^?", "Cast", "?<<?", "?>>?", "?<?", "?>?", "?<=?", "?>=?", "?==?", "?!=?",
540 "?=?", "?@=?", "?\\=?", "?*=?", "?/=?", "?%=?", "?+=?", "?-=?", "?<<=?", "?>>=?", "?&=?", "?^=?", "?|=?",
541 "?[?]", "...",
542 // monadic
543 "+?", "-?", "AddressOf", "*?", "!?", "~?", "++?", "?++", "--?", "?--",
544}; // OperName
545
546Expression * build_cast( DeclarationNode * decl_node, ExpressionNode * expr_node ) {
547 Type * targetType = maybeMoveBuildType( decl_node );
548 if ( dynamic_cast< VoidType * >( targetType ) ) {
549 delete targetType;
550 return new CastExpr( maybeMoveBuild< Expression >(expr_node), false );
551 } else {
552 return new CastExpr( maybeMoveBuild< Expression >(expr_node), targetType, false );
553 } // if
554} // build_cast
555
556Expression * build_keyword_cast( AggregateDecl::Aggregate target, ExpressionNode * expr_node ) {
557 return new KeywordCastExpr( maybeMoveBuild< Expression >(expr_node), target );
558}
559
560Expression * build_virtual_cast( DeclarationNode * decl_node, ExpressionNode * expr_node ) {
561 return new VirtualCastExpr( maybeMoveBuild< Expression >( expr_node ), maybeMoveBuildType( decl_node ) );
562} // build_virtual_cast
563
564Expression * build_fieldSel( ExpressionNode * expr_node, Expression * member ) {
565 return new UntypedMemberExpr( member, maybeMoveBuild< Expression >(expr_node) );
566} // build_fieldSel
567
568Expression * build_pfieldSel( ExpressionNode * expr_node, Expression * member ) {
569 UntypedExpr * deref = new UntypedExpr( new NameExpr( "*?" ) );
570 deref->location = expr_node->location;
571 deref->get_args().push_back( maybeMoveBuild< Expression >(expr_node) );
572 UntypedMemberExpr * ret = new UntypedMemberExpr( member, deref );
573 return ret;
574} // build_pfieldSel
575
576Expression * build_offsetOf( DeclarationNode * decl_node, NameExpr * member ) {
577 Expression * ret = new UntypedOffsetofExpr( maybeMoveBuildType( decl_node ), member->get_name() );
578 delete member;
579 return ret;
580} // build_offsetOf
581
582Expression * build_and_or( ExpressionNode * expr_node1, ExpressionNode * expr_node2, bool kind ) {
583 return new LogicalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), notZeroExpr( maybeMoveBuild< Expression >(expr_node2) ), kind );
584} // build_and_or
585
586Expression * build_unary_val( OperKinds op, ExpressionNode * expr_node ) {
587 list< Expression * > args;
588 args.push_back( maybeMoveBuild< Expression >(expr_node) );
589 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
590} // build_unary_val
591
592Expression * build_unary_ptr( OperKinds op, ExpressionNode * expr_node ) {
593 list< Expression * > args;
594 args.push_back( maybeMoveBuild< Expression >(expr_node) ); // xxx -- this is exactly the same as the val case now, refactor this code.
595 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
596} // build_unary_ptr
597
598Expression * build_binary_val( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 ) {
599 list< Expression * > args;
600 args.push_back( maybeMoveBuild< Expression >(expr_node1) );
601 args.push_back( maybeMoveBuild< Expression >(expr_node2) );
602 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
603} // build_binary_val
604
605Expression * build_binary_ptr( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 ) {
606 list< Expression * > args;
607 args.push_back( maybeMoveBuild< Expression >(expr_node1) );
608 args.push_back( maybeMoveBuild< Expression >(expr_node2) );
609 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
610} // build_binary_ptr
611
612Expression * build_cond( ExpressionNode * expr_node1, ExpressionNode * expr_node2, ExpressionNode * expr_node3 ) {
613 return new ConditionalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), maybeMoveBuild< Expression >(expr_node2), maybeMoveBuild< Expression >(expr_node3) );
614} // build_cond
615
616Expression * build_tuple( ExpressionNode * expr_node ) {
617 list< Expression * > exprs;
618 buildMoveList( expr_node, exprs );
619 return new UntypedTupleExpr( exprs );;
620} // build_tuple
621
622Expression * build_func( ExpressionNode * function, ExpressionNode * expr_node ) {
623 list< Expression * > args;
624 buildMoveList( expr_node, args );
625 return new UntypedExpr( maybeMoveBuild< Expression >(function), args );
626} // build_func
627
628Expression * build_compoundLiteral( DeclarationNode * decl_node, InitializerNode * kids ) {
629 Declaration * newDecl = maybeBuild< Declaration >(decl_node); // compound literal type
630 if ( DeclarationWithType * newDeclWithType = dynamic_cast< DeclarationWithType * >( newDecl ) ) { // non-sue compound-literal type
631 return new CompoundLiteralExpr( newDeclWithType->get_type(), maybeMoveBuild< Initializer >(kids) );
632 // these types do not have associated type information
633 } else if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( newDecl ) ) {
634 if ( newDeclStructDecl->has_body() ) {
635 return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl ), maybeMoveBuild< Initializer >(kids) );
636 } else {
637 return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
638 } // if
639 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( newDecl ) ) {
640 if ( newDeclUnionDecl->has_body() ) {
641 return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl ), maybeMoveBuild< Initializer >(kids) );
642 } else {
643 return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
644 } // if
645 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( newDecl ) ) {
646 if ( newDeclEnumDecl->has_body() ) {
647 return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl ), maybeMoveBuild< Initializer >(kids) );
648 } else {
649 return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
650 } // if
651 } else {
652 assert( false );
653 } // if
654} // build_compoundLiteral
655
656// Local Variables: //
657// tab-width: 4 //
658// mode: c++ //
659// compile-command: "make install" //
660// End: //
Note: See TracBrowser for help on using the repository browser.