source: src/Parser/ExpressionNode.cc@ 4f147cc

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 4f147cc was 4f147cc, checked in by Thierry Delisle <tdelisle@…>, 9 years ago

fixed some more memory leaks and added safe_dynamic_cast to assert.h

  • Property mode set to 100644
File size: 12.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// ExpressionNode.cc --
8//
9// Author : Rodolfo G. Esteves
10// Created On : Sat May 16 13:17:07 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Aug 16 00:09:20 2016
13// Update Count : 495
14//
15
16#include <cassert>
17#include <cctype>
18#include <climits>
19#include <cstdio>
20#include <algorithm>
21#include <sstream>
22
23#include "ParseNode.h"
24#include "TypeData.h"
25#include "SynTree/Constant.h"
26#include "SynTree/Expression.h"
27#include "SynTree/Declaration.h"
28#include "Common/UnimplementedError.h"
29#include "parseutility.h"
30#include "Common/utility.h"
31
32using namespace std;
33
34ExpressionNode::ExpressionNode( const ExpressionNode &other ) : ParseNode( other.get_name() ), extension( other.extension ) {}
35
36//##############################################################################
37
38// Difficult to separate extra parts of constants during lexing because actions are not allow in the middle of patterns:
39//
40// prefix action constant action suffix
41//
42// Alternatively, breaking a pattern using BEGIN does not work if the following pattern can be empty:
43//
44// constant BEGIN CONT ...
45// <CONT>(...)? BEGIN 0 ... // possible empty suffix
46//
47// because the CONT rule is NOT triggered if the pattern is empty. Hence, constants are reparsed here to determine their
48// type.
49
50static Type::Qualifiers emptyQualifiers; // no qualifiers on constants
51
52static inline bool checkU( char c ) { return c == 'u' || c == 'U'; }
53static inline bool checkL( char c ) { return c == 'l' || c == 'L'; }
54static inline bool checkF( char c ) { return c == 'f' || c == 'F'; }
55static inline bool checkD( char c ) { return c == 'd' || c == 'D'; }
56static inline bool checkI( char c ) { return c == 'i' || c == 'I'; }
57static inline bool checkX( char c ) { return c == 'x' || c == 'X'; }
58
59Expression *build_constantInteger( const std::string & str ) {
60 static const BasicType::Kind kind[2][3] = {
61 { BasicType::SignedInt, BasicType::LongSignedInt, BasicType::LongLongSignedInt },
62 { BasicType::UnsignedInt, BasicType::LongUnsignedInt, BasicType::LongLongUnsignedInt },
63 };
64 bool dec = true, Unsigned = false; // decimal, unsigned constant
65 int size; // 0 => int, 1 => long, 2 => long long
66 unsigned long long v; // converted integral value
67 size_t last = str.length() - 1; // last character of constant
68
69 if ( str[0] == '0' ) { // octal/hex constant ?
70 dec = false;
71 if ( last != 0 && checkX( str[1] ) ) { // hex constant ?
72 sscanf( (char *)str.c_str(), "%llx", &v );
73 //printf( "%llx %llu\n", v, v );
74 } else { // octal constant
75 sscanf( (char *)str.c_str(), "%llo", &v );
76 //printf( "%llo %llu\n", v, v );
77 } // if
78 } else { // decimal constant ?
79 sscanf( (char *)str.c_str(), "%llu", &v );
80 //printf( "%llu %llu\n", v, v );
81 } // if
82
83 if ( v <= INT_MAX ) { // signed int
84 size = 0;
85 } else if ( v <= UINT_MAX && ! dec ) { // unsigned int
86 size = 0;
87 Unsigned = true; // unsigned
88 } else if ( v <= LONG_MAX ) { // signed long int
89 size = 1;
90 } else if ( v <= ULONG_MAX && ( ! dec || LONG_MAX == LLONG_MAX ) ) { // signed long int
91 size = 1;
92 Unsigned = true; // unsigned long int
93 } else if ( v <= LLONG_MAX ) { // signed long long int
94 size = 2;
95 } else { // unsigned long long int
96 size = 2;
97 Unsigned = true; // unsigned long long int
98 } // if
99
100 if ( checkU( str[last] ) ) { // suffix 'u' ?
101 Unsigned = true;
102 if ( last > 0 && checkL( str[last - 1] ) ) { // suffix 'l' ?
103 size = 1;
104 if ( last > 1 && checkL( str[last - 2] ) ) { // suffix 'll' ?
105 size = 2;
106 } // if
107 } // if
108 } else if ( checkL( str[ last ] ) ) { // suffix 'l' ?
109 size = 1;
110 if ( last > 0 && checkL( str[last - 1] ) ) { // suffix 'll' ?
111 size = 2;
112 if ( last > 1 && checkU( str[last - 2] ) ) { // suffix 'u' ?
113 Unsigned = true;
114 } // if
115 } else {
116 if ( last > 0 && checkU( str[last - 1] ) ) { // suffix 'u' ?
117 Unsigned = true;
118 } // if
119 } // if
120 } // if
121
122 return new ConstantExpr( Constant( new BasicType( emptyQualifiers, kind[Unsigned][size] ), str ) );
123} // build_constantInteger
124
125Expression *build_constantFloat( const std::string & str ) {
126 static const BasicType::Kind kind[2][3] = {
127 { BasicType::Float, BasicType::Double, BasicType::LongDouble },
128 { BasicType::FloatComplex, BasicType::DoubleComplex, BasicType::LongDoubleComplex },
129 };
130
131 bool complx = false; // real, complex
132 int size = 1; // 0 => float, 1 => double (default), 2 => long double
133 // floating-point constant has minimum of 2 characters: 1. or .1
134 size_t last = str.length() - 1;
135
136 if ( checkI( str[last] ) ) { // imaginary ?
137 complx = true;
138 last -= 1; // backup one character
139 } // if
140
141 if ( checkF( str[last] ) ) { // float ?
142 size = 0;
143 } else if ( checkD( str[last] ) ) { // double ?
144 size = 1;
145 } else if ( checkL( str[last] ) ) { // long double ?
146 size = 2;
147 } // if
148 if ( ! complx && checkI( str[last - 1] ) ) { // imaginary ?
149 complx = true;
150 } // if
151
152 return new ConstantExpr( Constant( new BasicType( emptyQualifiers, kind[complx][size] ), str ) );
153} // build_constantFloat
154
155Expression *build_constantChar( const std::string & str ) {
156 return new ConstantExpr( Constant( new BasicType( emptyQualifiers, BasicType::Char ), str ) );
157} // build_constantChar
158
159ConstantExpr *build_constantStr( const std::string & str ) {
160 // string should probably be a primitive type
161 ArrayType *at = new ArrayType( emptyQualifiers, new BasicType( emptyQualifiers, BasicType::Char ),
162 new ConstantExpr( Constant( new BasicType( emptyQualifiers, BasicType::UnsignedInt ),
163 toString( str.size()+1-2 ) ) ), // +1 for '\0' and -2 for '"'
164 false, false );
165 return new ConstantExpr( Constant( at, str ) );
166} // build_constantStr
167
168NameExpr * build_varref( const string *name, bool labelp ) {
169 NameExpr *expr = new NameExpr( *name, nullptr );
170 delete name;
171 return expr;
172}
173
174static const char *OperName[] = {
175 // diadic
176 "SizeOf", "AlignOf", "OffsetOf", "?+?", "?-?", "?*?", "?/?", "?%?", "||", "&&",
177 "?|?", "?&?", "?^?", "Cast", "?<<?", "?>>?", "?<?", "?>?", "?<=?", "?>=?", "?==?", "?!=?",
178 "?=?", "?*=?", "?/=?", "?%=?", "?+=?", "?-=?", "?<<=?", "?>>=?", "?&=?", "?^=?", "?|=?",
179 "?[?]", "...",
180 // monadic
181 "+?", "-?", "AddressOf", "*?", "!?", "~?", "++?", "?++", "--?", "?--", "&&"
182};
183
184Expression *build_cast( DeclarationNode *decl_node, ExpressionNode *expr_node ) {
185 Type *targetType = maybeMoveBuildType( decl_node );
186 if ( dynamic_cast< VoidType * >( targetType ) ) {
187 delete targetType;
188 return new CastExpr( maybeMoveBuild< Expression >(expr_node) );
189 } else {
190 return new CastExpr( maybeMoveBuild< Expression >(expr_node), targetType );
191 } // if
192}
193
194Expression *build_fieldSel( ExpressionNode *expr_node, NameExpr *member ) {
195 UntypedMemberExpr *ret = new UntypedMemberExpr( member->get_name(), maybeMoveBuild< Expression >(expr_node) );
196 delete member;
197 return ret;
198}
199
200Expression *build_pfieldSel( ExpressionNode *expr_node, NameExpr *member ) {
201 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
202 deref->get_args().push_back( maybeMoveBuild< Expression >(expr_node) );
203 UntypedMemberExpr *ret = new UntypedMemberExpr( member->get_name(), deref );
204 delete member;
205 return ret;
206}
207
208Expression *build_addressOf( ExpressionNode *expr_node ) {
209 return new AddressExpr( maybeMoveBuild< Expression >(expr_node) );
210}
211Expression *build_sizeOfexpr( ExpressionNode *expr_node ) {
212 return new SizeofExpr( maybeMoveBuild< Expression >(expr_node) );
213}
214Expression *build_sizeOftype( DeclarationNode *decl_node ) {
215 return new SizeofExpr( maybeMoveBuildType( decl_node ) );
216}
217Expression *build_alignOfexpr( ExpressionNode *expr_node ) {
218 return new AlignofExpr( maybeMoveBuild< Expression >(expr_node) );
219}
220Expression *build_alignOftype( DeclarationNode *decl_node ) {
221 return new AlignofExpr( maybeMoveBuildType( decl_node) );
222}
223Expression *build_offsetOf( DeclarationNode *decl_node, NameExpr *member ) {
224 Expression* ret = new UntypedOffsetofExpr( maybeMoveBuildType( decl_node ), member->get_name() );
225 delete member;
226 return ret;
227}
228
229Expression *build_and_or( ExpressionNode *expr_node1, ExpressionNode *expr_node2, bool kind ) {
230 return new LogicalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), notZeroExpr( maybeMoveBuild< Expression >(expr_node2) ), kind );
231}
232
233Expression *build_unary_val( OperKinds op, ExpressionNode *expr_node ) {
234 std::list< Expression * > args;
235 args.push_back( maybeMoveBuild< Expression >(expr_node) );
236 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
237}
238Expression *build_unary_ptr( OperKinds op, ExpressionNode *expr_node ) {
239 std::list< Expression * > args;
240 args.push_back( new AddressExpr( maybeMoveBuild< Expression >(expr_node) ) );
241 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
242}
243Expression *build_binary_val( OperKinds op, ExpressionNode *expr_node1, ExpressionNode *expr_node2 ) {
244 std::list< Expression * > args;
245 args.push_back( maybeMoveBuild< Expression >(expr_node1) );
246 args.push_back( maybeMoveBuild< Expression >(expr_node2) );
247 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
248}
249Expression *build_binary_ptr( OperKinds op, ExpressionNode *expr_node1, ExpressionNode *expr_node2 ) {
250 std::list< Expression * > args;
251 args.push_back( new AddressExpr( maybeMoveBuild< Expression >(expr_node1) ) );
252 args.push_back( maybeMoveBuild< Expression >(expr_node2) );
253 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );
254}
255
256Expression *build_cond( ExpressionNode *expr_node1, ExpressionNode *expr_node2, ExpressionNode *expr_node3 ) {
257 return new ConditionalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), maybeMoveBuild< Expression >(expr_node2), maybeMoveBuild< Expression >(expr_node3) );
258}
259
260Expression *build_comma( ExpressionNode *expr_node1, ExpressionNode *expr_node2 ) {
261 return new CommaExpr( maybeMoveBuild< Expression >(expr_node1), maybeMoveBuild< Expression >(expr_node2) );
262}
263
264Expression *build_attrexpr( NameExpr *var, ExpressionNode * expr_node ) {
265 return new AttrExpr( var, maybeMoveBuild< Expression >(expr_node) );
266}
267Expression *build_attrtype( NameExpr *var, DeclarationNode * decl_node ) {
268 return new AttrExpr( var, maybeMoveBuildType( decl_node ) );
269}
270
271Expression *build_tuple( ExpressionNode * expr_node ) {
272 TupleExpr *ret = new TupleExpr();
273 buildMoveList( expr_node, ret->get_exprs() );
274 return ret;
275}
276
277Expression *build_func( ExpressionNode * function, ExpressionNode * expr_node ) {
278 std::list< Expression * > args;
279 buildMoveList( expr_node, args );
280 return new UntypedExpr( maybeMoveBuild< Expression >(function), args, nullptr );
281}
282
283Expression *build_range( ExpressionNode * low, ExpressionNode *high ) {
284 return new RangeExpr( maybeMoveBuild< Expression >( low ), maybeMoveBuild< Expression >( high ) );
285}
286
287Expression *build_asmexpr( ExpressionNode *inout, ConstantExpr *constraint, ExpressionNode *operand ) {
288 return new AsmExpr( maybeMoveBuild< Expression >( inout ), constraint, maybeMoveBuild< Expression >(operand) );
289}
290
291Expression *build_valexpr( StatementNode *s ) {
292 return new UntypedValofExpr( maybeMoveBuild< Statement >(s), nullptr );
293}
294Expression *build_typevalue( DeclarationNode *decl ) {
295 return new TypeExpr( maybeMoveBuildType( decl ) );
296}
297
298Expression *build_compoundLiteral( DeclarationNode *decl_node, InitializerNode *kids ) {
299 Declaration * newDecl = maybeBuild< Declaration >(decl_node); // compound literal type
300 if ( DeclarationWithType * newDeclWithType = dynamic_cast< DeclarationWithType * >( newDecl ) ) { // non-sue compound-literal type
301 return new CompoundLiteralExpr( newDeclWithType->get_type(), maybeMoveBuild< Initializer >(kids) );
302 // these types do not have associated type information
303 } else if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( newDecl ) ) {
304 return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
305 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( newDecl ) ) {
306 return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
307 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( newDecl ) ) {
308 return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
309 } else {
310 assert( false );
311 } // if
312}
313
314// Local Variables: //
315// tab-width: 4 //
316// mode: c++ //
317// compile-command: "make install" //
318// End: //
Note: See TracBrowser for help on using the repository browser.