source: src/GenPoly/SpecializeNew.cpp@ 466787a

ADT ast-experimental
Last change on this file since 466787a was e01eb4a, checked in by Andrew Beach <ajbeach@…>, 3 years ago

Moved some functions from InitTweak to Inspect.

  • Property mode set to 100644
File size: 16.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// SpecializeNew.cpp -- Generate thunks to specialize polymorphic functions.
8//
9// Author : Andrew Beach
10// Created On : Tue Jun 7 13:37:00 2022
11// Last Modified By : Andrew Beach
12// Last Modified On : Tue Jun 7 13:37:00 2022
13// Update Count : 0
14//
15
16#include "Specialize.h"
17
18#include "AST/Inspect.hpp" // for isIntrinsicCallExpr
19#include "AST/Pass.hpp" // for Pass
20#include "AST/TypeEnvironment.hpp" // for OpenVarSet, AssertionSet
21#include "Common/UniqueName.h" // for UniqueName
22#include "GenPoly/GenPoly.h" // for getFunctionType
23#include "ResolvExpr/FindOpenVars.h" // for findOpenVars
24#include "ResolvExpr/TypeEnvironment.h" // for FirstOpen, FirstClosed
25
26namespace GenPoly {
27
28namespace {
29
30struct SpecializeCore final :
31 public ast::WithConstTypeSubstitution,
32 public ast::WithDeclsToAdd<>,
33 public ast::WithVisitorRef<SpecializeCore> {
34 std::string paramPrefix = "_p";
35
36 ast::ApplicationExpr * handleExplicitParams(
37 const ast::ApplicationExpr * expr );
38 const ast::Expr * createThunkFunction(
39 const CodeLocation & location,
40 const ast::FunctionType * funType,
41 const ast::Expr * actual,
42 const ast::InferredParams * inferParams );
43 const ast::Expr * doSpecialization(
44 const CodeLocation & location,
45 const ast::Type * formalType,
46 const ast::Expr * actual,
47 const ast::InferredParams * inferParams );
48
49 const ast::Expr * postvisit( const ast::ApplicationExpr * expr );
50 const ast::Expr * postvisit( const ast::CastExpr * expr );
51};
52
53const ast::InferredParams * getInferredParams( const ast::Expr * expr ) {
54 const ast::Expr::InferUnion & inferred = expr->inferred;
55 if ( inferred.hasParams() ) {
56 return &inferred.inferParams();
57 } else {
58 return nullptr;
59 }
60}
61
62// Check if both types have the same structure. The leaf (non-tuple) types
63// don't have to match but the tuples must match.
64bool isTupleStructureMatching( const ast::Type * t0, const ast::Type * t1 ) {
65 const ast::TupleType * tt0 = dynamic_cast<const ast::TupleType *>( t0 );
66 const ast::TupleType * tt1 = dynamic_cast<const ast::TupleType *>( t1 );
67 if ( tt0 && tt1 ) {
68 if ( tt0->size() != tt1->size() ) {
69 return false;
70 }
71 for ( auto types : group_iterate( tt0->types, tt1->types ) ) {
72 if ( !isTupleStructureMatching(
73 std::get<0>( types ), std::get<1>( types ) ) ) {
74 return false;
75 }
76 }
77 return true;
78 }
79 return (!tt0 && !tt1);
80}
81
82// The number of elements in a type if it is a flattened tuple.
83size_t flatTupleSize( const ast::Type * type ) {
84 if ( auto tuple = dynamic_cast<const ast::TupleType *>( type ) ) {
85 size_t sum = 0;
86 for ( auto t : *tuple ) {
87 sum += flatTupleSize( t );
88 }
89 return sum;
90 } else {
91 return 1;
92 }
93}
94
95// Find the total number of components in a parameter list.
96size_t functionParameterSize( const ast::FunctionType * type ) {
97 size_t sum = 0;
98 for ( auto param : type->params ) {
99 sum += flatTupleSize( param );
100 }
101 return sum;
102}
103
104bool needsPolySpecialization(
105 const ast::Type * formalType,
106 const ast::Type * actualType,
107 const ast::TypeSubstitution * subs ) {
108 if ( !subs ) {
109 return false;
110 }
111
112 using namespace ResolvExpr;
113 ast::OpenVarSet openVars, closedVars;
114 ast::AssertionSet need, have;
115 findOpenVars( formalType, openVars, closedVars, need, have, FirstClosed );
116 findOpenVars( actualType, openVars, closedVars, need, have, FirstOpen );
117 for ( const ast::OpenVarSet::value_type & openVar : openVars ) {
118 const ast::Type * boundType = subs->lookup( openVar.first );
119 // If the variable is not bound, move onto the next variable.
120 if ( !boundType ) continue;
121
122 // Is the variable cound to another type variable?
123 if ( auto inst = dynamic_cast<const ast::TypeInstType *>( boundType ) ) {
124 if ( closedVars.find( *inst ) == closedVars.end() ) {
125 return true;
126 }
127 // Otherwise, the variable is bound to a concrete type.
128 } else {
129 return true;
130 }
131 }
132 // None of the type variables are bound.
133 return false;
134}
135
136bool needsTupleSpecialization(
137 const ast::Type * formalType, const ast::Type * actualType ) {
138 // Needs tuple specialization if the structure of the formal type and
139 // actual type do not match.
140
141 // This is the case if the formal type has ttype polymorphism, or if the structure of tuple types
142 // between the function do not match exactly.
143 if ( const ast::FunctionType * ftype = getFunctionType( formalType ) ) {
144 // A pack in the parameter or return type requires specialization.
145 if ( ftype->isTtype() ) {
146 return true;
147 }
148 // Conversion of 0 to a function type does not require specialization.
149 if ( dynamic_cast<const ast::ZeroType *>( actualType ) ) {
150 return false;
151 }
152 const ast::FunctionType * atype =
153 getFunctionType( actualType->stripReferences() );
154 assertf( atype,
155 "formal type is a function type, but actual type is not: %s",
156 toString( actualType ).c_str() );
157 // Can't tuple specialize if parameter sizes deeply-differ.
158 if ( functionParameterSize( ftype ) != functionParameterSize( atype ) ) {
159 return false;
160 }
161 // If tuple parameter size matches but actual parameter sizes differ
162 // then there needs to be specialization.
163 if ( ftype->params.size() != atype->params.size() ) {
164 return true;
165 }
166 // Total parameter size can be the same, while individual parameters
167 // can have different structure.
168 for ( auto pairs : group_iterate( ftype->params, atype->params ) ) {
169 if ( !isTupleStructureMatching(
170 std::get<0>( pairs ), std::get<1>( pairs ) ) ) {
171 return true;
172 }
173 }
174 }
175 return false;
176}
177
178bool needsSpecialization(
179 const ast::Type * formalType, const ast::Type * actualType,
180 const ast::TypeSubstitution * subs ) {
181 return needsPolySpecialization( formalType, actualType, subs )
182 || needsTupleSpecialization( formalType, actualType );
183}
184
185ast::ApplicationExpr * SpecializeCore::handleExplicitParams(
186 const ast::ApplicationExpr * expr ) {
187 assert( expr->func->result );
188 const ast::FunctionType * func = getFunctionType( expr->func->result );
189 assert( func );
190
191 ast::ApplicationExpr * mut = ast::mutate( expr );
192
193 std::vector<ast::ptr<ast::Type>>::const_iterator formal;
194 std::vector<ast::ptr<ast::Expr>>::iterator actual;
195 for ( formal = func->params.begin(), actual = mut->args.begin() ;
196 formal != func->params.end() && actual != mut->args.end() ;
197 ++formal, ++actual ) {
198 *actual = doSpecialization( (*actual)->location,
199 *formal, *actual, getInferredParams( expr ) );
200 }
201 return mut;
202}
203
204// Explode assuming simple cases: either type is pure tuple (but not tuple
205// expr) or type is non-tuple.
206template<typename OutputIterator>
207void explodeSimple( const CodeLocation & location,
208 const ast::Expr * expr, OutputIterator out ) {
209 // Recurse on tuple types using index expressions on each component.
210 if ( auto tuple = expr->result.as<ast::TupleType>() ) {
211 ast::ptr<ast::Expr> cleanup = expr;
212 for ( unsigned int i = 0 ; i < tuple->size() ; ++i ) {
213 explodeSimple( location,
214 new ast::TupleIndexExpr( location, expr, i ), out );
215 }
216 // For a non-tuple type, output a clone of the expression.
217 } else {
218 *out++ = expr;
219 }
220}
221
222// Restructures arguments to match the structure of the formal parameters
223// of the actual function. Returns the next structured argument.
224template<typename Iterator>
225const ast::Expr * structureArg(
226 const CodeLocation& location, const ast::ptr<ast::Type> & type,
227 Iterator & begin, const Iterator & end ) {
228 if ( auto tuple = type.as<ast::TupleType>() ) {
229 std::vector<ast::ptr<ast::Expr>> exprs;
230 for ( const ast::ptr<ast::Type> & t : *tuple ) {
231 exprs.push_back( structureArg( location, t, begin, end ) );
232 }
233 return new ast::TupleExpr( location, std::move( exprs ) );
234 } else {
235 assertf( begin != end, "reached the end of the arguments while structuring" );
236 return *begin++;
237 }
238}
239
240struct TypeInstFixer final : public ast::WithShortCircuiting {
241 std::map<const ast::TypeDecl *, std::pair<int, int>> typeMap;
242
243 void previsit(const ast::TypeDecl *) { visit_children = false; }
244 const ast::TypeInstType * postvisit(const ast::TypeInstType * typeInst) {
245 if (typeMap.count(typeInst->base)) {
246 ast::TypeInstType * newInst = mutate(typeInst);
247 auto const & pair = typeMap[typeInst->base];
248 newInst->expr_id = pair.first;
249 newInst->formal_usage = pair.second;
250 return newInst;
251 }
252 return typeInst;
253 }
254};
255
256const ast::Expr * SpecializeCore::createThunkFunction(
257 const CodeLocation & location,
258 const ast::FunctionType * funType,
259 const ast::Expr * actual,
260 const ast::InferredParams * inferParams ) {
261 // One set of unique names per program.
262 static UniqueName thunkNamer("_thunk");
263
264 const ast::FunctionType * newType = ast::deepCopy( funType );
265 if ( typeSubs ) {
266 // Must replace only occurrences of type variables
267 // that occure free in the thunk's type.
268 auto result = typeSubs->applyFree( newType );
269 newType = result.node.release();
270 }
271
272 using DWTVector = std::vector<ast::ptr<ast::DeclWithType>>;
273 using DeclVector = std::vector<ast::ptr<ast::TypeDecl>>;
274
275 UniqueName paramNamer( paramPrefix );
276
277 // Create new thunk with same signature as formal type.
278 ast::Pass<TypeInstFixer> fixer;
279 for (const auto & kv : newType->forall) {
280 if (fixer.core.typeMap.count(kv->base)) {
281 std::cerr << location << ' ' << kv->base->name
282 << ' ' << kv->expr_id << '_' << kv->formal_usage
283 << ',' << fixer.core.typeMap[kv->base].first
284 << '_' << fixer.core.typeMap[kv->base].second << std::endl;
285 assertf(false, "multiple formals in specialize");
286 }
287 else {
288 fixer.core.typeMap[kv->base] = std::make_pair(kv->expr_id, kv->formal_usage);
289 }
290 }
291
292 ast::CompoundStmt * thunkBody = new ast::CompoundStmt( location );
293 ast::FunctionDecl * thunkFunc = new ast::FunctionDecl(
294 location,
295 thunkNamer.newName(),
296 map_range<DeclVector>( newType->forall, []( const ast::TypeInstType * inst ) {
297 return ast::deepCopy( inst->base );
298 } ),
299 map_range<DWTVector>( newType->assertions, []( const ast::VariableExpr * expr ) {
300 return ast::deepCopy( expr->var );
301 } ),
302 map_range<DWTVector>( newType->params, [&location, &paramNamer]( const ast::Type * type ) {
303 return new ast::ObjectDecl( location, paramNamer.newName(), ast::deepCopy( type ) );
304 } ),
305 map_range<DWTVector>( newType->returns, [&location, &paramNamer]( const ast::Type * type ) {
306 return new ast::ObjectDecl( location, paramNamer.newName(), ast::deepCopy( type ) );
307 } ),
308 thunkBody,
309 ast::Storage::Classes(),
310 ast::Linkage::C
311 );
312
313 thunkFunc->fixUniqueId();
314
315 // Thunks may be generated and not used, avoid them.
316 thunkFunc->attributes.push_back( new ast::Attribute( "unused" ) );
317
318 // Global thunks must be static to avoid collitions.
319 // Nested thunks must not be unique and hence, not static.
320 thunkFunc->storage.is_static = !isInFunction();
321
322 // Weave thunk parameters into call to actual function,
323 // naming thunk parameters as we go.
324 ast::ApplicationExpr * app = new ast::ApplicationExpr( location, actual );
325
326 const ast::FunctionType * actualType = ast::deepCopy( getFunctionType( actual->result ) );
327 if ( typeSubs ) {
328 // Need to apply the environment to the actual function's type,
329 // since it may itself be polymorphic.
330 auto result = typeSubs->apply( actualType );
331 actualType = result.node.release();
332 }
333
334 ast::ptr<ast::FunctionType> actualTypeManager = actualType;
335
336 std::vector<ast::ptr<ast::Expr>> args;
337 for ( ast::ptr<ast::DeclWithType> & param : thunkFunc->params ) {
338 // Name each thunk parameter and explode it.
339 // These are then threaded back into the actual function call.
340 ast::DeclWithType * mutParam = ast::mutate( param.get() );
341 explodeSimple( location, new ast::VariableExpr( location, mutParam ),
342 std::back_inserter( args ) );
343 }
344
345 // Walk parameters to the actual function alongside the exploded thunk
346 // parameters and restructure the arguments to match the actual parameters.
347 std::vector<ast::ptr<ast::Expr>>::iterator
348 argBegin = args.begin(), argEnd = args.end();
349 for ( const auto & actualArg : actualType->params ) {
350 app->args.push_back(
351 structureArg( location, actualArg.get(), argBegin, argEnd ) );
352 }
353 assertf( argBegin == argEnd, "Did not structure all arguments." );
354
355 app->accept(fixer); // this should modify in place
356
357 app->env = ast::TypeSubstitution::newFromExpr( app, typeSubs );
358 if ( inferParams ) {
359 app->inferred.inferParams() = *inferParams;
360 }
361
362 // Handle any specializations that may still be present.
363 {
364 std::string oldParamPrefix = paramPrefix;
365 paramPrefix += "p";
366 std::list<ast::ptr<ast::Decl>> oldDecls;
367 oldDecls.splice( oldDecls.end(), declsToAddBefore );
368
369 app->accept( *visitor );
370 // Write recursive specializations into the thunk body.
371 for ( const ast::ptr<ast::Decl> & decl : declsToAddBefore ) {
372 thunkBody->push_back( new ast::DeclStmt( decl->location, decl ) );
373 }
374
375 declsToAddBefore = std::move( oldDecls );
376 paramPrefix = std::move( oldParamPrefix );
377 }
378
379 // Add return (or valueless expression) to the thunk.
380 ast::Stmt * appStmt;
381 if ( funType->returns.empty() ) {
382 appStmt = new ast::ExprStmt( app->location, app );
383 } else {
384 appStmt = new ast::ReturnStmt( app->location, app );
385 }
386 thunkBody->push_back( appStmt );
387
388 // Add the thunk definition:
389 declsToAddBefore.push_back( thunkFunc );
390
391 // Return address of thunk function as replacement expression.
392 return new ast::AddressExpr( location,
393 new ast::VariableExpr( location, thunkFunc ) );
394}
395
396const ast::Expr * SpecializeCore::doSpecialization(
397 const CodeLocation & location,
398 const ast::Type * formalType,
399 const ast::Expr * actual,
400 const ast::InferredParams * inferParams ) {
401 assertf( actual->result, "attempting to specialize an untyped expression" );
402 if ( needsSpecialization( formalType, actual->result, typeSubs ) ) {
403 if ( const ast::FunctionType * type = getFunctionType( formalType ) ) {
404 if ( const ast::ApplicationExpr * expr =
405 dynamic_cast<const ast::ApplicationExpr *>( actual ) ) {
406 return createThunkFunction( location, type, expr->func, inferParams );
407 } else if ( auto expr =
408 dynamic_cast<const ast::VariableExpr *>( actual ) ) {
409 return createThunkFunction( location, type, expr, inferParams );
410 } else {
411 // (I don't even know what that comment means.)
412 // This likely won't work, as anything that could build an ApplicationExpr probably hit one of the previous two branches
413 return createThunkFunction( location, type, actual, inferParams );
414 }
415 } else {
416 return actual;
417 }
418 } else {
419 return actual;
420 }
421}
422
423const ast::Expr * SpecializeCore::postvisit(
424 const ast::ApplicationExpr * expr ) {
425 if ( ast::isIntrinsicCallExpr( expr ) ) {
426 return expr;
427 }
428
429 // Create thunks for the inferred parameters.
430 // This is not needed for intrinsic calls, because they aren't
431 // actually passed to the function. It needs to handle explicit params
432 // before inferred params so that explicit params do not recieve a
433 // changed set of inferParams (and change them again).
434 // Alternatively, if order starts to matter then copy expr's inferParams
435 // and pass them to handleExplicitParams.
436 ast::ApplicationExpr * mut = handleExplicitParams( expr );
437 if ( !mut->inferred.hasParams() ) {
438 return mut;
439 }
440 ast::InferredParams & inferParams = mut->inferred.inferParams();
441 for ( ast::InferredParams::value_type & inferParam : inferParams ) {
442 inferParam.second.expr = doSpecialization(
443 inferParam.second.expr->location,
444 inferParam.second.formalType,
445 inferParam.second.expr,
446 getInferredParams( inferParam.second.expr )
447 );
448 }
449 return mut;
450}
451
452const ast::Expr * SpecializeCore::postvisit( const ast::CastExpr * expr ) {
453 if ( expr->result->isVoid() ) {
454 // No specialization if there is no return value.
455 return expr;
456 }
457 const ast::Expr * specialized = doSpecialization(
458 expr->location, expr->result, expr->arg, getInferredParams( expr ) );
459 if ( specialized != expr->arg ) {
460 // Assume that the specialization incorporates the cast.
461 return specialized;
462 } else {
463 return expr;
464 }
465}
466
467} // namespace
468
469void convertSpecializations( ast::TranslationUnit & translationUnit ) {
470 ast::Pass<SpecializeCore>::run( translationUnit );
471}
472
473} // namespace GenPoly
474
475// Local Variables: //
476// tab-width: 4 //
477// mode: c++ //
478// compile-command: "make install" //
479// End: //
Note: See TracBrowser for help on using the repository browser.