1 | // |
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo |
---|
3 | // |
---|
4 | // The contents of this file are covered under the licence agreement in the |
---|
5 | // file "LICENCE" distributed with Cforall. |
---|
6 | // |
---|
7 | // SpecializeNew.cpp -- Generate thunks to specialize polymorphic functions. |
---|
8 | // |
---|
9 | // Author : Andrew Beach |
---|
10 | // Created On : Tue Jun 7 13:37:00 2022 |
---|
11 | // Last Modified By : Andrew Beach |
---|
12 | // Last Modified On : Tue Jun 7 13:37:00 2022 |
---|
13 | // Update Count : 0 |
---|
14 | // |
---|
15 | |
---|
16 | #include "Specialize.h" |
---|
17 | |
---|
18 | #include "AST/Pass.hpp" |
---|
19 | #include "AST/TypeEnvironment.hpp" // for OpenVarSet, AssertionSet |
---|
20 | #include "Common/UniqueName.h" // for UniqueName |
---|
21 | #include "GenPoly/GenPoly.h" // for getFunctionType |
---|
22 | #include "InitTweak/InitTweak.h" // for isIntrinsicCallExpr |
---|
23 | #include "ResolvExpr/FindOpenVars.h" // for findOpenVars |
---|
24 | #include "ResolvExpr/TypeEnvironment.h" // for FirstOpen, FirstClosed |
---|
25 | |
---|
26 | #include "AST/Print.hpp" |
---|
27 | |
---|
28 | namespace GenPoly { |
---|
29 | |
---|
30 | namespace { |
---|
31 | |
---|
32 | struct SpecializeCore final : |
---|
33 | public ast::WithConstTypeSubstitution, |
---|
34 | public ast::WithDeclsToAdd<>, |
---|
35 | public ast::WithVisitorRef<SpecializeCore> { |
---|
36 | std::string paramPrefix = "_p"; |
---|
37 | |
---|
38 | ast::ApplicationExpr * handleExplicitParams( |
---|
39 | const ast::ApplicationExpr * expr ); |
---|
40 | const ast::Expr * createThunkFunction( |
---|
41 | const CodeLocation & location, |
---|
42 | const ast::FunctionType * funType, |
---|
43 | const ast::Expr * actual, |
---|
44 | const ast::InferredParams * inferParams ); |
---|
45 | const ast::Expr * doSpecialization( |
---|
46 | const CodeLocation & location, |
---|
47 | const ast::Type * formalType, |
---|
48 | const ast::Expr * actual, |
---|
49 | const ast::InferredParams * inferParams ); |
---|
50 | |
---|
51 | const ast::Expr * postvisit( const ast::ApplicationExpr * expr ); |
---|
52 | const ast::Expr * postvisit( const ast::CastExpr * expr ); |
---|
53 | }; |
---|
54 | |
---|
55 | const ast::InferredParams * getInferredParams( const ast::Expr * expr ) { |
---|
56 | const ast::Expr::InferUnion & inferred = expr->inferred; |
---|
57 | if ( inferred.hasParams() ) { |
---|
58 | return &inferred.inferParams(); |
---|
59 | } else { |
---|
60 | return nullptr; |
---|
61 | } |
---|
62 | } |
---|
63 | |
---|
64 | // Check if both types have the same structure. The leaf (non-tuple) types |
---|
65 | // don't have to match but the tuples must match. |
---|
66 | bool isTupleStructureMatching( const ast::Type * t0, const ast::Type * t1 ) { |
---|
67 | const ast::TupleType * tt0 = dynamic_cast<const ast::TupleType *>( t0 ); |
---|
68 | const ast::TupleType * tt1 = dynamic_cast<const ast::TupleType *>( t1 ); |
---|
69 | if ( tt0 && tt1 ) { |
---|
70 | if ( tt0->size() != tt1->size() ) { |
---|
71 | return false; |
---|
72 | } |
---|
73 | for ( auto types : group_iterate( tt0->types, tt1->types ) ) { |
---|
74 | if ( !isTupleStructureMatching( |
---|
75 | std::get<0>( types ), std::get<1>( types ) ) ) { |
---|
76 | return false; |
---|
77 | } |
---|
78 | } |
---|
79 | return true; |
---|
80 | } |
---|
81 | return (!tt0 && !tt1); |
---|
82 | } |
---|
83 | |
---|
84 | // The number of elements in a type if it is a flattened tuple. |
---|
85 | size_t flatTupleSize( const ast::Type * type ) { |
---|
86 | if ( auto tuple = dynamic_cast<const ast::TupleType *>( type ) ) { |
---|
87 | size_t sum = 0; |
---|
88 | for ( auto t : *tuple ) { |
---|
89 | sum += flatTupleSize( t ); |
---|
90 | } |
---|
91 | return sum; |
---|
92 | } else { |
---|
93 | return 1; |
---|
94 | } |
---|
95 | } |
---|
96 | |
---|
97 | // Find the total number of components in a parameter list. |
---|
98 | size_t functionParameterSize( const ast::FunctionType * type ) { |
---|
99 | size_t sum = 0; |
---|
100 | for ( auto param : type->params ) { |
---|
101 | sum += flatTupleSize( param ); |
---|
102 | } |
---|
103 | return sum; |
---|
104 | } |
---|
105 | |
---|
106 | bool needsPolySpecialization( |
---|
107 | const ast::Type * formalType, |
---|
108 | const ast::Type * actualType, |
---|
109 | const ast::TypeSubstitution * subs ) { |
---|
110 | if ( !subs ) { |
---|
111 | return false; |
---|
112 | } |
---|
113 | |
---|
114 | using namespace ResolvExpr; |
---|
115 | ast::OpenVarSet openVars, closedVars; |
---|
116 | ast::AssertionSet need, have; |
---|
117 | findOpenVars( formalType, openVars, closedVars, need, have, FirstClosed ); |
---|
118 | findOpenVars( actualType, openVars, closedVars, need, have, FirstOpen ); |
---|
119 | for ( const ast::OpenVarSet::value_type & openVar : openVars ) { |
---|
120 | const ast::Type * boundType = subs->lookup( openVar.first ); |
---|
121 | // If the variable is not bound, move onto the next variable. |
---|
122 | if ( !boundType ) continue; |
---|
123 | |
---|
124 | // Is the variable cound to another type variable? |
---|
125 | if ( auto inst = dynamic_cast<const ast::TypeInstType *>( boundType ) ) { |
---|
126 | if ( closedVars.find( *inst ) == closedVars.end() ) { |
---|
127 | return true; |
---|
128 | } |
---|
129 | // Otherwise, the variable is bound to a concrete type. |
---|
130 | } else { |
---|
131 | return true; |
---|
132 | } |
---|
133 | } |
---|
134 | // None of the type variables are bound. |
---|
135 | return false; |
---|
136 | } |
---|
137 | |
---|
138 | bool needsTupleSpecialization( |
---|
139 | const ast::Type * formalType, const ast::Type * actualType ) { |
---|
140 | // Needs tuple specialization if the structure of the formal type and |
---|
141 | // actual type do not match. |
---|
142 | |
---|
143 | // This is the case if the formal type has ttype polymorphism, or if the structure of tuple types |
---|
144 | // between the function do not match exactly. |
---|
145 | if ( const ast::FunctionType * ftype = getFunctionType( formalType ) ) { |
---|
146 | // A pack in the parameter or return type requires specialization. |
---|
147 | if ( ftype->isTtype() ) { |
---|
148 | return true; |
---|
149 | } |
---|
150 | // Conversion of 0 to a function type does not require specialization. |
---|
151 | if ( dynamic_cast<const ast::ZeroType *>( actualType ) ) { |
---|
152 | return false; |
---|
153 | } |
---|
154 | const ast::FunctionType * atype = |
---|
155 | getFunctionType( actualType->stripReferences() ); |
---|
156 | assertf( atype, |
---|
157 | "formal type is a function type, but actual type is not: %s", |
---|
158 | toString( actualType ).c_str() ); |
---|
159 | // Can't tuple specialize if parameter sizes deeply-differ. |
---|
160 | if ( functionParameterSize( ftype ) != functionParameterSize( atype ) ) { |
---|
161 | return false; |
---|
162 | } |
---|
163 | // If tuple parameter size matches but actual parameter sizes differ |
---|
164 | // then there needs to be specialization. |
---|
165 | if ( ftype->params.size() != atype->params.size() ) { |
---|
166 | return true; |
---|
167 | } |
---|
168 | // Total parameter size can be the same, while individual parameters |
---|
169 | // can have different structure. |
---|
170 | for ( auto pairs : group_iterate( ftype->params, atype->params ) ) { |
---|
171 | if ( !isTupleStructureMatching( |
---|
172 | std::get<0>( pairs ), std::get<1>( pairs ) ) ) { |
---|
173 | return true; |
---|
174 | } |
---|
175 | } |
---|
176 | } |
---|
177 | return false; |
---|
178 | } |
---|
179 | |
---|
180 | bool needsSpecialization( |
---|
181 | const ast::Type * formalType, const ast::Type * actualType, |
---|
182 | const ast::TypeSubstitution * subs ) { |
---|
183 | return needsPolySpecialization( formalType, actualType, subs ) |
---|
184 | || needsTupleSpecialization( formalType, actualType ); |
---|
185 | } |
---|
186 | |
---|
187 | ast::ApplicationExpr * SpecializeCore::handleExplicitParams( |
---|
188 | const ast::ApplicationExpr * expr ) { |
---|
189 | assert( expr->func->result ); |
---|
190 | const ast::FunctionType * func = getFunctionType( expr->func->result ); |
---|
191 | assert( func ); |
---|
192 | |
---|
193 | ast::ApplicationExpr * mut = ast::mutate( expr ); |
---|
194 | |
---|
195 | std::vector<ast::ptr<ast::Type>>::const_iterator formal; |
---|
196 | std::vector<ast::ptr<ast::Expr>>::iterator actual; |
---|
197 | for ( formal = func->params.begin(), actual = mut->args.begin() ; |
---|
198 | formal != func->params.end() && actual != mut->args.end() ; |
---|
199 | ++formal, ++actual ) { |
---|
200 | *actual = doSpecialization( (*actual)->location, |
---|
201 | *formal, *actual, getInferredParams( expr ) ); |
---|
202 | } |
---|
203 | return mut; |
---|
204 | } |
---|
205 | |
---|
206 | // Explode assuming simple cases: either type is pure tuple (but not tuple |
---|
207 | // expr) or type is non-tuple. |
---|
208 | template<typename OutputIterator> |
---|
209 | void explodeSimple( const CodeLocation & location, |
---|
210 | const ast::Expr * expr, OutputIterator out ) { |
---|
211 | // Recurse on tuple types using index expressions on each component. |
---|
212 | if ( auto tuple = expr->result.as<ast::TupleType>() ) { |
---|
213 | ast::ptr<ast::Expr> cleanup = expr; |
---|
214 | for ( unsigned int i = 0 ; i < tuple->size() ; ++i ) { |
---|
215 | explodeSimple( location, |
---|
216 | new ast::TupleIndexExpr( location, expr, i ), out ); |
---|
217 | } |
---|
218 | // For a non-tuple type, output a clone of the expression. |
---|
219 | } else { |
---|
220 | *out++ = expr; |
---|
221 | } |
---|
222 | } |
---|
223 | |
---|
224 | // Restructures arguments to match the structure of the formal parameters |
---|
225 | // of the actual function. Returns the next structured argument. |
---|
226 | template<typename Iterator> |
---|
227 | const ast::Expr * structureArg( |
---|
228 | const CodeLocation& location, const ast::ptr<ast::Type> & type, |
---|
229 | Iterator & begin, const Iterator & end ) { |
---|
230 | if ( auto tuple = type.as<ast::TupleType>() ) { |
---|
231 | std::vector<ast::ptr<ast::Expr>> exprs; |
---|
232 | for ( const ast::ptr<ast::Type> & t : *tuple ) { |
---|
233 | exprs.push_back( structureArg( location, t, begin, end ) ); |
---|
234 | } |
---|
235 | return new ast::TupleExpr( location, std::move( exprs ) ); |
---|
236 | } else { |
---|
237 | assertf( begin != end, "reached the end of the arguments while structuring" ); |
---|
238 | return *begin++; |
---|
239 | } |
---|
240 | } |
---|
241 | |
---|
242 | namespace { |
---|
243 | struct TypeInstFixer : public ast::WithShortCircuiting { |
---|
244 | std::map<const ast::TypeDecl *, std::pair<int, int>> typeMap; |
---|
245 | |
---|
246 | void previsit(const ast::TypeDecl *) { visit_children = false; } |
---|
247 | const ast::TypeInstType * postvisit(const ast::TypeInstType * typeInst) { |
---|
248 | if (typeMap.count(typeInst->base)) { |
---|
249 | ast::TypeInstType * newInst = mutate(typeInst); |
---|
250 | auto const & pair = typeMap[typeInst->base]; |
---|
251 | newInst->expr_id = pair.first; |
---|
252 | newInst->formal_usage = pair.second; |
---|
253 | return newInst; |
---|
254 | } |
---|
255 | return typeInst; |
---|
256 | } |
---|
257 | }; |
---|
258 | } |
---|
259 | |
---|
260 | const ast::Expr * SpecializeCore::createThunkFunction( |
---|
261 | const CodeLocation & location, |
---|
262 | const ast::FunctionType * funType, |
---|
263 | const ast::Expr * actual, |
---|
264 | const ast::InferredParams * inferParams ) { |
---|
265 | // One set of unique names per program. |
---|
266 | static UniqueName thunkNamer("_thunk"); |
---|
267 | |
---|
268 | const ast::FunctionType * newType = ast::deepCopy( funType ); |
---|
269 | if ( typeSubs ) { |
---|
270 | // Must replace only occurrences of type variables |
---|
271 | // that occure free in the thunk's type. |
---|
272 | auto result = typeSubs->applyFree( newType ); |
---|
273 | newType = result.node.release(); |
---|
274 | } |
---|
275 | |
---|
276 | using DWTVector = std::vector<ast::ptr<ast::DeclWithType>>; |
---|
277 | using DeclVector = std::vector<ast::ptr<ast::TypeDecl>>; |
---|
278 | |
---|
279 | UniqueName paramNamer( paramPrefix ); |
---|
280 | |
---|
281 | // Create new thunk with same signature as formal type. |
---|
282 | ast::Pass<TypeInstFixer> fixer; |
---|
283 | for (const auto & kv : newType->forall) { |
---|
284 | if (fixer.core.typeMap.count(kv->base)) { |
---|
285 | std::cerr << location << ' ' << kv->base->name |
---|
286 | << ' ' << kv->expr_id << '_' << kv->formal_usage |
---|
287 | << ',' << fixer.core.typeMap[kv->base].first |
---|
288 | << '_' << fixer.core.typeMap[kv->base].second << std::endl; |
---|
289 | assertf(false, "multiple formals in specialize"); |
---|
290 | } |
---|
291 | else { |
---|
292 | fixer.core.typeMap[kv->base] = std::make_pair(kv->expr_id, kv->formal_usage); |
---|
293 | } |
---|
294 | } |
---|
295 | |
---|
296 | ast::CompoundStmt * thunkBody = new ast::CompoundStmt( location ); |
---|
297 | ast::FunctionDecl * thunkFunc = new ast::FunctionDecl( |
---|
298 | location, |
---|
299 | thunkNamer.newName(), |
---|
300 | map_range<DeclVector>( newType->forall, []( const ast::TypeInstType * inst ) { |
---|
301 | return ast::deepCopy( inst->base ); |
---|
302 | } ), |
---|
303 | map_range<DWTVector>( newType->assertions, []( const ast::VariableExpr * expr ) { |
---|
304 | return ast::deepCopy( expr->var ); |
---|
305 | } ), |
---|
306 | map_range<DWTVector>( newType->params, [&location, ¶mNamer]( const ast::Type * type ) { |
---|
307 | return new ast::ObjectDecl( location, paramNamer.newName(), ast::deepCopy( type ) ); |
---|
308 | } ), |
---|
309 | map_range<DWTVector>( newType->returns, [&location, ¶mNamer]( const ast::Type * type ) { |
---|
310 | return new ast::ObjectDecl( location, paramNamer.newName(), ast::deepCopy( type ) ); |
---|
311 | } ), |
---|
312 | thunkBody, |
---|
313 | ast::Storage::Classes(), |
---|
314 | ast::Linkage::C |
---|
315 | ); |
---|
316 | |
---|
317 | thunkFunc->fixUniqueId(); |
---|
318 | |
---|
319 | // Thunks may be generated and not used, avoid them. |
---|
320 | thunkFunc->attributes.push_back( new ast::Attribute( "unused" ) ); |
---|
321 | |
---|
322 | // Global thunks must be static to avoid collitions. |
---|
323 | // Nested thunks must not be unique and hence, not static. |
---|
324 | thunkFunc->storage.is_static = !isInFunction(); |
---|
325 | |
---|
326 | // Weave thunk parameters into call to actual function, |
---|
327 | // naming thunk parameters as we go. |
---|
328 | ast::ApplicationExpr * app = new ast::ApplicationExpr( location, actual ); |
---|
329 | |
---|
330 | const ast::FunctionType * actualType = ast::deepCopy( getFunctionType( actual->result ) ); |
---|
331 | if ( typeSubs ) { |
---|
332 | // Need to apply the environment to the actual function's type, |
---|
333 | // since it may itself be polymorphic. |
---|
334 | auto result = typeSubs->apply( actualType ); |
---|
335 | actualType = result.node.release(); |
---|
336 | } |
---|
337 | |
---|
338 | ast::ptr<ast::FunctionType> actualTypeManager = actualType; |
---|
339 | |
---|
340 | std::vector<ast::ptr<ast::Expr>> args; |
---|
341 | for ( ast::ptr<ast::DeclWithType> & param : thunkFunc->params ) { |
---|
342 | // Name each thunk parameter and explode it. |
---|
343 | // These are then threaded back into the actual function call. |
---|
344 | ast::DeclWithType * mutParam = ast::mutate( param.get() ); |
---|
345 | explodeSimple( location, new ast::VariableExpr( location, mutParam ), |
---|
346 | std::back_inserter( args ) ); |
---|
347 | } |
---|
348 | |
---|
349 | // Walk parameters to the actual function alongside the exploded thunk |
---|
350 | // parameters and restructure the arguments to match the actual parameters. |
---|
351 | std::vector<ast::ptr<ast::Expr>>::iterator |
---|
352 | argBegin = args.begin(), argEnd = args.end(); |
---|
353 | for ( const auto & actualArg : actualType->params ) { |
---|
354 | app->args.push_back( |
---|
355 | structureArg( location, actualArg.get(), argBegin, argEnd ) ); |
---|
356 | } |
---|
357 | assertf( argBegin == argEnd, "Did not structure all arguments." ); |
---|
358 | |
---|
359 | app->accept(fixer); // this should modify in place |
---|
360 | |
---|
361 | app->env = ast::TypeSubstitution::newFromExpr( app, typeSubs ); |
---|
362 | if ( inferParams ) { |
---|
363 | app->inferred.inferParams() = *inferParams; |
---|
364 | } |
---|
365 | |
---|
366 | // Handle any specializations that may still be present. |
---|
367 | { |
---|
368 | std::string oldParamPrefix = paramPrefix; |
---|
369 | paramPrefix += "p"; |
---|
370 | std::list<ast::ptr<ast::Decl>> oldDecls; |
---|
371 | oldDecls.splice( oldDecls.end(), declsToAddBefore ); |
---|
372 | |
---|
373 | app->accept( *visitor ); |
---|
374 | // Write recursive specializations into the thunk body. |
---|
375 | for ( const ast::ptr<ast::Decl> & decl : declsToAddBefore ) { |
---|
376 | thunkBody->push_back( new ast::DeclStmt( decl->location, decl ) ); |
---|
377 | } |
---|
378 | |
---|
379 | declsToAddBefore = std::move( oldDecls ); |
---|
380 | paramPrefix = std::move( oldParamPrefix ); |
---|
381 | } |
---|
382 | |
---|
383 | // Add return (or valueless expression) to the thunk. |
---|
384 | ast::Stmt * appStmt; |
---|
385 | if ( funType->returns.empty() ) { |
---|
386 | appStmt = new ast::ExprStmt( app->location, app ); |
---|
387 | } else { |
---|
388 | appStmt = new ast::ReturnStmt( app->location, app ); |
---|
389 | } |
---|
390 | thunkBody->push_back( appStmt ); |
---|
391 | |
---|
392 | // Add the thunk definition: |
---|
393 | declsToAddBefore.push_back( thunkFunc ); |
---|
394 | |
---|
395 | // Return address of thunk function as replacement expression. |
---|
396 | return new ast::AddressExpr( location, |
---|
397 | new ast::VariableExpr( location, thunkFunc ) ); |
---|
398 | } |
---|
399 | |
---|
400 | const ast::Expr * SpecializeCore::doSpecialization( |
---|
401 | const CodeLocation & location, |
---|
402 | const ast::Type * formalType, |
---|
403 | const ast::Expr * actual, |
---|
404 | const ast::InferredParams * inferParams ) { |
---|
405 | assertf( actual->result, "attempting to specialize an untyped expression" ); |
---|
406 | if ( needsSpecialization( formalType, actual->result, typeSubs ) ) { |
---|
407 | if ( const ast::FunctionType * type = getFunctionType( formalType ) ) { |
---|
408 | if ( const ast::ApplicationExpr * expr = |
---|
409 | dynamic_cast<const ast::ApplicationExpr *>( actual ) ) { |
---|
410 | return createThunkFunction( location, type, expr->func, inferParams ); |
---|
411 | } else if ( auto expr = |
---|
412 | dynamic_cast<const ast::VariableExpr *>( actual ) ) { |
---|
413 | return createThunkFunction( location, type, expr, inferParams ); |
---|
414 | } else { |
---|
415 | // (I don't even know what that comment means.) |
---|
416 | // This likely won't work, as anything that could build an ApplicationExpr probably hit one of the previous two branches |
---|
417 | return createThunkFunction( location, type, actual, inferParams ); |
---|
418 | } |
---|
419 | } else { |
---|
420 | return actual; |
---|
421 | } |
---|
422 | } else { |
---|
423 | return actual; |
---|
424 | } |
---|
425 | } |
---|
426 | |
---|
427 | const ast::Expr * SpecializeCore::postvisit( |
---|
428 | const ast::ApplicationExpr * expr ) { |
---|
429 | if ( InitTweak::isIntrinsicCallExpr( expr ) ) { |
---|
430 | return expr; |
---|
431 | } |
---|
432 | |
---|
433 | // Create thunks for the inferred parameters. |
---|
434 | // This is not needed for intrinsic calls, because they aren't |
---|
435 | // actually passed to the function. It needs to handle explicit params |
---|
436 | // before inferred params so that explicit params do not recieve a |
---|
437 | // changed set of inferParams (and change them again). |
---|
438 | // Alternatively, if order starts to matter then copy expr's inferParams |
---|
439 | // and pass them to handleExplicitParams. |
---|
440 | ast::ApplicationExpr * mut = handleExplicitParams( expr ); |
---|
441 | if ( !mut->inferred.hasParams() ) { |
---|
442 | return mut; |
---|
443 | } |
---|
444 | ast::InferredParams & inferParams = mut->inferred.inferParams(); |
---|
445 | for ( ast::InferredParams::value_type & inferParam : inferParams ) { |
---|
446 | inferParam.second.expr = doSpecialization( |
---|
447 | inferParam.second.expr->location, |
---|
448 | inferParam.second.formalType, |
---|
449 | inferParam.second.expr, |
---|
450 | getInferredParams( inferParam.second.expr ) |
---|
451 | ); |
---|
452 | } |
---|
453 | return mut; |
---|
454 | } |
---|
455 | |
---|
456 | const ast::Expr * SpecializeCore::postvisit( const ast::CastExpr * expr ) { |
---|
457 | if ( expr->result->isVoid() ) { |
---|
458 | // No specialization if there is no return value. |
---|
459 | return expr; |
---|
460 | } |
---|
461 | const ast::Expr * specialized = doSpecialization( |
---|
462 | expr->location, expr->result, expr->arg, getInferredParams( expr ) ); |
---|
463 | if ( specialized != expr->arg ) { |
---|
464 | // Assume that the specialization incorporates the cast. |
---|
465 | return specialized; |
---|
466 | } else { |
---|
467 | return expr; |
---|
468 | } |
---|
469 | } |
---|
470 | |
---|
471 | } // namespace |
---|
472 | |
---|
473 | void convertSpecializations( ast::TranslationUnit & translationUnit ) { |
---|
474 | ast::Pass<SpecializeCore>::run( translationUnit ); |
---|
475 | } |
---|
476 | |
---|
477 | } // namespace GenPoly |
---|
478 | |
---|
479 | // Local Variables: // |
---|
480 | // tab-width: 4 // |
---|
481 | // mode: c++ // |
---|
482 | // compile-command: "make install" // |
---|
483 | // End: // |
---|