1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // Specialize.cc --
|
---|
8 | //
|
---|
9 | // Author : Richard C. Bilson
|
---|
10 | // Created On : Mon May 18 07:44:20 2015
|
---|
11 | // Last Modified By : Peter A. Buhr
|
---|
12 | // Last Modified On : Thu Mar 16 07:53:59 2017
|
---|
13 | // Update Count : 31
|
---|
14 | //
|
---|
15 |
|
---|
16 | #include <cassert> // for assert, assertf
|
---|
17 | #include <iterator> // for back_insert_iterator, back_i...
|
---|
18 | #include <map> // for _Rb_tree_iterator, _Rb_tree_...
|
---|
19 | #include <memory> // for unique_ptr
|
---|
20 | #include <string> // for string
|
---|
21 | #include <tuple> // for get
|
---|
22 | #include <utility> // for pair
|
---|
23 |
|
---|
24 | #include "Common/PassVisitor.h"
|
---|
25 | #include "Common/UniqueName.h" // for UniqueName
|
---|
26 | #include "Common/utility.h" // for group_iterate
|
---|
27 | #include "GenPoly.h" // for getFunctionType
|
---|
28 | #include "InitTweak/InitTweak.h" // for isIntrinsicCallExpr
|
---|
29 | #include "Parser/LinkageSpec.h" // for C
|
---|
30 | #include "ResolvExpr/FindOpenVars.h" // for findOpenVars
|
---|
31 | #include "ResolvExpr/TypeEnvironment.h" // for OpenVarSet, AssertionSet
|
---|
32 | #include "Specialize.h"
|
---|
33 | #include "SynTree/Attribute.h" // for Attribute
|
---|
34 | #include "SynTree/Declaration.h" // for FunctionDecl, DeclarationWit...
|
---|
35 | #include "SynTree/Expression.h" // for ApplicationExpr, Expression
|
---|
36 | #include "SynTree/Label.h" // for Label
|
---|
37 | #include "SynTree/Mutator.h" // for mutateAll
|
---|
38 | #include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, Expr...
|
---|
39 | #include "SynTree/Type.h" // for FunctionType, TupleType, Type
|
---|
40 | #include "SynTree/TypeSubstitution.h" // for TypeSubstitution
|
---|
41 | #include "SynTree/Visitor.h" // for Visitor
|
---|
42 |
|
---|
43 | namespace GenPoly {
|
---|
44 | struct Specialize final : public WithTypeSubstitution, public WithStmtsToAdd, public WithVisitorRef<Specialize> {
|
---|
45 | Expression * postmutate( ApplicationExpr *applicationExpr );
|
---|
46 | Expression * postmutate( CastExpr *castExpr );
|
---|
47 |
|
---|
48 | void handleExplicitParams( ApplicationExpr *appExpr );
|
---|
49 | Expression * createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams );
|
---|
50 | Expression * doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams );
|
---|
51 |
|
---|
52 | std::string paramPrefix = "_p";
|
---|
53 | };
|
---|
54 |
|
---|
55 | /// Looks up open variables in actual type, returning true if any of them are bound in the environment or formal type.
|
---|
56 | bool needsPolySpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) {
|
---|
57 | if ( env ) {
|
---|
58 | using namespace ResolvExpr;
|
---|
59 | OpenVarSet openVars, closedVars;
|
---|
60 | AssertionSet need, have;
|
---|
61 | findOpenVars( formalType, openVars, closedVars, need, have, false );
|
---|
62 | findOpenVars( actualType, openVars, closedVars, need, have, true );
|
---|
63 | for ( OpenVarSet::const_iterator openVar = openVars.begin(); openVar != openVars.end(); ++openVar ) {
|
---|
64 | Type *boundType = env->lookup( openVar->first );
|
---|
65 | if ( ! boundType ) continue;
|
---|
66 | if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( boundType ) ) {
|
---|
67 | // bound to another type variable
|
---|
68 | if ( closedVars.find( typeInst->get_name() ) == closedVars.end() ) {
|
---|
69 | // bound to a closed variable => must specialize
|
---|
70 | return true;
|
---|
71 | } // if
|
---|
72 | } else {
|
---|
73 | // variable is bound to a concrete type => must specialize
|
---|
74 | return true;
|
---|
75 | } // if
|
---|
76 | } // for
|
---|
77 | // none of the type variables are bound
|
---|
78 | return false;
|
---|
79 | } else {
|
---|
80 | // no env
|
---|
81 | return false;
|
---|
82 | } // if
|
---|
83 | }
|
---|
84 |
|
---|
85 | /// True if both types have the same structure, but not necessarily the same types.
|
---|
86 | /// That is, either both types are tuple types with the same size (recursively), or
|
---|
87 | /// both are not tuple types.
|
---|
88 | bool matchingTupleStructure( Type * t1, Type * t2 ) {
|
---|
89 | TupleType * tuple1 = dynamic_cast< TupleType * >( t1 );
|
---|
90 | TupleType * tuple2 = dynamic_cast< TupleType * >( t2 );
|
---|
91 | if ( tuple1 && tuple2 ) {
|
---|
92 | if ( tuple1->size() != tuple2->size() ) return false;
|
---|
93 | for ( auto types : group_iterate( tuple1->get_types(), tuple2->get_types() ) ) {
|
---|
94 | if ( ! matchingTupleStructure( std::get<0>( types ), std::get<1>( types ) ) ) return false;
|
---|
95 | }
|
---|
96 | return true;
|
---|
97 | } else if ( ! tuple1 && ! tuple2 ) return true;
|
---|
98 | return false;
|
---|
99 | }
|
---|
100 |
|
---|
101 | // walk into tuple type and find the number of components
|
---|
102 | size_t singleParameterSize( Type * type ) {
|
---|
103 | if ( TupleType * tt = dynamic_cast< TupleType * >( type ) ) {
|
---|
104 | size_t sz = 0;
|
---|
105 | for ( Type * t : *tt ) {
|
---|
106 | sz += singleParameterSize( t );
|
---|
107 | }
|
---|
108 | return sz;
|
---|
109 | } else {
|
---|
110 | return 1;
|
---|
111 | }
|
---|
112 | }
|
---|
113 |
|
---|
114 | // find the total number of components in a parameter list
|
---|
115 | size_t functionParameterSize( FunctionType * ftype ) {
|
---|
116 | size_t sz = 0;
|
---|
117 | for ( DeclarationWithType * p : ftype->get_parameters() ) {
|
---|
118 | sz += singleParameterSize( p->get_type() );
|
---|
119 | }
|
---|
120 | return sz;
|
---|
121 | }
|
---|
122 |
|
---|
123 | bool needsTupleSpecialization( Type *formalType, Type *actualType ) {
|
---|
124 | // Needs tuple specialization if the structure of the formal type and actual type do not match.
|
---|
125 | // This is the case if the formal type has ttype polymorphism, or if the structure of tuple types
|
---|
126 | // between the function do not match exactly.
|
---|
127 | if ( FunctionType * fftype = getFunctionType( formalType ) ) {
|
---|
128 | if ( fftype->isTtype() ) return true;
|
---|
129 | // conversion of 0 (null) to function type does not require tuple specialization
|
---|
130 | if ( dynamic_cast< ZeroType * >( actualType ) ) return false;
|
---|
131 | FunctionType * aftype = getFunctionType( actualType->stripReferences() );
|
---|
132 | assertf( aftype, "formal type is a function type, but actual type is not: %s", toString( actualType ).c_str() );
|
---|
133 | // Can't tuple specialize if parameter sizes deeply-differ.
|
---|
134 | if ( functionParameterSize( fftype ) != functionParameterSize( aftype ) ) return false;
|
---|
135 | // tuple-parameter sizes are the same, but actual parameter sizes differ - must tuple specialize
|
---|
136 | if ( fftype->parameters.size() != aftype->parameters.size() ) return true;
|
---|
137 | // total parameter size can be the same, while individual parameters can have different structure
|
---|
138 | for ( auto params : group_iterate( fftype->parameters, aftype->parameters ) ) {
|
---|
139 | DeclarationWithType * formal = std::get<0>(params);
|
---|
140 | DeclarationWithType * actual = std::get<1>(params);
|
---|
141 | if ( ! matchingTupleStructure( formal->get_type(), actual->get_type() ) ) return true;
|
---|
142 | }
|
---|
143 | }
|
---|
144 | return false;
|
---|
145 | }
|
---|
146 |
|
---|
147 | bool needsSpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) {
|
---|
148 | return needsPolySpecialization( formalType, actualType, env ) || needsTupleSpecialization( formalType, actualType );
|
---|
149 | }
|
---|
150 |
|
---|
151 | Expression * Specialize::doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ) {
|
---|
152 | assertf( actual->result, "attempting to specialize an untyped expression" );
|
---|
153 | if ( needsSpecialization( formalType, actual->get_result(), env ) ) {
|
---|
154 | if ( FunctionType *funType = getFunctionType( formalType ) ) {
|
---|
155 | if ( ApplicationExpr * appExpr = dynamic_cast<ApplicationExpr*>( actual ) ) {
|
---|
156 | return createThunkFunction( funType, appExpr->get_function(), inferParams );
|
---|
157 | } else if ( VariableExpr * varExpr = dynamic_cast<VariableExpr*>( actual ) ) {
|
---|
158 | return createThunkFunction( funType, varExpr, inferParams );
|
---|
159 | } else {
|
---|
160 | // This likely won't work, as anything that could build an ApplicationExpr probably hit one of the previous two branches
|
---|
161 | return createThunkFunction( funType, actual, inferParams );
|
---|
162 | }
|
---|
163 | } else {
|
---|
164 | return actual;
|
---|
165 | } // if
|
---|
166 | } else {
|
---|
167 | return actual;
|
---|
168 | } // if
|
---|
169 | }
|
---|
170 |
|
---|
171 | /// restructures the arguments to match the structure of the formal parameters of the actual function.
|
---|
172 | /// [begin, end) are the exploded arguments.
|
---|
173 | template< typename Iterator, typename OutIterator >
|
---|
174 | void structureArg( Type * type, Iterator & begin, Iterator end, OutIterator out ) {
|
---|
175 | if ( TupleType * tuple = dynamic_cast< TupleType * >( type ) ) {
|
---|
176 | std::list< Expression * > exprs;
|
---|
177 | for ( Type * t : *tuple ) {
|
---|
178 | structureArg( t, begin, end, back_inserter( exprs ) );
|
---|
179 | }
|
---|
180 | *out++ = new TupleExpr( exprs );
|
---|
181 | } else {
|
---|
182 | assertf( begin != end, "reached the end of the arguments while structuring" );
|
---|
183 | *out++ = *begin++;
|
---|
184 | }
|
---|
185 | }
|
---|
186 |
|
---|
187 | /// explode assuming simple cases: either type is pure tuple (but not tuple expr) or type is non-tuple.
|
---|
188 | template< typename OutputIterator >
|
---|
189 | void explodeSimple( Expression * expr, OutputIterator out ) {
|
---|
190 | if ( TupleType * tupleType = dynamic_cast< TupleType * > ( expr->get_result() ) ) {
|
---|
191 | // tuple type, recursively index into its components
|
---|
192 | for ( unsigned int i = 0; i < tupleType->size(); i++ ) {
|
---|
193 | explodeSimple( new TupleIndexExpr( expr->clone(), i ), out );
|
---|
194 | }
|
---|
195 | delete expr;
|
---|
196 | } else {
|
---|
197 | // non-tuple type - output a clone of the expression
|
---|
198 | *out++ = expr;
|
---|
199 | }
|
---|
200 | }
|
---|
201 |
|
---|
202 | /// Generates a thunk that calls `actual` with type `funType` and returns its address
|
---|
203 | Expression * Specialize::createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) {
|
---|
204 | static UniqueName thunkNamer( "_thunk" );
|
---|
205 |
|
---|
206 | FunctionType *newType = funType->clone();
|
---|
207 | if ( env ) {
|
---|
208 | // it is important to replace only occurrences of type variables that occur free in the
|
---|
209 | // thunk's type
|
---|
210 | env->applyFree( newType );
|
---|
211 | } // if
|
---|
212 | // create new thunk with same signature as formal type (C linkage, empty body)
|
---|
213 | FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), Type::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt() );
|
---|
214 | thunkFunc->fixUniqueId();
|
---|
215 |
|
---|
216 | // thunks may be generated and not used - silence warning with attribute
|
---|
217 | thunkFunc->get_attributes().push_back( new Attribute( "unused" ) );
|
---|
218 |
|
---|
219 | // thread thunk parameters into call to actual function, naming thunk parameters as we go
|
---|
220 | UniqueName paramNamer( paramPrefix );
|
---|
221 | ApplicationExpr *appExpr = new ApplicationExpr( actual );
|
---|
222 |
|
---|
223 | FunctionType * actualType = getFunctionType( actual->get_result() )->clone();
|
---|
224 | if ( env ) {
|
---|
225 | // need to apply the environment to the actual function's type, since it may itself be polymorphic
|
---|
226 | env->apply( actualType );
|
---|
227 | }
|
---|
228 | std::unique_ptr< FunctionType > actualTypeManager( actualType ); // for RAII
|
---|
229 | std::list< DeclarationWithType * >::iterator actualBegin = actualType->get_parameters().begin();
|
---|
230 | std::list< DeclarationWithType * >::iterator actualEnd = actualType->get_parameters().end();
|
---|
231 |
|
---|
232 | std::list< Expression * > args;
|
---|
233 | for ( DeclarationWithType* param : thunkFunc->get_functionType()->get_parameters() ) {
|
---|
234 | // name each thunk parameter and explode it - these are then threaded back into the actual function call.
|
---|
235 | param->set_name( paramNamer.newName() );
|
---|
236 | explodeSimple( new VariableExpr( param ), back_inserter( args ) );
|
---|
237 | }
|
---|
238 |
|
---|
239 | // walk parameters to the actual function alongside the exploded thunk parameters and restructure the arguments to match the actual parameters.
|
---|
240 | std::list< Expression * >::iterator argBegin = args.begin(), argEnd = args.end();
|
---|
241 | for ( ; actualBegin != actualEnd; ++actualBegin ) {
|
---|
242 | structureArg( (*actualBegin)->get_type(), argBegin, argEnd, back_inserter( appExpr->get_args() ) );
|
---|
243 | }
|
---|
244 |
|
---|
245 | appExpr->env = TypeSubstitution::newFromExpr( appExpr, env );
|
---|
246 | if ( inferParams ) {
|
---|
247 | appExpr->get_inferParams() = *inferParams;
|
---|
248 | } // if
|
---|
249 |
|
---|
250 | // handle any specializations that may still be present
|
---|
251 | std::string oldParamPrefix = paramPrefix;
|
---|
252 | paramPrefix += "p";
|
---|
253 | // save stmtsToAddBefore in oldStmts
|
---|
254 | std::list< Statement* > oldStmts;
|
---|
255 | oldStmts.splice( oldStmts.end(), stmtsToAddBefore );
|
---|
256 | appExpr->acceptMutator( *visitor );
|
---|
257 | paramPrefix = oldParamPrefix;
|
---|
258 | // write any statements added for recursive specializations into the thunk body
|
---|
259 | thunkFunc->statements->kids.splice( thunkFunc->statements->kids.end(), stmtsToAddBefore );
|
---|
260 | // restore oldStmts into stmtsToAddBefore
|
---|
261 | stmtsToAddBefore.splice( stmtsToAddBefore.end(), oldStmts );
|
---|
262 |
|
---|
263 | // add return (or valueless expression) to the thunk
|
---|
264 | Statement *appStmt;
|
---|
265 | if ( funType->returnVals.empty() ) {
|
---|
266 | appStmt = new ExprStmt( appExpr );
|
---|
267 | } else {
|
---|
268 | appStmt = new ReturnStmt( appExpr );
|
---|
269 | } // if
|
---|
270 | thunkFunc->statements->kids.push_back( appStmt );
|
---|
271 |
|
---|
272 | // add thunk definition to queue of statements to add
|
---|
273 | stmtsToAddBefore.push_back( new DeclStmt( thunkFunc ) );
|
---|
274 | // return address of thunk function as replacement expression
|
---|
275 | return new AddressExpr( new VariableExpr( thunkFunc ) );
|
---|
276 | }
|
---|
277 |
|
---|
278 | void Specialize::handleExplicitParams( ApplicationExpr *appExpr ) {
|
---|
279 | // create thunks for the explicit parameters
|
---|
280 | assert( appExpr->function->result );
|
---|
281 | FunctionType *function = getFunctionType( appExpr->function->result );
|
---|
282 | assert( function );
|
---|
283 | std::list< DeclarationWithType* >::iterator formal;
|
---|
284 | std::list< Expression* >::iterator actual;
|
---|
285 | for ( formal = function->get_parameters().begin(), actual = appExpr->get_args().begin(); formal != function->get_parameters().end() && actual != appExpr->get_args().end(); ++formal, ++actual ) {
|
---|
286 | *actual = doSpecialization( (*formal)->get_type(), *actual, &appExpr->get_inferParams() );
|
---|
287 | }
|
---|
288 | }
|
---|
289 |
|
---|
290 | Expression * Specialize::postmutate( ApplicationExpr *appExpr ) {
|
---|
291 | if ( ! InitTweak::isIntrinsicCallExpr( appExpr ) ) {
|
---|
292 | // create thunks for the inferred parameters
|
---|
293 | // don't need to do this for intrinsic calls, because they aren't actually passed
|
---|
294 | // need to handle explicit params before inferred params so that explicit params do not recieve a changed set of inferParams (and change them again)
|
---|
295 | // alternatively, if order starts to matter then copy appExpr's inferParams and pass them to handleExplicitParams.
|
---|
296 | handleExplicitParams( appExpr );
|
---|
297 | for ( InferredParams::iterator inferParam = appExpr->get_inferParams().begin(); inferParam != appExpr->get_inferParams().end(); ++inferParam ) {
|
---|
298 | inferParam->second.expr = doSpecialization( inferParam->second.formalType, inferParam->second.expr, inferParam->second.inferParams.get() );
|
---|
299 | }
|
---|
300 | }
|
---|
301 | return appExpr;
|
---|
302 | }
|
---|
303 |
|
---|
304 | Expression * Specialize::postmutate( CastExpr *castExpr ) {
|
---|
305 | if ( castExpr->result->isVoid() ) {
|
---|
306 | // can't specialize if we don't have a return value
|
---|
307 | return castExpr;
|
---|
308 | }
|
---|
309 | Expression *specialized = doSpecialization( castExpr->result, castExpr->arg, &castExpr->inferParams );
|
---|
310 | if ( specialized != castExpr->arg ) {
|
---|
311 | // assume here that the specialization incorporates the cast
|
---|
312 | return specialized;
|
---|
313 | } else {
|
---|
314 | return castExpr;
|
---|
315 | }
|
---|
316 | }
|
---|
317 |
|
---|
318 | void convertSpecializations( std::list< Declaration* >& translationUnit ) {
|
---|
319 | PassVisitor<Specialize> spec;
|
---|
320 | mutateAll( translationUnit, spec );
|
---|
321 | }
|
---|
322 | } // namespace GenPoly
|
---|
323 |
|
---|
324 | // Local Variables: //
|
---|
325 | // tab-width: 4 //
|
---|
326 | // mode: c++ //
|
---|
327 | // compile-command: "make install" //
|
---|
328 | // End: //
|
---|