source: src/GenPoly/Specialize.cc@ 982f95d

new-env
Last change on this file since 982f95d was 8d7bef2, checked in by Aaron Moss <a3moss@…>, 8 years ago

First compiling build of CFA-CC with GC

  • Property mode set to 100644
File size: 14.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Specialize.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Mar 16 07:53:59 2017
13// Update Count : 31
14//
15
16#include <cassert> // for assert, assertf
17#include <iterator> // for back_insert_iterator, back_i...
18#include <map> // for _Rb_tree_iterator, _Rb_tree_...
19#include <string> // for string
20#include <tuple> // for get
21#include <utility> // for pair
22
23#include "Common/PassVisitor.h"
24#include "Common/UniqueName.h" // for UniqueName
25#include "Common/utility.h" // for group_iterate
26#include "GenPoly.h" // for getFunctionType
27#include "InitTweak/InitTweak.h" // for isIntrinsicCallExpr
28#include "Parser/LinkageSpec.h" // for C
29#include "ResolvExpr/FindOpenVars.h" // for findOpenVars
30#include "ResolvExpr/TypeEnvironment.h" // for OpenVarSet, AssertionSet
31#include "Specialize.h"
32#include "SynTree/Attribute.h" // for Attribute
33#include "SynTree/Declaration.h" // for FunctionDecl, DeclarationWit...
34#include "SynTree/Expression.h" // for ApplicationExpr, Expression
35#include "SynTree/Label.h" // for Label
36#include "SynTree/Mutator.h" // for mutateAll
37#include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, Expr...
38#include "SynTree/Type.h" // for FunctionType, TupleType, Type
39#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
40#include "SynTree/Visitor.h" // for Visitor
41
42namespace GenPoly {
43 struct Specialize final : public WithTypeSubstitution, public WithStmtsToAdd, public WithVisitorRef<Specialize> {
44 Expression * postmutate( ApplicationExpr *applicationExpr );
45 Expression * postmutate( CastExpr *castExpr );
46
47 void handleExplicitParams( ApplicationExpr *appExpr );
48 Expression * createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams );
49 Expression * doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams );
50
51 std::string paramPrefix = "_p";
52 };
53
54 /// Looks up open variables in actual type, returning true if any of them are bound in the environment or formal type.
55 bool needsPolySpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) {
56 if ( env ) {
57 using namespace ResolvExpr;
58 OpenVarSet openVars, closedVars;
59 AssertionSet need, have;
60 findOpenVars( formalType, openVars, closedVars, need, have, false );
61 findOpenVars( actualType, openVars, closedVars, need, have, true );
62 for ( OpenVarSet::const_iterator openVar = openVars.begin(); openVar != openVars.end(); ++openVar ) {
63 Type *boundType = env->lookup( openVar->first );
64 if ( ! boundType ) continue;
65 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( boundType ) ) {
66 // bound to another type variable
67 if ( closedVars.find( typeInst->get_name() ) == closedVars.end() ) {
68 // bound to a closed variable => must specialize
69 return true;
70 } // if
71 } else {
72 // variable is bound to a concrete type => must specialize
73 return true;
74 } // if
75 } // for
76 // none of the type variables are bound
77 return false;
78 } else {
79 // no env
80 return false;
81 } // if
82 }
83
84 /// True if both types have the same structure, but not necessarily the same types.
85 /// That is, either both types are tuple types with the same size (recursively), or
86 /// both are not tuple types.
87 bool matchingTupleStructure( Type * t1, Type * t2 ) {
88 TupleType * tuple1 = dynamic_cast< TupleType * >( t1 );
89 TupleType * tuple2 = dynamic_cast< TupleType * >( t2 );
90 if ( tuple1 && tuple2 ) {
91 if ( tuple1->size() != tuple2->size() ) return false;
92 for ( auto types : group_iterate( tuple1->get_types(), tuple2->get_types() ) ) {
93 if ( ! matchingTupleStructure( std::get<0>( types ), std::get<1>( types ) ) ) return false;
94 }
95 return true;
96 } else if ( ! tuple1 && ! tuple2 ) return true;
97 return false;
98 }
99
100 // walk into tuple type and find the number of components
101 size_t singleParameterSize( Type * type ) {
102 if ( TupleType * tt = dynamic_cast< TupleType * >( type ) ) {
103 size_t sz = 0;
104 for ( Type * t : *tt ) {
105 sz += singleParameterSize( t );
106 }
107 return sz;
108 } else {
109 return 1;
110 }
111 }
112
113 // find the total number of components in a parameter list
114 size_t functionParameterSize( FunctionType * ftype ) {
115 size_t sz = 0;
116 for ( DeclarationWithType * p : ftype->get_parameters() ) {
117 sz += singleParameterSize( p->get_type() );
118 }
119 return sz;
120 }
121
122 bool needsTupleSpecialization( Type *formalType, Type *actualType ) {
123 // Needs tuple specialization if the structure of the formal type and actual type do not match.
124 // This is the case if the formal type has ttype polymorphism, or if the structure of tuple types
125 // between the function do not match exactly.
126 if ( FunctionType * fftype = getFunctionType( formalType ) ) {
127 if ( fftype->isTtype() ) return true;
128 // conversion of 0 (null) to function type does not require tuple specialization
129 if ( dynamic_cast< ZeroType * >( actualType ) ) return false;
130 FunctionType * aftype = getFunctionType( actualType->stripReferences() );
131 assertf( aftype, "formal type is a function type, but actual type is not: %s", toString( actualType ).c_str() );
132 // Can't tuple specialize if parameter sizes deeply-differ.
133 if ( functionParameterSize( fftype ) != functionParameterSize( aftype ) ) return false;
134 // tuple-parameter sizes are the same, but actual parameter sizes differ - must tuple specialize
135 if ( fftype->parameters.size() != aftype->parameters.size() ) return true;
136 // total parameter size can be the same, while individual parameters can have different structure
137 for ( auto params : group_iterate( fftype->parameters, aftype->parameters ) ) {
138 DeclarationWithType * formal = std::get<0>(params);
139 DeclarationWithType * actual = std::get<1>(params);
140 if ( ! matchingTupleStructure( formal->get_type(), actual->get_type() ) ) return true;
141 }
142 }
143 return false;
144 }
145
146 bool needsSpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) {
147 return needsPolySpecialization( formalType, actualType, env ) || needsTupleSpecialization( formalType, actualType );
148 }
149
150 Expression * Specialize::doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ) {
151 assertf( actual->result, "attempting to specialize an untyped expression" );
152 if ( needsSpecialization( formalType, actual->get_result(), env ) ) {
153 if ( FunctionType *funType = getFunctionType( formalType ) ) {
154 if ( ApplicationExpr * appExpr = dynamic_cast<ApplicationExpr*>( actual ) ) {
155 return createThunkFunction( funType, appExpr->get_function(), inferParams );
156 } else if ( VariableExpr * varExpr = dynamic_cast<VariableExpr*>( actual ) ) {
157 return createThunkFunction( funType, varExpr, inferParams );
158 } else {
159 // This likely won't work, as anything that could build an ApplicationExpr probably hit one of the previous two branches
160 return createThunkFunction( funType, actual, inferParams );
161 }
162 } else {
163 return actual;
164 } // if
165 } else {
166 return actual;
167 } // if
168 }
169
170 /// restructures the arguments to match the structure of the formal parameters of the actual function.
171 /// [begin, end) are the exploded arguments.
172 template< typename Iterator, typename OutIterator >
173 void structureArg( Type * type, Iterator & begin, Iterator end, OutIterator out ) {
174 if ( TupleType * tuple = dynamic_cast< TupleType * >( type ) ) {
175 std::list< Expression * > exprs;
176 for ( Type * t : *tuple ) {
177 structureArg( t, begin, end, back_inserter( exprs ) );
178 }
179 *out++ = new TupleExpr( exprs );
180 } else {
181 assertf( begin != end, "reached the end of the arguments while structuring" );
182 *out++ = *begin++;
183 }
184 }
185
186 /// explode assuming simple cases: either type is pure tuple (but not tuple expr) or type is non-tuple.
187 template< typename OutputIterator >
188 void explodeSimple( Expression * expr, OutputIterator out ) {
189 if ( TupleType * tupleType = dynamic_cast< TupleType * > ( expr->get_result() ) ) {
190 // tuple type, recursively index into its components
191 for ( unsigned int i = 0; i < tupleType->size(); i++ ) {
192 explodeSimple( new TupleIndexExpr( expr->clone(), i ), out );
193 }
194 } else {
195 // non-tuple type - output a clone of the expression
196 *out++ = expr;
197 }
198 }
199
200 /// Generates a thunk that calls `actual` with type `funType` and returns its address
201 Expression * Specialize::createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) {
202 static UniqueName thunkNamer( "_thunk" );
203
204 FunctionType *newType = funType->clone();
205 if ( env ) {
206 // it is important to replace only occurrences of type variables that occur free in the
207 // thunk's type
208 env->applyFree( newType );
209 } // if
210 // create new thunk with same signature as formal type (C linkage, empty body)
211 FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), Type::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt() );
212 thunkFunc->fixUniqueId();
213
214 // thunks may be generated and not used - silence warning with attribute
215 thunkFunc->get_attributes().push_back( new Attribute( "unused" ) );
216
217 // thread thunk parameters into call to actual function, naming thunk parameters as we go
218 UniqueName paramNamer( paramPrefix );
219 ApplicationExpr *appExpr = new ApplicationExpr( actual );
220
221 FunctionType * actualType = getFunctionType( actual->get_result() )->clone();
222 if ( env ) {
223 // need to apply the environment to the actual function's type, since it may itself be polymorphic
224 env->apply( actualType );
225 }
226 std::list< DeclarationWithType * >::iterator actualBegin = actualType->get_parameters().begin();
227 std::list< DeclarationWithType * >::iterator actualEnd = actualType->get_parameters().end();
228
229 std::list< Expression * > args;
230 for ( DeclarationWithType* param : thunkFunc->get_functionType()->get_parameters() ) {
231 // name each thunk parameter and explode it - these are then threaded back into the actual function call.
232 param->set_name( paramNamer.newName() );
233 explodeSimple( new VariableExpr( param ), back_inserter( args ) );
234 }
235
236 // walk parameters to the actual function alongside the exploded thunk parameters and restructure the arguments to match the actual parameters.
237 std::list< Expression * >::iterator argBegin = args.begin(), argEnd = args.end();
238 for ( ; actualBegin != actualEnd; ++actualBegin ) {
239 structureArg( (*actualBegin)->get_type(), argBegin, argEnd, back_inserter( appExpr->get_args() ) );
240 }
241
242 appExpr->env = TypeSubstitution::newFromExpr( appExpr, env );
243 if ( inferParams ) {
244 appExpr->get_inferParams() = *inferParams;
245 } // if
246
247 // handle any specializations that may still be present
248 std::string oldParamPrefix = paramPrefix;
249 paramPrefix += "p";
250 // save stmtsToAddBefore in oldStmts
251 std::list< Statement* > oldStmts;
252 oldStmts.splice( oldStmts.end(), stmtsToAddBefore );
253 appExpr->acceptMutator( *visitor );
254 paramPrefix = oldParamPrefix;
255 // write any statements added for recursive specializations into the thunk body
256 thunkFunc->statements->kids.splice( thunkFunc->statements->kids.end(), stmtsToAddBefore );
257 // restore oldStmts into stmtsToAddBefore
258 stmtsToAddBefore.splice( stmtsToAddBefore.end(), oldStmts );
259
260 // add return (or valueless expression) to the thunk
261 Statement *appStmt;
262 if ( funType->returnVals.empty() ) {
263 appStmt = new ExprStmt( appExpr );
264 } else {
265 appStmt = new ReturnStmt( appExpr );
266 } // if
267 thunkFunc->statements->kids.push_back( appStmt );
268
269 // add thunk definition to queue of statements to add
270 stmtsToAddBefore.push_back( new DeclStmt( thunkFunc ) );
271 // return address of thunk function as replacement expression
272 return new AddressExpr( new VariableExpr( thunkFunc ) );
273 }
274
275 void Specialize::handleExplicitParams( ApplicationExpr *appExpr ) {
276 // create thunks for the explicit parameters
277 assert( appExpr->function->result );
278 FunctionType *function = getFunctionType( appExpr->function->result );
279 assert( function );
280 std::list< DeclarationWithType* >::iterator formal;
281 std::list< Expression* >::iterator actual;
282 for ( formal = function->get_parameters().begin(), actual = appExpr->get_args().begin(); formal != function->get_parameters().end() && actual != appExpr->get_args().end(); ++formal, ++actual ) {
283 *actual = doSpecialization( (*formal)->get_type(), *actual, &appExpr->get_inferParams() );
284 }
285 }
286
287 Expression * Specialize::postmutate( ApplicationExpr *appExpr ) {
288 if ( ! InitTweak::isIntrinsicCallExpr( appExpr ) ) {
289 // create thunks for the inferred parameters
290 // don't need to do this for intrinsic calls, because they aren't actually passed
291 // need to handle explicit params before inferred params so that explicit params do not recieve a changed set of inferParams (and change them again)
292 // alternatively, if order starts to matter then copy appExpr's inferParams and pass them to handleExplicitParams.
293 handleExplicitParams( appExpr );
294 for ( InferredParams::iterator inferParam = appExpr->get_inferParams().begin(); inferParam != appExpr->get_inferParams().end(); ++inferParam ) {
295 inferParam->second.expr = doSpecialization( inferParam->second.formalType, inferParam->second.expr, inferParam->second.inferParams.get() );
296 }
297 }
298 return appExpr;
299 }
300
301 Expression * Specialize::postmutate( CastExpr *castExpr ) {
302 if ( castExpr->result->isVoid() ) {
303 // can't specialize if we don't have a return value
304 return castExpr;
305 }
306 Expression *specialized = doSpecialization( castExpr->result, castExpr->arg, &castExpr->inferParams );
307 if ( specialized != castExpr->arg ) {
308 // assume here that the specialization incorporates the cast
309 return specialized;
310 } else {
311 return castExpr;
312 }
313 }
314
315 void convertSpecializations( std::list< Declaration* >& translationUnit ) {
316 PassVisitor<Specialize> spec;
317 mutateAll( translationUnit, spec );
318 }
319} // namespace GenPoly
320
321// Local Variables: //
322// tab-width: 4 //
323// mode: c++ //
324// compile-command: "make install" //
325// End: //
Note: See TracBrowser for help on using the repository browser.