source: src/GenPoly/Specialize.cc@ 82f3226

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 82f3226 was ba3706f, checked in by Rob Schluntz <rschlunt@…>, 8 years ago

Remove label lists from various Statement constructors

  • Property mode set to 100644
File size: 15.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Specialize.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Mar 16 07:53:59 2017
13// Update Count : 31
14//
15
16#include <cassert> // for assert, assertf
17#include <iterator> // for back_insert_iterator, back_i...
18#include <map> // for _Rb_tree_iterator, _Rb_tree_...
19#include <memory> // for unique_ptr
20#include <string> // for string
21#include <tuple> // for get
22#include <utility> // for pair
23
24#include "Common/PassVisitor.h"
25#include "Common/SemanticError.h" // for SemanticError
26#include "Common/UniqueName.h" // for UniqueName
27#include "Common/utility.h" // for group_iterate
28#include "GenPoly.h" // for getFunctionType
29#include "InitTweak/InitTweak.h" // for isIntrinsicCallExpr
30#include "Parser/LinkageSpec.h" // for C
31#include "ResolvExpr/FindOpenVars.h" // for findOpenVars
32#include "ResolvExpr/TypeEnvironment.h" // for OpenVarSet, AssertionSet
33#include "Specialize.h"
34#include "SynTree/Attribute.h" // for Attribute
35#include "SynTree/Declaration.h" // for FunctionDecl, DeclarationWit...
36#include "SynTree/Expression.h" // for ApplicationExpr, Expression
37#include "SynTree/Label.h" // for Label
38#include "SynTree/Mutator.h" // for mutateAll
39#include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, Expr...
40#include "SynTree/Type.h" // for FunctionType, TupleType, Type
41#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
42#include "SynTree/Visitor.h" // for Visitor
43
44namespace GenPoly {
45 struct Specialize final : public WithTypeSubstitution, public WithStmtsToAdd, public WithVisitorRef<Specialize> {
46 Expression * postmutate( ApplicationExpr *applicationExpr );
47 Expression * postmutate( CastExpr *castExpr );
48
49 void handleExplicitParams( ApplicationExpr *appExpr );
50 Expression * createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams );
51 Expression * doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams );
52
53 std::string paramPrefix = "_p";
54 };
55
56 /// Looks up open variables in actual type, returning true if any of them are bound in the environment or formal type.
57 bool needsPolySpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) {
58 if ( env ) {
59 using namespace ResolvExpr;
60 OpenVarSet openVars, closedVars;
61 AssertionSet need, have;
62 findOpenVars( formalType, openVars, closedVars, need, have, false );
63 findOpenVars( actualType, openVars, closedVars, need, have, true );
64 for ( OpenVarSet::const_iterator openVar = openVars.begin(); openVar != openVars.end(); ++openVar ) {
65 Type *boundType = env->lookup( openVar->first );
66 if ( ! boundType ) continue;
67 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( boundType ) ) {
68 // bound to another type variable
69 if ( closedVars.find( typeInst->get_name() ) == closedVars.end() ) {
70 // bound to a closed variable => must specialize
71 return true;
72 } // if
73 } else {
74 // variable is bound to a concrete type => must specialize
75 return true;
76 } // if
77 } // for
78 // none of the type variables are bound
79 return false;
80 } else {
81 // no env
82 return false;
83 } // if
84 }
85
86 /// True if both types have the same structure, but not necessarily the same types.
87 /// That is, either both types are tuple types with the same size (recursively), or
88 /// both are not tuple types.
89 bool matchingTupleStructure( Type * t1, Type * t2 ) {
90 TupleType * tuple1 = dynamic_cast< TupleType * >( t1 );
91 TupleType * tuple2 = dynamic_cast< TupleType * >( t2 );
92 if ( tuple1 && tuple2 ) {
93 if ( tuple1->size() != tuple2->size() ) return false;
94 for ( auto types : group_iterate( tuple1->get_types(), tuple2->get_types() ) ) {
95 if ( ! matchingTupleStructure( std::get<0>( types ), std::get<1>( types ) ) ) return false;
96 }
97 return true;
98 } else if ( ! tuple1 && ! tuple2 ) return true;
99 return false;
100 }
101
102 // walk into tuple type and find the number of components
103 size_t singleParameterSize( Type * type ) {
104 if ( TupleType * tt = dynamic_cast< TupleType * >( type ) ) {
105 size_t sz = 0;
106 for ( Type * t : *tt ) {
107 sz += singleParameterSize( t );
108 }
109 return sz;
110 } else {
111 return 1;
112 }
113 }
114
115 // find the total number of components in a parameter list
116 size_t functionParameterSize( FunctionType * ftype ) {
117 size_t sz = 0;
118 for ( DeclarationWithType * p : ftype->get_parameters() ) {
119 sz += singleParameterSize( p->get_type() );
120 }
121 return sz;
122 }
123
124 bool needsTupleSpecialization( Type *formalType, Type *actualType ) {
125 // Needs tuple specialization if the structure of the formal type and actual type do not match.
126 // This is the case if the formal type has ttype polymorphism, or if the structure of tuple types
127 // between the function do not match exactly.
128 if ( FunctionType * fftype = getFunctionType( formalType ) ) {
129 if ( fftype->isTtype() ) return true;
130 // conversion of 0 (null) to function type does not require tuple specialization
131 if ( dynamic_cast< ZeroType * >( actualType ) ) return false;
132 FunctionType * aftype = getFunctionType( actualType->stripReferences() );
133 assertf( aftype, "formal type is a function type, but actual type is not: %s", toString( actualType ).c_str() );
134 // Can't tuple specialize if parameter sizes deeply-differ.
135 if ( functionParameterSize( fftype ) != functionParameterSize( aftype ) ) return false;
136 // tuple-parameter sizes are the same, but actual parameter sizes differ - must tuple specialize
137 if ( fftype->parameters.size() != aftype->parameters.size() ) return true;
138 // total parameter size can be the same, while individual parameters can have different structure
139 for ( auto params : group_iterate( fftype->parameters, aftype->parameters ) ) {
140 DeclarationWithType * formal = std::get<0>(params);
141 DeclarationWithType * actual = std::get<1>(params);
142 if ( ! matchingTupleStructure( formal->get_type(), actual->get_type() ) ) return true;
143 }
144 }
145 return false;
146 }
147
148 bool needsSpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) {
149 return needsPolySpecialization( formalType, actualType, env ) || needsTupleSpecialization( formalType, actualType );
150 }
151
152 Expression * Specialize::doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ) {
153 assertf( actual->result, "attempting to specialize an untyped expression" );
154 if ( needsSpecialization( formalType, actual->get_result(), env ) ) {
155 if ( FunctionType *funType = getFunctionType( formalType ) ) {
156 if ( ApplicationExpr * appExpr = dynamic_cast<ApplicationExpr*>( actual ) ) {
157 return createThunkFunction( funType, appExpr->get_function(), inferParams );
158 } else if ( VariableExpr * varExpr = dynamic_cast<VariableExpr*>( actual ) ) {
159 return createThunkFunction( funType, varExpr, inferParams );
160 } else {
161 // This likely won't work, as anything that could build an ApplicationExpr probably hit one of the previous two branches
162 return createThunkFunction( funType, actual, inferParams );
163 }
164 } else {
165 return actual;
166 } // if
167 } else {
168 return actual;
169 } // if
170 }
171
172 /// restructures the arguments to match the structure of the formal parameters of the actual function.
173 /// [begin, end) are the exploded arguments.
174 template< typename Iterator, typename OutIterator >
175 void structureArg( Type * type, Iterator & begin, Iterator end, OutIterator out ) {
176 if ( TupleType * tuple = dynamic_cast< TupleType * >( type ) ) {
177 std::list< Expression * > exprs;
178 for ( Type * t : *tuple ) {
179 structureArg( t, begin, end, back_inserter( exprs ) );
180 }
181 *out++ = new TupleExpr( exprs );
182 } else {
183 assertf( begin != end, "reached the end of the arguments while structuring" );
184 *out++ = *begin++;
185 }
186 }
187
188 /// explode assuming simple cases: either type is pure tuple (but not tuple expr) or type is non-tuple.
189 template< typename OutputIterator >
190 void explodeSimple( Expression * expr, OutputIterator out ) {
191 if ( TupleType * tupleType = dynamic_cast< TupleType * > ( expr->get_result() ) ) {
192 // tuple type, recursively index into its components
193 for ( unsigned int i = 0; i < tupleType->size(); i++ ) {
194 explodeSimple( new TupleIndexExpr( expr->clone(), i ), out );
195 }
196 delete expr;
197 } else {
198 // non-tuple type - output a clone of the expression
199 *out++ = expr;
200 }
201 }
202
203 struct EnvTrimmer {
204 TypeSubstitution * env, * newEnv;
205 EnvTrimmer( TypeSubstitution * env, TypeSubstitution * newEnv ) : env( env ), newEnv( newEnv ){}
206 void previsit( TypeDecl * tyDecl ) {
207 // transfer known bindings for seen type variables
208 if ( Type * t = env->lookup( tyDecl->name ) ) {
209 newEnv->add( tyDecl->name, t );
210 }
211 }
212 };
213
214 /// reduce environment to just the parts that are referenced in a given expression
215 TypeSubstitution * trimEnv( ApplicationExpr * expr, TypeSubstitution * env ) {
216 if ( env ) {
217 TypeSubstitution * newEnv = new TypeSubstitution();
218 PassVisitor<EnvTrimmer> trimmer( env, newEnv );
219 expr->accept( trimmer );
220 return newEnv;
221 }
222 return nullptr;
223 }
224
225 /// Generates a thunk that calls `actual` with type `funType` and returns its address
226 Expression * Specialize::createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) {
227 static UniqueName thunkNamer( "_thunk" );
228
229 FunctionType *newType = funType->clone();
230 if ( env ) {
231 // it is important to replace only occurrences of type variables that occur free in the
232 // thunk's type
233 env->applyFree( newType );
234 } // if
235 // create new thunk with same signature as formal type (C linkage, empty body)
236 FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), Type::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt() );
237 thunkFunc->fixUniqueId();
238
239 // thunks may be generated and not used - silence warning with attribute
240 thunkFunc->get_attributes().push_back( new Attribute( "unused" ) );
241
242 // thread thunk parameters into call to actual function, naming thunk parameters as we go
243 UniqueName paramNamer( paramPrefix );
244 ApplicationExpr *appExpr = new ApplicationExpr( actual );
245
246 FunctionType * actualType = getFunctionType( actual->get_result() )->clone();
247 if ( env ) {
248 // need to apply the environment to the actual function's type, since it may itself be polymorphic
249 env->apply( actualType );
250 }
251 std::unique_ptr< FunctionType > actualTypeManager( actualType ); // for RAII
252 std::list< DeclarationWithType * >::iterator actualBegin = actualType->get_parameters().begin();
253 std::list< DeclarationWithType * >::iterator actualEnd = actualType->get_parameters().end();
254
255 std::list< Expression * > args;
256 for ( DeclarationWithType* param : thunkFunc->get_functionType()->get_parameters() ) {
257 // name each thunk parameter and explode it - these are then threaded back into the actual function call.
258 param->set_name( paramNamer.newName() );
259 explodeSimple( new VariableExpr( param ), back_inserter( args ) );
260 }
261
262 // walk parameters to the actual function alongside the exploded thunk parameters and restructure the arguments to match the actual parameters.
263 std::list< Expression * >::iterator argBegin = args.begin(), argEnd = args.end();
264 for ( ; actualBegin != actualEnd; ++actualBegin ) {
265 structureArg( (*actualBegin)->get_type(), argBegin, argEnd, back_inserter( appExpr->get_args() ) );
266 }
267
268 appExpr->set_env( trimEnv( appExpr, env ) );
269 if ( inferParams ) {
270 appExpr->get_inferParams() = *inferParams;
271 } // if
272
273 // handle any specializations that may still be present
274 std::string oldParamPrefix = paramPrefix;
275 paramPrefix += "p";
276 // save stmtsToAddBefore in oldStmts
277 std::list< Statement* > oldStmts;
278 oldStmts.splice( oldStmts.end(), stmtsToAddBefore );
279 appExpr->acceptMutator( *visitor );
280 paramPrefix = oldParamPrefix;
281 // write any statements added for recursive specializations into the thunk body
282 thunkFunc->statements->kids.splice( thunkFunc->statements->kids.end(), stmtsToAddBefore );
283 // restore oldStmts into stmtsToAddBefore
284 stmtsToAddBefore.splice( stmtsToAddBefore.end(), oldStmts );
285
286 // add return (or valueless expression) to the thunk
287 Statement *appStmt;
288 if ( funType->returnVals.empty() ) {
289 appStmt = new ExprStmt( appExpr );
290 } else {
291 appStmt = new ReturnStmt( appExpr );
292 } // if
293 thunkFunc->statements->kids.push_back( appStmt );
294
295 // add thunk definition to queue of statements to add
296 stmtsToAddBefore.push_back( new DeclStmt( thunkFunc ) );
297 // return address of thunk function as replacement expression
298 return new AddressExpr( new VariableExpr( thunkFunc ) );
299 }
300
301 void Specialize::handleExplicitParams( ApplicationExpr *appExpr ) {
302 // create thunks for the explicit parameters
303 assert( appExpr->function->result );
304 FunctionType *function = getFunctionType( appExpr->function->result );
305 assert( function );
306 std::list< DeclarationWithType* >::iterator formal;
307 std::list< Expression* >::iterator actual;
308 for ( formal = function->get_parameters().begin(), actual = appExpr->get_args().begin(); formal != function->get_parameters().end() && actual != appExpr->get_args().end(); ++formal, ++actual ) {
309 *actual = doSpecialization( (*formal)->get_type(), *actual, &appExpr->get_inferParams() );
310 }
311 }
312
313 Expression * Specialize::postmutate( ApplicationExpr *appExpr ) {
314 if ( ! InitTweak::isIntrinsicCallExpr( appExpr ) ) {
315 // create thunks for the inferred parameters
316 // don't need to do this for intrinsic calls, because they aren't actually passed
317 // need to handle explicit params before inferred params so that explicit params do not recieve a changed set of inferParams (and change them again)
318 // alternatively, if order starts to matter then copy appExpr's inferParams and pass them to handleExplicitParams.
319 handleExplicitParams( appExpr );
320 for ( InferredParams::iterator inferParam = appExpr->get_inferParams().begin(); inferParam != appExpr->get_inferParams().end(); ++inferParam ) {
321 inferParam->second.expr = doSpecialization( inferParam->second.formalType, inferParam->second.expr, inferParam->second.inferParams.get() );
322 }
323 }
324 return appExpr;
325 }
326
327 Expression * Specialize::postmutate( CastExpr *castExpr ) {
328 if ( castExpr->result->isVoid() ) {
329 // can't specialize if we don't have a return value
330 return castExpr;
331 }
332 Expression *specialized = doSpecialization( castExpr->result, castExpr->arg, &castExpr->inferParams );
333 if ( specialized != castExpr->arg ) {
334 // assume here that the specialization incorporates the cast
335 return specialized;
336 } else {
337 return castExpr;
338 }
339 }
340
341 void convertSpecializations( std::list< Declaration* >& translationUnit ) {
342 PassVisitor<Specialize> spec;
343 mutateAll( translationUnit, spec );
344 }
345} // namespace GenPoly
346
347// Local Variables: //
348// tab-width: 4 //
349// mode: c++ //
350// compile-command: "make install" //
351// End: //
Note: See TracBrowser for help on using the repository browser.