source: src/GenPoly/Specialize.cc@ b2a11ba

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since b2a11ba was d5baf0c, checked in by Andrew Beach <ajbeach@…>, 5 years ago

Specialization now produces Declarations instead of Statements so it can be added at the top level.

  • Property mode set to 100644
File size: 14.3 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Specialize.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Thr Jul 2 17:42:00 2020
13// Update Count : 33
14//
15
16#include <cassert> // for assert, assertf
17#include <iterator> // for back_insert_iterator, back_i...
18#include <map> // for _Rb_tree_iterator, _Rb_tree_...
19#include <memory> // for unique_ptr
20#include <string> // for string
21#include <tuple> // for get
22#include <utility> // for pair
23
24#include "Common/PassVisitor.h"
25#include "Common/UniqueName.h" // for UniqueName
26#include "Common/utility.h" // for group_iterate
27#include "GenPoly.h" // for getFunctionType
28#include "InitTweak/InitTweak.h" // for isIntrinsicCallExpr
29#include "ResolvExpr/FindOpenVars.h" // for findOpenVars
30#include "ResolvExpr/TypeEnvironment.h" // for OpenVarSet, AssertionSet
31#include "Specialize.h"
32#include "SynTree/LinkageSpec.h" // for C
33#include "SynTree/Attribute.h" // for Attribute
34#include "SynTree/Declaration.h" // for FunctionDecl, DeclarationWit...
35#include "SynTree/Expression.h" // for ApplicationExpr, Expression
36#include "SynTree/Label.h" // for Label
37#include "SynTree/Mutator.h" // for mutateAll
38#include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, Expr...
39#include "SynTree/Type.h" // for FunctionType, TupleType, Type
40#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
41#include "SynTree/Visitor.h" // for Visitor
42
43namespace GenPoly {
44 struct Specialize final : public WithConstTypeSubstitution,
45 public WithDeclsToAdd, public WithVisitorRef<Specialize> {
46 Expression * postmutate( ApplicationExpr *applicationExpr );
47 Expression * postmutate( CastExpr *castExpr );
48
49 void handleExplicitParams( ApplicationExpr *appExpr );
50 Expression * createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams );
51 Expression * doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams );
52
53 std::string paramPrefix = "_p";
54 };
55
56 /// Looks up open variables in actual type, returning true if any of them are bound in the environment or formal type.
57 bool needsPolySpecialization( Type *formalType, Type *actualType, const TypeSubstitution *env ) {
58 if ( env ) {
59 using namespace ResolvExpr;
60 OpenVarSet openVars, closedVars;
61 AssertionSet need, have;
62 findOpenVars( formalType, openVars, closedVars, need, have, false );
63 findOpenVars( actualType, openVars, closedVars, need, have, true );
64 for ( OpenVarSet::const_iterator openVar = openVars.begin(); openVar != openVars.end(); ++openVar ) {
65 Type *boundType = env->lookup( openVar->first );
66 if ( ! boundType ) continue;
67 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( boundType ) ) {
68 // bound to another type variable
69 if ( closedVars.find( typeInst->get_name() ) == closedVars.end() ) {
70 // bound to a closed variable => must specialize
71 return true;
72 } // if
73 } else {
74 // variable is bound to a concrete type => must specialize
75 return true;
76 } // if
77 } // for
78 // none of the type variables are bound
79 return false;
80 } else {
81 // no env
82 return false;
83 } // if
84 }
85
86 /// True if both types have the same structure, but not necessarily the same types.
87 /// That is, either both types are tuple types with the same size (recursively), or
88 /// both are not tuple types.
89 bool matchingTupleStructure( Type * t1, Type * t2 ) {
90 TupleType * tuple1 = dynamic_cast< TupleType * >( t1 );
91 TupleType * tuple2 = dynamic_cast< TupleType * >( t2 );
92 if ( tuple1 && tuple2 ) {
93 if ( tuple1->size() != tuple2->size() ) return false;
94 for ( auto types : group_iterate( tuple1->get_types(), tuple2->get_types() ) ) {
95 if ( ! matchingTupleStructure( std::get<0>( types ), std::get<1>( types ) ) ) return false;
96 }
97 return true;
98 } else if ( ! tuple1 && ! tuple2 ) return true;
99 return false;
100 }
101
102 // walk into tuple type and find the number of components
103 size_t singleParameterSize( Type * type ) {
104 if ( TupleType * tt = dynamic_cast< TupleType * >( type ) ) {
105 size_t sz = 0;
106 for ( Type * t : *tt ) {
107 sz += singleParameterSize( t );
108 }
109 return sz;
110 } else {
111 return 1;
112 }
113 }
114
115 // find the total number of components in a parameter list
116 size_t functionParameterSize( FunctionType * ftype ) {
117 size_t sz = 0;
118 for ( DeclarationWithType * p : ftype->get_parameters() ) {
119 sz += singleParameterSize( p->get_type() );
120 }
121 return sz;
122 }
123
124 bool needsTupleSpecialization( Type *formalType, Type *actualType ) {
125 // Needs tuple specialization if the structure of the formal type and actual type do not match.
126 // This is the case if the formal type has ttype polymorphism, or if the structure of tuple types
127 // between the function do not match exactly.
128 if ( FunctionType * fftype = getFunctionType( formalType ) ) {
129 if ( fftype->isTtype() ) return true;
130 // conversion of 0 (null) to function type does not require tuple specialization
131 if ( dynamic_cast< ZeroType * >( actualType ) ) return false;
132 FunctionType * aftype = getFunctionType( actualType->stripReferences() );
133 assertf( aftype, "formal type is a function type, but actual type is not: %s", toString( actualType ).c_str() );
134 // Can't tuple specialize if parameter sizes deeply-differ.
135 if ( functionParameterSize( fftype ) != functionParameterSize( aftype ) ) return false;
136 // tuple-parameter sizes are the same, but actual parameter sizes differ - must tuple specialize
137 if ( fftype->parameters.size() != aftype->parameters.size() ) return true;
138 // total parameter size can be the same, while individual parameters can have different structure
139 for ( auto params : group_iterate( fftype->parameters, aftype->parameters ) ) {
140 DeclarationWithType * formal = std::get<0>(params);
141 DeclarationWithType * actual = std::get<1>(params);
142 if ( ! matchingTupleStructure( formal->get_type(), actual->get_type() ) ) return true;
143 }
144 }
145 return false;
146 }
147
148 bool needsSpecialization( Type *formalType, Type *actualType, const TypeSubstitution *env ) {
149 return needsPolySpecialization( formalType, actualType, env ) || needsTupleSpecialization( formalType, actualType );
150 }
151
152 Expression * Specialize::doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ) {
153 assertf( actual->result, "attempting to specialize an untyped expression" );
154 if ( needsSpecialization( formalType, actual->get_result(), env ) ) {
155 if ( FunctionType *funType = getFunctionType( formalType ) ) {
156 if ( ApplicationExpr * appExpr = dynamic_cast<ApplicationExpr*>( actual ) ) {
157 return createThunkFunction( funType, appExpr->get_function(), inferParams );
158 } else if ( VariableExpr * varExpr = dynamic_cast<VariableExpr*>( actual ) ) {
159 return createThunkFunction( funType, varExpr, inferParams );
160 } else {
161 // This likely won't work, as anything that could build an ApplicationExpr probably hit one of the previous two branches
162 return createThunkFunction( funType, actual, inferParams );
163 }
164 } else {
165 return actual;
166 } // if
167 } else {
168 return actual;
169 } // if
170 }
171
172 /// restructures the arguments to match the structure of the formal parameters of the actual function.
173 /// [begin, end) are the exploded arguments.
174 template< typename Iterator, typename OutIterator >
175 void structureArg( Type * type, Iterator & begin, Iterator end, OutIterator out ) {
176 if ( TupleType * tuple = dynamic_cast< TupleType * >( type ) ) {
177 std::list< Expression * > exprs;
178 for ( Type * t : *tuple ) {
179 structureArg( t, begin, end, back_inserter( exprs ) );
180 }
181 *out++ = new TupleExpr( exprs );
182 } else {
183 assertf( begin != end, "reached the end of the arguments while structuring" );
184 *out++ = *begin++;
185 }
186 }
187
188 /// explode assuming simple cases: either type is pure tuple (but not tuple expr) or type is non-tuple.
189 template< typename OutputIterator >
190 void explodeSimple( Expression * expr, OutputIterator out ) {
191 if ( TupleType * tupleType = dynamic_cast< TupleType * > ( expr->get_result() ) ) {
192 // tuple type, recursively index into its components
193 for ( unsigned int i = 0; i < tupleType->size(); i++ ) {
194 explodeSimple( new TupleIndexExpr( expr->clone(), i ), out );
195 }
196 delete expr;
197 } else {
198 // non-tuple type - output a clone of the expression
199 *out++ = expr;
200 }
201 }
202
203 /// Generates a thunk that calls `actual` with type `funType` and returns its address
204 Expression * Specialize::createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) {
205 static UniqueName thunkNamer( "_thunk" );
206
207 FunctionType *newType = funType->clone();
208 if ( env ) {
209 // it is important to replace only occurrences of type variables that occur free in the
210 // thunk's type
211 env->applyFree( newType );
212 } // if
213 // create new thunk with same signature as formal type (C linkage, empty body)
214 FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), Type::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt() );
215 thunkFunc->fixUniqueId();
216
217 // thunks may be generated and not used - silence warning with attribute
218 thunkFunc->get_attributes().push_back( new Attribute( "unused" ) );
219
220 // thread thunk parameters into call to actual function, naming thunk parameters as we go
221 UniqueName paramNamer( paramPrefix );
222 ApplicationExpr *appExpr = new ApplicationExpr( actual );
223
224 FunctionType * actualType = getFunctionType( actual->get_result() )->clone();
225 if ( env ) {
226 // need to apply the environment to the actual function's type, since it may itself be polymorphic
227 env->apply( actualType );
228 }
229 std::unique_ptr< FunctionType > actualTypeManager( actualType ); // for RAII
230 std::list< DeclarationWithType * >::iterator actualBegin = actualType->get_parameters().begin();
231 std::list< DeclarationWithType * >::iterator actualEnd = actualType->get_parameters().end();
232
233 std::list< Expression * > args;
234 for ( DeclarationWithType* param : thunkFunc->get_functionType()->get_parameters() ) {
235 // name each thunk parameter and explode it - these are then threaded back into the actual function call.
236 param->set_name( paramNamer.newName() );
237 explodeSimple( new VariableExpr( param ), back_inserter( args ) );
238 }
239
240 // walk parameters to the actual function alongside the exploded thunk parameters and restructure the arguments to match the actual parameters.
241 std::list< Expression * >::iterator argBegin = args.begin(), argEnd = args.end();
242 for ( ; actualBegin != actualEnd; ++actualBegin ) {
243 structureArg( (*actualBegin)->get_type(), argBegin, argEnd, back_inserter( appExpr->get_args() ) );
244 }
245
246 appExpr->env = TypeSubstitution::newFromExpr( appExpr, env );
247 if ( inferParams ) {
248 appExpr->inferParams = *inferParams;
249 } // if
250
251 // Handle any specializations that may still be present.
252 {
253 std::string oldParamPrefix = paramPrefix;
254 paramPrefix += "p";
255 std::list< Declaration * > oldDecls;
256 oldDecls.splice( oldDecls.end(), declsToAddBefore );
257
258 appExpr->acceptMutator( *visitor );
259 // Write recursive specializations into the thunk body.
260 for ( Declaration * decl : declsToAddBefore ) {
261 thunkFunc->statements->kids.push_back( new DeclStmt( decl ) );
262 }
263
264 declsToAddBefore = std::move( oldDecls );
265 paramPrefix = oldParamPrefix;
266 }
267
268 // add return (or valueless expression) to the thunk
269 Statement *appStmt;
270 if ( funType->returnVals.empty() ) {
271 appStmt = new ExprStmt( appExpr );
272 } else {
273 appStmt = new ReturnStmt( appExpr );
274 } // if
275 thunkFunc->statements->kids.push_back( appStmt );
276
277 // Add the thunk definition (converted to DeclStmt if appproprate).
278 declsToAddBefore.push_back( thunkFunc );
279 // return address of thunk function as replacement expression
280 return new AddressExpr( new VariableExpr( thunkFunc ) );
281 }
282
283 void Specialize::handleExplicitParams( ApplicationExpr *appExpr ) {
284 // create thunks for the explicit parameters
285 assert( appExpr->function->result );
286 FunctionType *function = getFunctionType( appExpr->function->result );
287 assert( function );
288 std::list< DeclarationWithType* >::iterator formal;
289 std::list< Expression* >::iterator actual;
290 for ( formal = function->get_parameters().begin(), actual = appExpr->get_args().begin(); formal != function->get_parameters().end() && actual != appExpr->get_args().end(); ++formal, ++actual ) {
291 *actual = doSpecialization( (*formal)->get_type(), *actual, &appExpr->inferParams );
292 }
293 }
294
295 Expression * Specialize::postmutate( ApplicationExpr *appExpr ) {
296 if ( ! InitTweak::isIntrinsicCallExpr( appExpr ) ) {
297 // create thunks for the inferred parameters
298 // don't need to do this for intrinsic calls, because they aren't actually passed
299 // need to handle explicit params before inferred params so that explicit params do not recieve a changed set of inferParams (and change them again)
300 // alternatively, if order starts to matter then copy appExpr's inferParams and pass them to handleExplicitParams.
301 handleExplicitParams( appExpr );
302 for ( InferredParams::iterator inferParam = appExpr->inferParams.begin(); inferParam != appExpr->inferParams.end(); ++inferParam ) {
303 inferParam->second.expr = doSpecialization( inferParam->second.formalType, inferParam->second.expr, &inferParam->second.expr->inferParams );
304 }
305 }
306 return appExpr;
307 }
308
309 Expression * Specialize::postmutate( CastExpr *castExpr ) {
310 if ( castExpr->result->isVoid() ) {
311 // can't specialize if we don't have a return value
312 return castExpr;
313 }
314 Expression *specialized = doSpecialization( castExpr->result, castExpr->arg, &castExpr->inferParams );
315 if ( specialized != castExpr->arg ) {
316 // assume here that the specialization incorporates the cast
317 return specialized;
318 } else {
319 return castExpr;
320 }
321 }
322
323 void convertSpecializations( std::list< Declaration* >& translationUnit ) {
324 PassVisitor<Specialize> spec;
325 mutateAll( translationUnit, spec );
326 }
327} // namespace GenPoly
328
329// Local Variables: //
330// tab-width: 4 //
331// mode: c++ //
332// compile-command: "make install" //
333// End: //
Note: See TracBrowser for help on using the repository browser.