source: src/GenPoly/Specialize.cc@ 42a2970

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 42a2970 was d5baf0c, checked in by Andrew Beach <ajbeach@…>, 5 years ago

Specialization now produces Declarations instead of Statements so it can be added at the top level.

  • Property mode set to 100644
File size: 14.3 KB
RevLine 
[51587aa]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[f1e012b]7// Specialize.cc --
[51587aa]8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
[d5baf0c]11// Last Modified By : Andrew Beach
12// Last Modified On : Thr Jul 2 17:42:00 2020
13// Update Count : 33
[51587aa]14//
[51b73452]15
[08fc48f]16#include <cassert> // for assert, assertf
17#include <iterator> // for back_insert_iterator, back_i...
18#include <map> // for _Rb_tree_iterator, _Rb_tree_...
19#include <memory> // for unique_ptr
20#include <string> // for string
21#include <tuple> // for get
22#include <utility> // for pair
[51b73452]23
[cf90b88]24#include "Common/PassVisitor.h"
[08fc48f]25#include "Common/UniqueName.h" // for UniqueName
26#include "Common/utility.h" // for group_iterate
27#include "GenPoly.h" // for getFunctionType
28#include "InitTweak/InitTweak.h" // for isIntrinsicCallExpr
29#include "ResolvExpr/FindOpenVars.h" // for findOpenVars
30#include "ResolvExpr/TypeEnvironment.h" // for OpenVarSet, AssertionSet
[51b73452]31#include "Specialize.h"
[07de76b]32#include "SynTree/LinkageSpec.h" // for C
[08fc48f]33#include "SynTree/Attribute.h" // for Attribute
34#include "SynTree/Declaration.h" // for FunctionDecl, DeclarationWit...
35#include "SynTree/Expression.h" // for ApplicationExpr, Expression
[ba3706f]36#include "SynTree/Label.h" // for Label
[08fc48f]37#include "SynTree/Mutator.h" // for mutateAll
38#include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, Expr...
39#include "SynTree/Type.h" // for FunctionType, TupleType, Type
40#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
41#include "SynTree/Visitor.h" // for Visitor
[51b73452]42
43namespace GenPoly {
[d5baf0c]44 struct Specialize final : public WithConstTypeSubstitution,
45 public WithDeclsToAdd, public WithVisitorRef<Specialize> {
[cf90b88]46 Expression * postmutate( ApplicationExpr *applicationExpr );
47 Expression * postmutate( CastExpr *castExpr );
[01aeade]48
49 void handleExplicitParams( ApplicationExpr *appExpr );
[f3b0a07]50 Expression * createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams );
[bb666f64]51 Expression * doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams );
[626dbc10]52
53 std::string paramPrefix = "_p";
54 };
[01aeade]55
[698664b3]56 /// Looks up open variables in actual type, returning true if any of them are bound in the environment or formal type.
[02fdb8e]57 bool needsPolySpecialization( Type *formalType, Type *actualType, const TypeSubstitution *env ) {
[01aeade]58 if ( env ) {
59 using namespace ResolvExpr;
60 OpenVarSet openVars, closedVars;
61 AssertionSet need, have;
62 findOpenVars( formalType, openVars, closedVars, need, have, false );
63 findOpenVars( actualType, openVars, closedVars, need, have, true );
64 for ( OpenVarSet::const_iterator openVar = openVars.begin(); openVar != openVars.end(); ++openVar ) {
65 Type *boundType = env->lookup( openVar->first );
66 if ( ! boundType ) continue;
67 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( boundType ) ) {
[b226721]68 // bound to another type variable
[01aeade]69 if ( closedVars.find( typeInst->get_name() ) == closedVars.end() ) {
[b226721]70 // bound to a closed variable => must specialize
[01aeade]71 return true;
72 } // if
73 } else {
[b226721]74 // variable is bound to a concrete type => must specialize
[01aeade]75 return true;
76 } // if
77 } // for
[b226721]78 // none of the type variables are bound
[01aeade]79 return false;
80 } else {
[b226721]81 // no env
[01aeade]82 return false;
83 } // if
84 }
85
[dc0557d]86 /// True if both types have the same structure, but not necessarily the same types.
87 /// That is, either both types are tuple types with the same size (recursively), or
88 /// both are not tuple types.
89 bool matchingTupleStructure( Type * t1, Type * t2 ) {
90 TupleType * tuple1 = dynamic_cast< TupleType * >( t1 );
91 TupleType * tuple2 = dynamic_cast< TupleType * >( t2 );
92 if ( tuple1 && tuple2 ) {
93 if ( tuple1->size() != tuple2->size() ) return false;
94 for ( auto types : group_iterate( tuple1->get_types(), tuple2->get_types() ) ) {
95 if ( ! matchingTupleStructure( std::get<0>( types ), std::get<1>( types ) ) ) return false;
96 }
97 return true;
98 } else if ( ! tuple1 && ! tuple2 ) return true;
99 return false;
100 }
101
[ae4038d]102 // walk into tuple type and find the number of components
103 size_t singleParameterSize( Type * type ) {
104 if ( TupleType * tt = dynamic_cast< TupleType * >( type ) ) {
105 size_t sz = 0;
106 for ( Type * t : *tt ) {
107 sz += singleParameterSize( t );
108 }
109 return sz;
110 } else {
111 return 1;
112 }
113 }
114
115 // find the total number of components in a parameter list
116 size_t functionParameterSize( FunctionType * ftype ) {
117 size_t sz = 0;
118 for ( DeclarationWithType * p : ftype->get_parameters() ) {
119 sz += singleParameterSize( p->get_type() );
120 }
121 return sz;
122 }
123
[d7dc824]124 bool needsTupleSpecialization( Type *formalType, Type *actualType ) {
[dc0557d]125 // Needs tuple specialization if the structure of the formal type and actual type do not match.
126 // This is the case if the formal type has ttype polymorphism, or if the structure of tuple types
127 // between the function do not match exactly.
128 if ( FunctionType * fftype = getFunctionType( formalType ) ) {
129 if ( fftype->isTtype() ) return true;
[969ee0df]130 // conversion of 0 (null) to function type does not require tuple specialization
131 if ( dynamic_cast< ZeroType * >( actualType ) ) return false;
[1744e6d]132 FunctionType * aftype = getFunctionType( actualType->stripReferences() );
133 assertf( aftype, "formal type is a function type, but actual type is not: %s", toString( actualType ).c_str() );
[ae4038d]134 // Can't tuple specialize if parameter sizes deeply-differ.
135 if ( functionParameterSize( fftype ) != functionParameterSize( aftype ) ) return false;
136 // tuple-parameter sizes are the same, but actual parameter sizes differ - must tuple specialize
[bb666f64]137 if ( fftype->parameters.size() != aftype->parameters.size() ) return true;
[ae4038d]138 // total parameter size can be the same, while individual parameters can have different structure
[bb666f64]139 for ( auto params : group_iterate( fftype->parameters, aftype->parameters ) ) {
[dc0557d]140 DeclarationWithType * formal = std::get<0>(params);
141 DeclarationWithType * actual = std::get<1>(params);
142 if ( ! matchingTupleStructure( formal->get_type(), actual->get_type() ) ) return true;
143 }
[f3b0a07]144 }
145 return false;
146 }
[698664b3]147
[02fdb8e]148 bool needsSpecialization( Type *formalType, Type *actualType, const TypeSubstitution *env ) {
[d7dc824]149 return needsPolySpecialization( formalType, actualType, env ) || needsTupleSpecialization( formalType, actualType );
[698664b3]150 }
[f1e012b]151
[f3b0a07]152 Expression * Specialize::doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ) {
[d29fa5f]153 assertf( actual->result, "attempting to specialize an untyped expression" );
[906e24d]154 if ( needsSpecialization( formalType, actual->get_result(), env ) ) {
[6c3a988f]155 if ( FunctionType *funType = getFunctionType( formalType ) ) {
[bb666f64]156 if ( ApplicationExpr * appExpr = dynamic_cast<ApplicationExpr*>( actual ) ) {
[698664b3]157 return createThunkFunction( funType, appExpr->get_function(), inferParams );
[bb666f64]158 } else if ( VariableExpr * varExpr = dynamic_cast<VariableExpr*>( actual ) ) {
[698664b3]159 return createThunkFunction( funType, varExpr, inferParams );
[01aeade]160 } else {
[698664b3]161 // This likely won't work, as anything that could build an ApplicationExpr probably hit one of the previous two branches
162 return createThunkFunction( funType, actual, inferParams );
163 }
[01aeade]164 } else {
165 return actual;
166 } // if
167 } else {
168 return actual;
169 } // if
170 }
171
[dc0557d]172 /// restructures the arguments to match the structure of the formal parameters of the actual function.
173 /// [begin, end) are the exploded arguments.
174 template< typename Iterator, typename OutIterator >
175 void structureArg( Type * type, Iterator & begin, Iterator end, OutIterator out ) {
176 if ( TupleType * tuple = dynamic_cast< TupleType * >( type ) ) {
[64eae56]177 std::list< Expression * > exprs;
[dc0557d]178 for ( Type * t : *tuple ) {
179 structureArg( t, begin, end, back_inserter( exprs ) );
[64eae56]180 }
181 *out++ = new TupleExpr( exprs );
182 } else {
[dc0557d]183 assertf( begin != end, "reached the end of the arguments while structuring" );
184 *out++ = *begin++;
[64eae56]185 }
186 }
187
[dc0557d]188 /// explode assuming simple cases: either type is pure tuple (but not tuple expr) or type is non-tuple.
189 template< typename OutputIterator >
190 void explodeSimple( Expression * expr, OutputIterator out ) {
191 if ( TupleType * tupleType = dynamic_cast< TupleType * > ( expr->get_result() ) ) {
192 // tuple type, recursively index into its components
193 for ( unsigned int i = 0; i < tupleType->size(); i++ ) {
194 explodeSimple( new TupleIndexExpr( expr->clone(), i ), out );
[f3b0a07]195 }
[dc0557d]196 delete expr;
197 } else {
198 // non-tuple type - output a clone of the expression
199 *out++ = expr;
[626dbc10]200 }
201 }
202
[f3b0a07]203 /// Generates a thunk that calls `actual` with type `funType` and returns its address
204 Expression * Specialize::createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) {
205 static UniqueName thunkNamer( "_thunk" );
[626dbc10]206
207 FunctionType *newType = funType->clone();
208 if ( env ) {
209 // it is important to replace only occurrences of type variables that occur free in the
210 // thunk's type
[6c3a988f]211 env->applyFree( newType );
[626dbc10]212 } // if
213 // create new thunk with same signature as formal type (C linkage, empty body)
[ba3706f]214 FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), Type::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt() );
[626dbc10]215 thunkFunc->fixUniqueId();
216
217 // thunks may be generated and not used - silence warning with attribute
218 thunkFunc->get_attributes().push_back( new Attribute( "unused" ) );
219
220 // thread thunk parameters into call to actual function, naming thunk parameters as we go
221 UniqueName paramNamer( paramPrefix );
222 ApplicationExpr *appExpr = new ApplicationExpr( actual );
223
[6c3a988f]224 FunctionType * actualType = getFunctionType( actual->get_result() )->clone();
225 if ( env ) {
226 // need to apply the environment to the actual function's type, since it may itself be polymorphic
227 env->apply( actualType );
228 }
229 std::unique_ptr< FunctionType > actualTypeManager( actualType ); // for RAII
[4c8621ac]230 std::list< DeclarationWithType * >::iterator actualBegin = actualType->get_parameters().begin();
231 std::list< DeclarationWithType * >::iterator actualEnd = actualType->get_parameters().end();
[626dbc10]232
[dc0557d]233 std::list< Expression * > args;
[626dbc10]234 for ( DeclarationWithType* param : thunkFunc->get_functionType()->get_parameters() ) {
[dc0557d]235 // name each thunk parameter and explode it - these are then threaded back into the actual function call.
[626dbc10]236 param->set_name( paramNamer.newName() );
[dc0557d]237 explodeSimple( new VariableExpr( param ), back_inserter( args ) );
238 }
239
240 // walk parameters to the actual function alongside the exploded thunk parameters and restructure the arguments to match the actual parameters.
241 std::list< Expression * >::iterator argBegin = args.begin(), argEnd = args.end();
242 for ( ; actualBegin != actualEnd; ++actualBegin ) {
243 structureArg( (*actualBegin)->get_type(), argBegin, argEnd, back_inserter( appExpr->get_args() ) );
244 }
[4c8621ac]245
[2ec65ad]246 appExpr->env = TypeSubstitution::newFromExpr( appExpr, env );
[626dbc10]247 if ( inferParams ) {
[0b00df0]248 appExpr->inferParams = *inferParams;
[626dbc10]249 } // if
250
[d5baf0c]251 // Handle any specializations that may still be present.
252 {
253 std::string oldParamPrefix = paramPrefix;
254 paramPrefix += "p";
255 std::list< Declaration * > oldDecls;
256 oldDecls.splice( oldDecls.end(), declsToAddBefore );
257
258 appExpr->acceptMutator( *visitor );
259 // Write recursive specializations into the thunk body.
260 for ( Declaration * decl : declsToAddBefore ) {
261 thunkFunc->statements->kids.push_back( new DeclStmt( decl ) );
262 }
263
264 declsToAddBefore = std::move( oldDecls );
265 paramPrefix = oldParamPrefix;
266 }
[626dbc10]267
268 // add return (or valueless expression) to the thunk
269 Statement *appStmt;
[cf90b88]270 if ( funType->returnVals.empty() ) {
[ba3706f]271 appStmt = new ExprStmt( appExpr );
[626dbc10]272 } else {
[ba3706f]273 appStmt = new ReturnStmt( appExpr );
[626dbc10]274 } // if
[cf90b88]275 thunkFunc->statements->kids.push_back( appStmt );
[626dbc10]276
[d5baf0c]277 // Add the thunk definition (converted to DeclStmt if appproprate).
278 declsToAddBefore.push_back( thunkFunc );
[626dbc10]279 // return address of thunk function as replacement expression
280 return new AddressExpr( new VariableExpr( thunkFunc ) );
281 }
282
[01aeade]283 void Specialize::handleExplicitParams( ApplicationExpr *appExpr ) {
284 // create thunks for the explicit parameters
[cf90b88]285 assert( appExpr->function->result );
286 FunctionType *function = getFunctionType( appExpr->function->result );
[698664b3]287 assert( function );
[01aeade]288 std::list< DeclarationWithType* >::iterator formal;
289 std::list< Expression* >::iterator actual;
290 for ( formal = function->get_parameters().begin(), actual = appExpr->get_args().begin(); formal != function->get_parameters().end() && actual != appExpr->get_args().end(); ++formal, ++actual ) {
[0b00df0]291 *actual = doSpecialization( (*formal)->get_type(), *actual, &appExpr->inferParams );
[01aeade]292 }
293 }
294
[cf90b88]295 Expression * Specialize::postmutate( ApplicationExpr *appExpr ) {
[aedfd91]296 if ( ! InitTweak::isIntrinsicCallExpr( appExpr ) ) {
297 // create thunks for the inferred parameters
298 // don't need to do this for intrinsic calls, because they aren't actually passed
[f3b0a07]299 // need to handle explicit params before inferred params so that explicit params do not recieve a changed set of inferParams (and change them again)
300 // alternatively, if order starts to matter then copy appExpr's inferParams and pass them to handleExplicitParams.
301 handleExplicitParams( appExpr );
[0b00df0]302 for ( InferredParams::iterator inferParam = appExpr->inferParams.begin(); inferParam != appExpr->inferParams.end(); ++inferParam ) {
303 inferParam->second.expr = doSpecialization( inferParam->second.formalType, inferParam->second.expr, &inferParam->second.expr->inferParams );
[aedfd91]304 }
305 }
[01aeade]306 return appExpr;
307 }
308
[cf90b88]309 Expression * Specialize::postmutate( CastExpr *castExpr ) {
310 if ( castExpr->result->isVoid() ) {
[803deb1]311 // can't specialize if we don't have a return value
312 return castExpr;
313 }
[bb666f64]314 Expression *specialized = doSpecialization( castExpr->result, castExpr->arg, &castExpr->inferParams );
[cf90b88]315 if ( specialized != castExpr->arg ) {
[698664b3]316 // assume here that the specialization incorporates the cast
317 return specialized;
318 } else {
319 return castExpr;
320 }
[01aeade]321 }
322
[626dbc10]323 void convertSpecializations( std::list< Declaration* >& translationUnit ) {
[cf90b88]324 PassVisitor<Specialize> spec;
[626dbc10]325 mutateAll( translationUnit, spec );
326 }
[51b73452]327} // namespace GenPoly
[01aeade]328
[51587aa]329// Local Variables: //
330// tab-width: 4 //
331// mode: c++ //
332// compile-command: "make install" //
333// End: //
Note: See TracBrowser for help on using the repository browser.