source: src/GenPoly/Box.cpp@ f5212ca

Last change on this file since f5212ca was d06273c, checked in by Andrew Beach <ajbeach@…>, 19 months ago

Used structural binding to shorten some loop setup. The generally useful clean-up I did while trying to get layout call hoisting working.

  • Property mode set to 100644
File size: 81.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cpp -- Implement polymorphic function calls and types.
8//
9// Author : Andrew Beach
10// Created On : Thr Oct 6 13:39:00 2022
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Dec 14 17:42:17 2023
13// Update Count : 7
14//
15
16#include "Box.h"
17
18#include "AST/Decl.hpp" // for Decl, FunctionDecl, ...
19#include "AST/Expr.hpp" // for AlignofExpr, ConstantExpr, ...
20#include "AST/Init.hpp" // for Init, SingleInit
21#include "AST/Inspect.hpp" // for getFunctionName
22#include "AST/Pass.hpp" // for Pass, WithDeclsToAdd, ...
23#include "AST/Stmt.hpp" // for CompoundStmt, ExprStmt, ...
24#include "AST/Vector.hpp" // for vector
25#include "AST/GenericSubstitution.hpp" // for genericSubstitution
26#include "CodeGen/OperatorTable.h" // for isAssignment
27#include "Common/Iterate.hpp" // for group_iterate
28#include "Common/ScopedMap.h" // for ScopedMap
29#include "Common/ToString.hpp" // for toCString
30#include "Common/UniqueName.h" // for UniqueName
31#include "GenPoly/FindFunction.h" // for findFunction
32#include "GenPoly/GenPoly.h" // for getFunctionType, ...
33#include "GenPoly/Lvalue.h" // for generalizedLvalue
34#include "GenPoly/ScopedSet.h" // for ScopedSet
35#include "GenPoly/ScrubTypeVars.hpp" // for scrubTypeVars, scrubAllTypeVars
36#include "ResolvExpr/Unify.h" // for typesCompatible
37#include "SymTab/Mangler.h" // for mangle, mangleType
38
39namespace GenPoly {
40
41namespace {
42
43/// The layout type is used to represent sizes, alignments and offsets.
44ast::BasicType * makeLayoutType() {
45 return new ast::BasicType( ast::BasicType::LongUnsignedInt );
46}
47
48/// Fixed version of layout type (just adding a 'C' in C++ style).
49ast::BasicType * makeLayoutCType() {
50 return new ast::BasicType( ast::BasicType::LongUnsignedInt,
51 ast::CV::Qualifiers( ast::CV::Const ) );
52}
53
54// --------------------------------------------------------------------------
55/// Adds layout-generation functions to polymorphic types.
56struct LayoutFunctionBuilder final :
57 public ast::WithDeclsToAdd<>,
58 public ast::WithShortCircuiting,
59 public ast::WithVisitorRef<LayoutFunctionBuilder> {
60 void previsit( ast::StructDecl const * decl );
61 void previsit( ast::UnionDecl const * decl );
62};
63
64/// Get all sized type declarations; those that affect a layout function.
65ast::vector<ast::TypeDecl> takeSizedParams(
66 ast::vector<ast::TypeDecl> const & decls ) {
67 ast::vector<ast::TypeDecl> sizedParams;
68 for ( ast::ptr<ast::TypeDecl> const & decl : decls ) {
69 if ( decl->isComplete() ) {
70 sizedParams.emplace_back( decl );
71 }
72 }
73 return sizedParams;
74}
75
76/// Adds parameters for otype size and alignment to a function type.
77void addSTypeParams(
78 ast::vector<ast::DeclWithType> & params,
79 ast::vector<ast::TypeDecl> const & sizedParams ) {
80 for ( ast::ptr<ast::TypeDecl> const & sizedParam : sizedParams ) {
81 ast::TypeInstType inst( sizedParam );
82 std::string paramName = Mangle::mangleType( &inst );
83 params.emplace_back( new ast::ObjectDecl(
84 sizedParam->location,
85 sizeofName( paramName ),
86 makeLayoutCType()
87 ) );
88 params.emplace_back( new ast::ObjectDecl(
89 sizedParam->location,
90 alignofName( paramName ),
91 makeLayoutCType()
92 ) );
93 }
94}
95
96ast::Type * makeLayoutOutType() {
97 return new ast::PointerType( makeLayoutType() );
98}
99
100struct LayoutData {
101 ast::FunctionDecl * function;
102 ast::ObjectDecl * sizeofParam;
103 ast::ObjectDecl * alignofParam;
104 ast::ObjectDecl * offsetofParam;
105};
106
107LayoutData buildLayoutFunction(
108 CodeLocation const & location, ast::AggregateDecl const * aggr,
109 ast::vector<ast::TypeDecl> const & sizedParams,
110 bool isInFunction, bool isStruct ) {
111 ast::ObjectDecl * sizeParam = new ast::ObjectDecl(
112 location,
113 sizeofName( aggr->name ),
114 makeLayoutOutType()
115 );
116 ast::ObjectDecl * alignParam = new ast::ObjectDecl(
117 location,
118 alignofName( aggr->name ),
119 makeLayoutOutType()
120 );
121 ast::ObjectDecl * offsetParam = nullptr;
122 ast::vector<ast::DeclWithType> params = { sizeParam, alignParam };
123 if ( isStruct ) {
124 offsetParam = new ast::ObjectDecl(
125 location,
126 offsetofName( aggr->name ),
127 makeLayoutOutType()
128 );
129 params.push_back( offsetParam );
130 }
131 addSTypeParams( params, sizedParams );
132
133 // Routines at global scope marked "static" to prevent multiple
134 // definitions is separate translation units because each unit generates
135 // copies of the default routines for each aggregate.
136 ast::FunctionDecl * layoutDecl = new ast::FunctionDecl(
137 location,
138 layoutofName( aggr ),
139 {}, // forall
140 {}, // assertions
141 std::move( params ),
142 {}, // returns
143 new ast::CompoundStmt( location ),
144 isInFunction ? ast::Storage::Classes() : ast::Storage::Static,
145 ast::Linkage::AutoGen,
146 {}, // attrs
147 ast::Function::Inline,
148 ast::FixedArgs
149 );
150 layoutDecl->fixUniqueId();
151 return LayoutData{ layoutDecl, sizeParam, alignParam, offsetParam };
152}
153
154/// Makes a binary operation.
155ast::Expr * makeOp( CodeLocation const & location, std::string const & name,
156 ast::Expr const * lhs, ast::Expr const * rhs ) {
157 return new ast::UntypedExpr( location,
158 new ast::NameExpr( location, name ), { lhs, rhs } );
159}
160
161/// Make a binary operation and wrap it in a statement.
162ast::Stmt * makeOpStmt( CodeLocation const & location, std::string const & name,
163 ast::Expr const * lhs, ast::Expr const * rhs ) {
164 return new ast::ExprStmt( location, makeOp( location, name, lhs, rhs ) );
165}
166
167/// Returns the dereference of a local pointer variable.
168ast::Expr * derefVar(
169 CodeLocation const & location, ast::ObjectDecl const * var ) {
170 return ast::UntypedExpr::createDeref( location,
171 new ast::VariableExpr( location, var ) );
172}
173
174/// Makes an if-statement with a single-expression then and no else.
175ast::Stmt * makeCond( CodeLocation const & location,
176 ast::Expr const * cond, ast::Expr const * thenPart ) {
177 return new ast::IfStmt( location,
178 cond, new ast::ExprStmt( location, thenPart ), nullptr );
179}
180
181/// Makes a statement that aligns lhs to rhs (rhs should be an integer
182/// power of two).
183ast::Stmt * makeAlignTo( CodeLocation const & location,
184 ast::Expr const * lhs, ast::Expr const * rhs ) {
185 // Check that the lhs is zeroed out to the level of rhs.
186 ast::Expr * ifCond = makeOp( location, "?&?", lhs,
187 makeOp( location, "?-?", rhs,
188 ast::ConstantExpr::from_ulong( location, 1 ) ) );
189 // If not aligned, increment to alignment.
190 ast::Expr * ifExpr = makeOp( location, "?+=?", ast::deepCopy( lhs ),
191 makeOp( location, "?-?", ast::deepCopy( rhs ),
192 ast::deepCopy( ifCond ) ) );
193 return makeCond( location, ifCond, ifExpr );
194}
195
196/// Makes a statement that assigns rhs to lhs if lhs < rhs.
197ast::Stmt * makeAssignMax( CodeLocation const & location,
198 ast::Expr const * lhs, ast::Expr const * rhs ) {
199 return makeCond( location,
200 makeOp( location, "?<?", ast::deepCopy( lhs ), ast::deepCopy( rhs ) ),
201 makeOp( location, "?=?", lhs, rhs ) );
202}
203
204void LayoutFunctionBuilder::previsit( ast::StructDecl const * decl ) {
205 // Do not generate layout function for empty tag structures.
206 visit_children = false;
207 if ( decl->members.empty() ) return;
208
209 // Get parameters that can change layout, exiting early if none.
210 ast::vector<ast::TypeDecl> sizedParams =
211 takeSizedParams( decl->params );
212 if ( sizedParams.empty() ) return;
213
214 CodeLocation const & location = decl->location;
215
216 // Build layout function signature.
217 LayoutData layout = buildLayoutFunction(
218 location, decl, sizedParams, isInFunction(), true );
219 ast::FunctionDecl * layoutDecl = layout.function;
220 // Also return these or extract them from the parameter list?
221 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
222 ast::ObjectDecl const * alignofParam = layout.alignofParam;
223 ast::ObjectDecl const * offsetofParam = layout.offsetofParam;
224 assert( nullptr != layout.offsetofParam );
225
226 // Calculate structure layout in function body.
227 // Initialize size and alignment to 0 and 1
228 // (Will have at least one member to update size).
229 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
230 kids.emplace_back( makeOpStmt( location, "?=?",
231 derefVar( location, sizeofParam ),
232 ast::ConstantExpr::from_ulong( location, 0 )
233 ) );
234 kids.emplace_back( makeOpStmt( location, "?=?",
235 derefVar( location, alignofParam ),
236 ast::ConstantExpr::from_ulong( location, 1 )
237 ) );
238 // TODO: Polymorphic types will be out of the struct declaration scope.
239 // This breaks invariants until it is corrected later.
240 for ( auto const & member : enumerate( decl->members ) ) {
241 auto dwt = member.val.strict_as<ast::DeclWithType>();
242 ast::Type const * memberType = dwt->get_type();
243
244 if ( 0 < member.idx ) {
245 // Make sure all later members have padding to align them.
246 kids.emplace_back( makeAlignTo( location,
247 derefVar( location, sizeofParam ),
248 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
249 ) );
250 }
251
252 // Place current size in the current offset index.
253 kids.emplace_back( makeOpStmt( location, "?=?",
254 makeOp( location, "?[?]",
255 new ast::VariableExpr( location, offsetofParam ),
256 ast::ConstantExpr::from_ulong( location, member.idx ) ),
257 derefVar( location, sizeofParam ) ) );
258
259 // Add member size to current size.
260 kids.emplace_back( makeOpStmt( location, "?+=?",
261 derefVar( location, sizeofParam ),
262 new ast::SizeofExpr( location, ast::deepCopy( memberType ) ) ) );
263
264 // Take max of member alignment and global alignment.
265 // (As align is always 2^n, this will always be a multiple of both.)
266 kids.emplace_back( makeAssignMax( location,
267 derefVar( location, alignofParam ),
268 new ast::AlignofExpr( location, ast::deepCopy( memberType ) ) ) );
269 }
270 // Make sure the type is end-padded to a multiple of its alignment.
271 kids.emplace_back( makeAlignTo( location,
272 derefVar( location, sizeofParam ),
273 derefVar( location, alignofParam ) ) );
274
275 declsToAddAfter.emplace_back( layoutDecl );
276}
277
278void LayoutFunctionBuilder::previsit( ast::UnionDecl const * decl ) {
279 visit_children = false;
280 // Do not generate layout function for empty tag unions.
281 if ( decl->members.empty() ) return;
282
283 // Get parameters that can change layout, exiting early if none.
284 ast::vector<ast::TypeDecl> sizedParams =
285 takeSizedParams( decl->params );
286 if ( sizedParams.empty() ) return;
287
288 CodeLocation const & location = decl->location;
289
290 // Build layout function signature.
291 LayoutData layout = buildLayoutFunction(
292 location, decl, sizedParams, isInFunction(), false );
293 ast::FunctionDecl * layoutDecl = layout.function;
294 // Also return these or extract them from the parameter list?
295 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
296 ast::ObjectDecl const * alignofParam = layout.alignofParam;
297 assert( nullptr == layout.offsetofParam );
298
299 // Calculate union layout in function body.
300 // Both are simply the maximum for union (actually align is always the
301 // LCM, but with powers of two that is also the maximum).
302 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
303 kids.emplace_back( makeOpStmt( location,
304 "?=?", derefVar( location, sizeofParam ),
305 ast::ConstantExpr::from_ulong( location, 1 )
306 ) );
307 kids.emplace_back( makeOpStmt( location,
308 "?=?", derefVar( location, alignofParam ),
309 ast::ConstantExpr::from_ulong( location, 1 )
310 ) );
311 // TODO: Polymorphic types will be out of the union declaration scope.
312 // This breaks invariants until it is corrected later.
313 for ( auto const & member : decl->members ) {
314 auto dwt = member.strict_as<ast::DeclWithType>();
315 ast::Type const * memberType = dwt->get_type();
316
317 // Take max member size and global size.
318 kids.emplace_back( makeAssignMax( location,
319 derefVar( location, sizeofParam ),
320 new ast::SizeofExpr( location, ast::deepCopy( memberType ) )
321 ) );
322
323 // Take max of member alignment and global alignment.
324 kids.emplace_back( makeAssignMax( location,
325 derefVar( location, alignofParam ),
326 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
327 ) );
328 }
329 kids.emplace_back( makeAlignTo( location,
330 derefVar( location, sizeofParam ),
331 derefVar( location, alignofParam ) ) );
332
333 declsToAddAfter.emplace_back( layoutDecl );
334}
335
336// --------------------------------------------------------------------------
337/// Application expression transformer.
338/// * Replaces polymorphic return types with out-parameters.
339/// * Replaces call to polymorphic functions with adapter calls which handles
340/// dynamic arguments and return values.
341/// * Adds appropriate type variables to the function calls.
342struct CallAdapter final :
343 public ast::WithConstTypeSubstitution,
344 public ast::WithGuards,
345 public ast::WithShortCircuiting,
346 public ast::WithStmtsToAdd<>,
347 public ast::WithVisitorRef<CallAdapter> {
348 CallAdapter();
349
350 void previsit( ast::Decl const * decl );
351 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
352 void previsit( ast::TypeDecl const * decl );
353 void previsit( ast::CommaExpr const * expr );
354 ast::Expr const * postvisit( ast::ApplicationExpr const * expr );
355 ast::Expr const * postvisit( ast::UntypedExpr const * expr );
356 void previsit( ast::AddressExpr const * expr );
357 ast::Expr const * postvisit( ast::AddressExpr const * expr );
358 ast::ReturnStmt const * previsit( ast::ReturnStmt const * stmt );
359
360 void beginScope();
361 void endScope();
362private:
363 // Many helpers here use a mutable ApplicationExpr as an in/out parameter
364 // instead of using the return value, to save on mutates and free up the
365 // return value.
366
367 /// Passes extra layout arguments for sized polymorphic type parameters.
368 void passTypeVars(
369 ast::ApplicationExpr * expr,
370 ast::vector<ast::Expr> & extraArgs,
371 ast::FunctionType const * funcType );
372 /// Wraps a function application with a new temporary for the
373 /// out-parameter return value.
374 ast::Expr const * addRetParam(
375 ast::ApplicationExpr * expr, ast::Type const * retType );
376 /// Wraps a function application returning a polymorphic type with a new
377 /// temporary for the out-parameter return value.
378 ast::Expr const * addDynRetParam(
379 ast::ApplicationExpr * expr, ast::Type const * polyType );
380 /// Modify a call so it passes the function through the correct adapter.
381 ast::Expr const * applyAdapter(
382 ast::ApplicationExpr * expr,
383 ast::FunctionType const * function );
384 /// Convert a single argument into its boxed form to pass the parameter.
385 void boxParam( ast::ptr<ast::Expr> & arg,
386 ast::Type const * formal, TypeVarMap const & exprTyVars );
387 /// Box every argument from arg forward, matching the functionType
388 /// parameter list. arg should point into expr's argument list.
389 void boxParams(
390 ast::ApplicationExpr * expr,
391 ast::Type const * polyRetType,
392 ast::FunctionType const * function,
393 const TypeVarMap & typeVars );
394 /// Adds the inferred parameters derived from the assertions of the
395 /// expression to the call.
396 void addInferredParams(
397 ast::ApplicationExpr * expr,
398 ast::vector<ast::Expr> & extraArgs,
399 ast::FunctionType const * functionType,
400 const TypeVarMap & typeVars );
401 /// Stores assignment operators from assertion list in
402 /// local map of assignment operations.
403 void passAdapters(
404 ast::ApplicationExpr * expr,
405 ast::FunctionType const * type,
406 const TypeVarMap & typeVars );
407 /// Create an adapter function based on the type of the adaptee and the
408 /// real type with the type substitutions applied.
409 ast::FunctionDecl * makeAdapter(
410 ast::FunctionType const * adaptee,
411 ast::FunctionType const * realType,
412 std::string const & mangleName,
413 TypeVarMap const & typeVars,
414 CodeLocation const & location ) const;
415 /// Replaces intrinsic operator functions with their arithmetic desugaring.
416 ast::Expr const * handleIntrinsics( ast::ApplicationExpr const * );
417 /// Inserts a new temporary variable into the current scope with an
418 /// auto-generated name.
419 ast::ObjectDecl * makeTemporary(
420 CodeLocation const & location, ast::Type const * type );
421
422 TypeVarMap scopeTypeVars;
423 ScopedMap< std::string, ast::DeclWithType const * > adapters;
424 std::map< ast::ApplicationExpr const *, ast::Expr const * > retVals;
425 ast::DeclWithType const * retval;
426 UniqueName tmpNamer;
427};
428
429/// Replaces a polymorphic type with its concrete equivalant under the
430/// current environment (returns itself if concrete).
431/// If `doClone` is set to false, will not clone interior types
432ast::Type const * replaceWithConcrete(
433 ast::Type const * type,
434 ast::TypeSubstitution const & typeSubs,
435 bool doCopy = true );
436
437/// Replaces all the type parameters of a generic type with their
438/// concrete equivalents under the current environment.
439void replaceParametersWithConcrete(
440 ast::vector<ast::Expr> & params,
441 ast::TypeSubstitution const & typeSubs ) {
442 for ( ast::ptr<ast::Expr> & paramExpr : params ) {
443 ast::TypeExpr const * param = paramExpr.as<ast::TypeExpr>();
444 assertf( param, "Aggregate parameters should be type expressions." );
445 paramExpr = ast::mutate_field( param, &ast::TypeExpr::type,
446 replaceWithConcrete( param->type.get(), typeSubs, false ) );
447 }
448}
449
450ast::Type const * replaceWithConcrete(
451 ast::Type const * type,
452 ast::TypeSubstitution const & typeSubs,
453 bool doCopy ) {
454 if ( auto instType = dynamic_cast<ast::TypeInstType const *>( type ) ) {
455 ast::Type const * concrete = typeSubs.lookup( instType );
456 return ( nullptr != concrete ) ? concrete : instType;
457 } else if ( auto structType =
458 dynamic_cast<ast::StructInstType const *>( type ) ) {
459 ast::StructInstType * newType =
460 doCopy ? ast::deepCopy( structType ) : ast::mutate( structType );
461 replaceParametersWithConcrete( newType->params, typeSubs );
462 return newType;
463 } else if ( auto unionType =
464 dynamic_cast<ast::UnionInstType const *>( type ) ) {
465 ast::UnionInstType * newType =
466 doCopy ? ast::deepCopy( unionType ) : ast::mutate( unionType );
467 replaceParametersWithConcrete( newType->params, typeSubs );
468 return newType;
469 } else {
470 return type;
471 }
472}
473
474std::string makePolyMonoSuffix(
475 ast::FunctionType const * function,
476 TypeVarMap const & typeVars ) {
477 // If the return type or a parameter type involved polymorphic types,
478 // then the adapter will need to take those polymorphic types as pointers.
479 // Therefore, there can be two different functions with the same mangled
480 // name, so we need to further mangle the names.
481 std::stringstream name;
482 for ( auto ret : function->returns ) {
483 name << ( isPolyType( ret, typeVars ) ? 'P' : 'M' );
484 }
485 name << '_';
486 for ( auto arg : function->params ) {
487 name << ( isPolyType( arg, typeVars ) ? 'P' : 'M' );
488 }
489 return name.str();
490}
491
492std::string mangleAdapterName(
493 ast::FunctionType const * function,
494 TypeVarMap const & typeVars ) {
495 return Mangle::mangle( function, {} )
496 + makePolyMonoSuffix( function, typeVars );
497}
498
499std::string makeAdapterName( std::string const & mangleName ) {
500 return "_adapter" + mangleName;
501}
502
503void makeRetParam( ast::FunctionType * type ) {
504 ast::ptr<ast::Type> & retParam = type->returns.front();
505
506 // Make a new parameter that is a pointer to the type of the old return value.
507 retParam = new ast::PointerType( retParam.get() );
508 type->params.emplace( type->params.begin(), retParam );
509
510 // We don't need the return value any more.
511 type->returns.clear();
512}
513
514ast::FunctionType * makeAdapterType(
515 ast::FunctionType const * adaptee,
516 TypeVarMap const & typeVars ) {
517 ast::FunctionType * adapter = ast::deepCopy( adaptee );
518 if ( isDynRet( adapter, typeVars ) ) {
519 makeRetParam( adapter );
520 }
521 adapter->params.emplace( adapter->params.begin(),
522 new ast::PointerType( new ast::FunctionType( ast::VariableArgs ) )
523 );
524 return adapter;
525}
526
527CallAdapter::CallAdapter() : tmpNamer( "_temp" ) {}
528
529void CallAdapter::previsit( ast::Decl const * ) {
530 // Prevent type declaration information from leaking out.
531 GuardScope( scopeTypeVars );
532}
533
534ast::FunctionDecl const * CallAdapter::previsit( ast::FunctionDecl const * decl ) {
535 // Prevent type declaration information from leaking out.
536 GuardScope( scopeTypeVars );
537
538 if ( nullptr == decl->stmts ) {
539 return decl;
540 }
541
542 GuardValue( retval );
543
544 // Process polymorphic return value.
545 retval = nullptr;
546 ast::FunctionType const * type = decl->type;
547 if ( isDynRet( type ) && decl->linkage != ast::Linkage::C ) {
548 retval = decl->returns.front();
549
550 // Give names to unnamed return values.
551 if ( "" == retval->name ) {
552 auto mutRet = ast::mutate( retval );
553 mutRet->name = "_retparam";
554 mutRet->linkage = ast::Linkage::C;
555 retval = mutRet;
556 decl = ast::mutate_field_index( decl,
557 &ast::FunctionDecl::returns, 0, mutRet );
558 }
559 }
560
561 // The formal_usage/expr_id values may be off if we get them from the
562 // type, trying the declaration instead.
563 makeTypeVarMap( type, scopeTypeVars );
564
565 // Get all needed adapters from the call. We will forward them.
566 ast::vector<ast::FunctionType> functions;
567 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
568 auto atype = assertion->result.get();
569 findFunction( atype, functions, scopeTypeVars, needsAdapter );
570 }
571
572 for ( ast::ptr<ast::Type> const & arg : type->params ) {
573 findFunction( arg, functions, scopeTypeVars, needsAdapter );
574 }
575
576 for ( auto funcType : functions ) {
577 std::string mangleName = mangleAdapterName( funcType, scopeTypeVars );
578 if ( adapters.contains( mangleName ) ) continue;
579 std::string adapterName = makeAdapterName( mangleName );
580 // NODE: This creates floating nodes, breaking invariants.
581 // This is corrected in the RewireAdapters sub-pass.
582 adapters.insert(
583 mangleName,
584 new ast::ObjectDecl(
585 decl->location,
586 adapterName,
587 new ast::PointerType(
588 makeAdapterType( funcType, scopeTypeVars ) ),
589 nullptr, // init
590 ast::Storage::Classes(),
591 ast::Linkage::C
592 )
593 );
594 }
595
596 return decl;
597}
598
599void CallAdapter::previsit( ast::TypeDecl const * decl ) {
600 addToTypeVarMap( decl, scopeTypeVars );
601}
602
603void CallAdapter::previsit( ast::CommaExpr const * expr ) {
604 // Attempting to find application expressions that were mutated by the
605 // copy constructor passes to use an explicit return variable, so that
606 // the variable can be reused as a parameter to the call rather than
607 // creating a new temporary variable. Previously this step was an
608 // optimization, but with the introduction of tuples and UniqueExprs,
609 // it is necessary to ensure that they use the same variable.
610 // Essentially, looking for pattern:
611 // (x=f(...), x)
612 // To compound the issue, the right side can be *x, etc.
613 // because of lvalue-returning functions
614 if ( auto assign = expr->arg1.as<ast::UntypedExpr>() ) {
615 if ( CodeGen::isAssignment( ast::getFunctionName( assign ) ) ) {
616 assert( 2 == assign->args.size() );
617 if ( auto app = assign->args.back().as<ast::ApplicationExpr>() ) {
618 // First argument is assignable, so it must be an lvalue,
619 // so it should be legal to takes its address.
620 retVals.insert_or_assign( app, assign->args.front() );
621 }
622 }
623 }
624}
625
626ast::Expr const * CallAdapter::postvisit( ast::ApplicationExpr const * expr ) {
627 assert( expr->func->result );
628 ast::FunctionType const * function = getFunctionType( expr->func->result );
629 assertf( function, "ApplicationExpr has non-function type %s",
630 toCString( expr->func->result ) );
631
632 if ( auto newExpr = handleIntrinsics( expr ) ) {
633 return newExpr;
634 }
635
636 ast::ApplicationExpr * mutExpr = ast::mutate( expr );
637 ast::Expr const * ret = expr;
638
639 TypeVarMap exprTypeVars;
640 makeTypeVarMap( function, exprTypeVars );
641 auto dynRetType = isDynRet( function, exprTypeVars );
642
643 // NOTE: addDynRetParam needs to know the actual (generated) return type
644 // so it can make a temporary variable, so pass the result type form the
645 // `expr` `passTypeVars` needs to know the program-text return type ([ex]
646 // the distinction between _conc_T30 and T3(int)) concRetType may not be
647 // a good name in one or both of these places.
648 if ( dynRetType ) {
649 ast::Type const * result = mutExpr->result;
650 ast::Type const * concRetType = result->isVoid() ? nullptr : result;
651 // [Comment from before translation.]
652 // Used to use dynRetType instead of concRetType.
653 ret = addDynRetParam( mutExpr, concRetType );
654 } else if ( needsAdapter( function, scopeTypeVars )
655 && !needsAdapter( function, exprTypeVars ) ) {
656 // Change the application so it calls the adapter rather than the
657 // passed function.
658 ret = applyAdapter( mutExpr, function );
659 }
660
661 ast::vector<ast::Expr> prependArgs;
662 passTypeVars( mutExpr, prependArgs, function );
663 addInferredParams( mutExpr, prependArgs, function, exprTypeVars );
664
665 boxParams( mutExpr, dynRetType, function, exprTypeVars );
666 spliceBegin( mutExpr->args, prependArgs );
667 passAdapters( mutExpr, function, exprTypeVars );
668
669 return ret;
670}
671
672bool isPolyDeref( ast::UntypedExpr const * expr,
673 TypeVarMap const & typeVars,
674 ast::TypeSubstitution const * typeSubs ) {
675 if ( expr->result && isPolyType( expr->result, typeVars, typeSubs ) ) {
676 if ( auto name = expr->func.as<ast::NameExpr>() ) {
677 if ( "*?" == name->name ) {
678 return true;
679 }
680 }
681 }
682 return false;
683}
684
685ast::Expr const * CallAdapter::postvisit( ast::UntypedExpr const * expr ) {
686 if ( isPolyDeref( expr, scopeTypeVars, typeSubs ) ) {
687 return expr->args.front();
688 }
689 return expr;
690}
691
692void CallAdapter::previsit( ast::AddressExpr const * ) {
693 visit_children = false;
694}
695
696ast::Expr const * CallAdapter::postvisit( ast::AddressExpr const * expr ) {
697 assert( expr->arg->result );
698 assert( !expr->arg->result->isVoid() );
699
700 bool doesNeedAdapter = false;
701 if ( auto un = expr->arg.as<ast::UntypedExpr>() ) {
702 if ( isPolyDeref( un, scopeTypeVars, typeSubs ) ) {
703 if ( auto app = un->args.front().as<ast::ApplicationExpr>() ) {
704 assert( app->func->result );
705 auto function = getFunctionType( app->func->result );
706 assert( function );
707 doesNeedAdapter = needsAdapter( function, scopeTypeVars );
708 }
709 }
710 }
711 // isPolyType check needs to happen before mutating expr arg,
712 // so pull it forward out of the if condition.
713 expr = ast::mutate_field( expr, &ast::AddressExpr::arg,
714 expr->arg->accept( *visitor ) );
715 // But must happen after mutate, since argument might change
716 // (ex. intrinsic *?, ?[?]) re-evaluate above comment.
717 bool polyType = isPolyType( expr->arg->result, scopeTypeVars, typeSubs );
718 if ( polyType || doesNeedAdapter ) {
719 ast::Expr * ret = ast::mutate( expr->arg.get() );
720 ret->result = ast::deepCopy( expr->result );
721 return ret;
722 } else {
723 return expr;
724 }
725}
726
727ast::ReturnStmt const * CallAdapter::previsit( ast::ReturnStmt const * stmt ) {
728 // Since retval is set when the return type is dynamic, this function
729 // should have been converted to void return & out parameter.
730 if ( retval && stmt->expr ) {
731 assert( stmt->expr->result );
732 assert( !stmt->expr->result->isVoid() );
733 return ast::mutate_field( stmt, &ast::ReturnStmt::expr, nullptr );
734 }
735 return stmt;
736}
737
738void CallAdapter::beginScope() {
739 adapters.beginScope();
740}
741
742void CallAdapter::endScope() {
743 adapters.endScope();
744}
745
746/// Find instances of polymorphic type parameters.
747struct PolyFinder {
748 TypeVarMap const & typeVars;
749 bool result = false;
750 PolyFinder( TypeVarMap const & tvs ) : typeVars( tvs ) {}
751
752 void previsit( ast::TypeInstType const * type ) {
753 if ( isPolyType( type, typeVars ) ) result = true;
754 }
755};
756
757/// True if these is an instance of a polymorphic type parameter in the type.
758bool hasPolymorphism( ast::Type const * type, TypeVarMap const & typeVars ) {
759 return ast::Pass<PolyFinder>::read( type, typeVars );
760}
761
762void CallAdapter::passTypeVars(
763 ast::ApplicationExpr * expr,
764 ast::vector<ast::Expr> & extraArgs,
765 ast::FunctionType const * function ) {
766 assert( typeSubs );
767 // Pass size/align for type variables.
768 for ( ast::ptr<ast::TypeInstType> const & typeVar : function->forall ) {
769 if ( !typeVar->base->isComplete() ) continue;
770 ast::Type const * concrete = typeSubs->lookup( typeVar );
771 if ( !concrete ) {
772 // Should this be an assertion?
773 SemanticError( expr->location, "\nunbound type variable %s in application %s",
774 toString( typeSubs ).c_str(), typeVar->typeString().c_str() );
775 }
776 extraArgs.emplace_back(
777 new ast::SizeofExpr( expr->location, ast::deepCopy( concrete ) ) );
778 extraArgs.emplace_back(
779 new ast::AlignofExpr( expr->location, ast::deepCopy( concrete ) ) );
780 }
781}
782
783ast::Expr const * CallAdapter::addRetParam(
784 ast::ApplicationExpr * expr, ast::Type const * retType ) {
785 // Create temporary to hold return value of polymorphic function and
786 // produce that temporary as a result using a comma expression.
787 assert( retType );
788
789 ast::Expr * paramExpr = nullptr;
790 // Try to use existing return value parameter if it exists,
791 // otherwise create a new temporary.
792 if ( retVals.count( expr ) ) {
793 paramExpr = ast::deepCopy( retVals[ expr ] );
794 } else {
795 auto newObj = makeTemporary( expr->location, ast::deepCopy( retType ) );
796 paramExpr = new ast::VariableExpr( expr->location, newObj );
797 }
798 ast::Expr * retExpr = ast::deepCopy( paramExpr );
799
800 // If the type of the temporary is not polpmorphic, box temporary by
801 // taking its address; otherwise the temporary is already boxed and can
802 // be used directly.
803 if ( !isPolyType( paramExpr->result, scopeTypeVars, typeSubs ) ) {
804 paramExpr = new ast::AddressExpr( paramExpr->location, paramExpr );
805 }
806 // Add argument to function call.
807 expr->args.insert( expr->args.begin(), paramExpr );
808 // Build a comma expression to call the function and return a value.
809 ast::CommaExpr * comma = new ast::CommaExpr(
810 expr->location, expr, retExpr );
811 comma->env = expr->env;
812 expr->env = nullptr;
813 return comma;
814}
815
816ast::Expr const * CallAdapter::addDynRetParam(
817 ast::ApplicationExpr * expr, ast::Type const * polyType ) {
818 assert( typeSubs );
819 ast::Type const * concrete = replaceWithConcrete( polyType, *typeSubs );
820 // Add out-parameter for return value.
821 return addRetParam( expr, concrete );
822}
823
824ast::Expr const * CallAdapter::applyAdapter(
825 ast::ApplicationExpr * expr,
826 ast::FunctionType const * function ) {
827 ast::Expr const * ret = expr;
828 if ( isDynRet( function, scopeTypeVars ) ) {
829 ret = addRetParam( expr, function->returns.front() );
830 }
831 std::string mangleName = mangleAdapterName( function, scopeTypeVars );
832 std::string adapterName = makeAdapterName( mangleName );
833
834 // Cast adaptee to `void (*)()`, since it may have any type inside a
835 // polymorphic function.
836 ast::Type const * adapteeType = new ast::PointerType(
837 new ast::FunctionType( ast::VariableArgs ) );
838 expr->args.insert( expr->args.begin(),
839 new ast::CastExpr( expr->location, expr->func, adapteeType ) );
840 // The result field is never set on NameExpr. / Now it is.
841 auto head = new ast::NameExpr( expr->location, adapterName );
842 head->result = ast::deepCopy( adapteeType );
843 expr->func = head;
844
845 return ret;
846}
847
848/// Cast parameters to polymorphic functions so that types are replaced with
849/// `void *` if they are type parameters in the formal type.
850/// This gets rid of warnings from gcc.
851void addCast(
852 ast::ptr<ast::Expr> & actual,
853 ast::Type const * formal,
854 TypeVarMap const & typeVars ) {
855 // Type contains polymorphism, but isn't exactly a polytype, in which
856 // case it has some real actual type (ex. unsigned int) and casting to
857 // `void *` is wrong.
858 if ( hasPolymorphism( formal, typeVars )
859 && !isPolyType( formal, typeVars ) ) {
860 ast::Type const * newType = ast::deepCopy( formal );
861 newType = scrubTypeVars( newType, typeVars );
862 actual = new ast::CastExpr( actual->location, actual, newType );
863 }
864}
865
866void CallAdapter::boxParam( ast::ptr<ast::Expr> & arg,
867 ast::Type const * param, TypeVarMap const & exprTypeVars ) {
868 assertf( arg->result, "arg does not have result: %s", toCString( arg ) );
869 addCast( arg, param, exprTypeVars );
870 if ( !needsBoxing( param, arg->result, exprTypeVars, typeSubs ) ) {
871 return;
872 }
873 CodeLocation const & location = arg->location;
874
875 if ( arg->get_lvalue() ) {
876 // The argument expression may be CFA lvalue, but not C lvalue,
877 // so apply generalizedLvalue transformations.
878 // if ( auto var = dynamic_cast<ast::VariableExpr const *>( arg ) ) {
879 // if ( dynamic_cast<ast::ArrayType const *>( varExpr->var->get_type() ) ){
880 // // temporary hack - don't box arrays, because &arr is not the same as &arr[0]
881 // return;
882 // }
883 // }
884 arg = generalizedLvalue( new ast::AddressExpr( arg->location, arg ) );
885 if ( !ResolvExpr::typesCompatible( param, arg->result ) ) {
886 // Silence warnings by casting boxed parameters when the actually
887 // type does not match up with the formal type.
888 arg = new ast::CastExpr( location, arg, ast::deepCopy( param ) );
889 }
890 } else {
891 // Use type computed in unification to declare boxed variables.
892 ast::ptr<ast::Type> newType = ast::deepCopy( param );
893 if ( typeSubs ) typeSubs->apply( newType );
894 ast::ObjectDecl * newObj = makeTemporary( location, newType );
895 auto assign = ast::UntypedExpr::createCall( location, "?=?", {
896 new ast::VariableExpr( location, newObj ),
897 arg,
898 } );
899 stmtsToAddBefore.push_back( new ast::ExprStmt( location, assign ) );
900 arg = new ast::AddressExpr(
901 new ast::VariableExpr( location, newObj ) );
902 }
903}
904
905void CallAdapter::boxParams(
906 ast::ApplicationExpr * expr,
907 ast::Type const * polyRetType,
908 ast::FunctionType const * function,
909 const TypeVarMap & typeVars ) {
910 // Start at the beginning, but the return argument may have been added.
911 auto arg = expr->args.begin();
912 if ( polyRetType ) ++arg;
913
914 for ( auto param : function->params ) {
915 assertf( arg != expr->args.end(),
916 "boxParams: missing argument for param %s to %s in %s",
917 toCString( param ), toCString( function ), toCString( expr ) );
918 boxParam( *arg, param, typeVars );
919 ++arg;
920 }
921}
922
923void CallAdapter::addInferredParams(
924 ast::ApplicationExpr * expr,
925 ast::vector<ast::Expr> & extraArgs,
926 ast::FunctionType const * functionType,
927 TypeVarMap const & typeVars ) {
928 for ( auto assertion : functionType->assertions ) {
929 auto inferParam = expr->inferred.inferParams().find(
930 assertion->var->uniqueId );
931 assertf( inferParam != expr->inferred.inferParams().end(),
932 "addInferredParams missing inferred parameter: %s in: %s",
933 toCString( assertion ), toCString( expr ) );
934 ast::ptr<ast::Expr> newExpr = ast::deepCopy( inferParam->second.expr );
935 boxParam( newExpr, assertion->result, typeVars );
936 extraArgs.emplace_back( newExpr.release() );
937 }
938}
939
940/// Modifies the ApplicationExpr to accept adapter functions for its
941/// assertion and parameters, declares the required adapters.
942void CallAdapter::passAdapters(
943 ast::ApplicationExpr * expr,
944 ast::FunctionType const * type,
945 const TypeVarMap & exprTypeVars ) {
946 // Collect a list of function types passed as parameters or implicit
947 // parameters (assertions).
948 ast::vector<ast::Type> const & paramList = type->params;
949 ast::vector<ast::FunctionType> functions;
950
951 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
952 findFunction( assertion->result, functions, exprTypeVars, needsAdapter );
953 }
954 for ( ast::ptr<ast::Type> const & arg : paramList ) {
955 findFunction( arg, functions, exprTypeVars, needsAdapter );
956 }
957
958 // Parameter function types for which an appropriate adapter has been
959 // generated. We cannot use the types after applying substitutions,
960 // since two different parameter types may be unified to the same type.
961 std::set<std::string> adaptersDone;
962
963 CodeLocation const & location = expr->location;
964
965 for ( ast::ptr<ast::FunctionType> const & funcType : functions ) {
966 std::string mangleName = Mangle::mangle( funcType );
967
968 // Only attempt to create an adapter or pass one as a parameter if we
969 // haven't already done so for this pre-substitution parameter
970 // function type.
971 // The second part of the result if is if the element was inserted.
972 if ( !adaptersDone.insert( mangleName ).second ) continue;
973
974 // Apply substitution to type variables to figure out what the
975 // adapter's type should look like. (Copy to make the release safe.)
976 assert( typeSubs );
977 auto result = typeSubs->apply( ast::deepCopy( funcType ) );
978 ast::FunctionType * realType = ast::mutate( result.node.release() );
979 mangleName = Mangle::mangle( realType );
980 mangleName += makePolyMonoSuffix( funcType, exprTypeVars );
981
982 // Check if the adapter has already been created, or has to be.
983 using AdapterIter = decltype(adapters)::iterator;
984 AdapterIter adapter = adapters.find( mangleName );
985 if ( adapter == adapters.end() ) {
986 ast::FunctionDecl * newAdapter = makeAdapter(
987 funcType, realType, mangleName, exprTypeVars, location );
988 std::pair<AdapterIter, bool> answer =
989 adapters.insert( mangleName, newAdapter );
990 adapter = answer.first;
991 stmtsToAddBefore.push_back(
992 new ast::DeclStmt( location, newAdapter ) );
993 }
994 assert( adapter != adapters.end() );
995
996 // Add the approprate adapter as a parameter.
997 expr->args.insert( expr->args.begin(),
998 new ast::VariableExpr( location, adapter->second ) );
999 }
1000}
1001
1002// Parameter and argument may be used wrong around here.
1003ast::Expr * makeAdapterArg(
1004 ast::DeclWithType const * param,
1005 ast::Type const * arg,
1006 ast::Type const * realParam,
1007 TypeVarMap const & typeVars,
1008 CodeLocation const & location ) {
1009 assert( param );
1010 assert( arg );
1011 assert( realParam );
1012 if ( isPolyType( realParam, typeVars ) && !isPolyType( arg ) ) {
1013 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref(
1014 location,
1015 new ast::CastExpr( location,
1016 new ast::VariableExpr( location, param ),
1017 new ast::PointerType( ast::deepCopy( arg ) )
1018 )
1019 );
1020 deref->result = ast::deepCopy( arg );
1021 return deref;
1022 }
1023 return new ast::VariableExpr( location, param );
1024}
1025
1026// This seems to be one of the problematic functions.
1027void addAdapterParams(
1028 ast::ApplicationExpr * adaptee,
1029 ast::vector<ast::Type>::const_iterator arg,
1030 ast::vector<ast::DeclWithType>::iterator param,
1031 ast::vector<ast::DeclWithType>::iterator paramEnd,
1032 ast::vector<ast::Type>::const_iterator realParam,
1033 TypeVarMap const & typeVars,
1034 CodeLocation const & location ) {
1035 UniqueName paramNamer( "_p" );
1036 for ( ; param != paramEnd ; ++param, ++arg, ++realParam ) {
1037 if ( "" == (*param)->name ) {
1038 auto mutParam = (*param).get_and_mutate();
1039 mutParam->name = paramNamer.newName();
1040 mutParam->linkage = ast::Linkage::C;
1041 }
1042 adaptee->args.push_back(
1043 makeAdapterArg( *param, *arg, *realParam, typeVars, location ) );
1044 }
1045}
1046
1047ast::FunctionDecl * CallAdapter::makeAdapter(
1048 ast::FunctionType const * adaptee,
1049 ast::FunctionType const * realType,
1050 std::string const & mangleName,
1051 TypeVarMap const & typeVars,
1052 CodeLocation const & location ) const {
1053 ast::FunctionType * adapterType = makeAdapterType( adaptee, typeVars );
1054 adapterType = ast::mutate( scrubTypeVars( adapterType, typeVars ) );
1055
1056 // Some of these names will be overwritten, but it gives a default.
1057 UniqueName pNamer( "_param" );
1058 UniqueName rNamer( "_ret" );
1059
1060 bool first = true;
1061
1062 ast::FunctionDecl * adapterDecl = new ast::FunctionDecl( location,
1063 makeAdapterName( mangleName ),
1064 {}, // forall
1065 {}, // assertions
1066 map_range<ast::vector<ast::DeclWithType>>( adapterType->params,
1067 [&pNamer, &location, &first]( ast::ptr<ast::Type> const & param ) {
1068 // [Trying to make the generated code match exactly more often.]
1069 if ( first ) {
1070 first = false;
1071 return new ast::ObjectDecl( location, "_adaptee", param );
1072 }
1073 return new ast::ObjectDecl( location, pNamer.newName(), param );
1074 } ),
1075 map_range<ast::vector<ast::DeclWithType>>( adapterType->returns,
1076 [&rNamer, &location]( ast::ptr<ast::Type> const & retval ) {
1077 return new ast::ObjectDecl( location, rNamer.newName(), retval );
1078 } ),
1079 nullptr, // stmts
1080 {}, // storage
1081 ast::Linkage::C
1082 );
1083
1084 ast::DeclWithType * adapteeDecl =
1085 adapterDecl->params.front().get_and_mutate();
1086 adapteeDecl->name = "_adaptee";
1087
1088 // Do not carry over attributes to real type parameters/return values.
1089 auto mutRealType = ast::mutate( realType );
1090 for ( ast::ptr<ast::Type> & decl : mutRealType->params ) {
1091 if ( decl->attributes.empty() ) continue;
1092 auto mut = ast::mutate( decl.get() );
1093 mut->attributes.clear();
1094 decl = mut;
1095 }
1096 for ( ast::ptr<ast::Type> & decl : mutRealType->returns ) {
1097 if ( decl->attributes.empty() ) continue;
1098 auto mut = ast::mutate( decl.get() );
1099 mut->attributes.clear();
1100 decl = mut;
1101 }
1102 realType = mutRealType;
1103
1104 ast::ApplicationExpr * adapteeApp = new ast::ApplicationExpr( location,
1105 new ast::CastExpr( location,
1106 new ast::VariableExpr( location, adapteeDecl ),
1107 new ast::PointerType( realType )
1108 )
1109 );
1110
1111 for ( auto const & [assertArg, assertParam, assertReal] : group_iterate(
1112 realType->assertions, adapterType->assertions, adaptee->assertions ) ) {
1113 adapteeApp->args.push_back( makeAdapterArg(
1114 assertParam->var, assertArg->var->get_type(),
1115 assertReal->var->get_type(), typeVars, location
1116 ) );
1117 }
1118
1119 ast::vector<ast::Type>::const_iterator
1120 arg = realType->params.begin(),
1121 param = adapterType->params.begin(),
1122 realParam = adaptee->params.begin();
1123 ast::vector<ast::DeclWithType>::iterator
1124 paramDecl = adapterDecl->params.begin();
1125 // Skip adaptee parameter in the adapter type.
1126 ++param;
1127 ++paramDecl;
1128
1129 ast::Stmt * bodyStmt;
1130 // Returns void/nothing.
1131 if ( realType->returns.empty() ) {
1132 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1133 realParam, typeVars, location );
1134 bodyStmt = new ast::ExprStmt( location, adapteeApp );
1135 // Returns a polymorphic type.
1136 } else if ( isDynType( adaptee->returns.front(), typeVars ) ) {
1137 ast::UntypedExpr * assign = new ast::UntypedExpr( location,
1138 new ast::NameExpr( location, "?=?" ) );
1139 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref( location,
1140 new ast::CastExpr( location,
1141 new ast::VariableExpr( location, *paramDecl++ ),
1142 new ast::PointerType(
1143 ast::deepCopy( realType->returns.front() ) ) ) );
1144 assign->args.push_back( deref );
1145 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1146 realParam, typeVars, location );
1147 assign->args.push_back( adapteeApp );
1148 bodyStmt = new ast::ExprStmt( location, assign );
1149 // Adapter for a function that returns a monomorphic value.
1150 } else {
1151 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1152 realParam, typeVars, location );
1153 bodyStmt = new ast::ReturnStmt( location, adapteeApp );
1154 }
1155
1156 adapterDecl->stmts = new ast::CompoundStmt( location, { bodyStmt } );
1157 return adapterDecl;
1158}
1159
1160ast::Expr const * makeIncrDecrExpr(
1161 CodeLocation const & location,
1162 ast::ApplicationExpr const * expr,
1163 ast::Type const * polyType,
1164 bool isIncr ) {
1165 ast::NameExpr * opExpr =
1166 new ast::NameExpr( location, isIncr ? "?+=?" : "?-=?" );
1167 ast::UntypedExpr * addAssign = new ast::UntypedExpr( location, opExpr );
1168 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1169 addAssign->args.push_back( address->arg );
1170 } else {
1171 addAssign->args.push_back( expr->args.front() );
1172 }
1173 addAssign->args.push_back( new ast::NameExpr( location,
1174 sizeofName( Mangle::mangleType( polyType ) ) ) );
1175 addAssign->result = ast::deepCopy( expr->result );
1176 addAssign->env = expr->env ? expr->env : addAssign->env;
1177 return addAssign;
1178}
1179
1180/// Handles intrinsic functions for postvisit ApplicationExpr.
1181ast::Expr const * CallAdapter::handleIntrinsics(
1182 ast::ApplicationExpr const * expr ) {
1183 auto varExpr = expr->func.as<ast::VariableExpr>();
1184 if ( !varExpr || varExpr->var->linkage != ast::Linkage::Intrinsic ) {
1185 return nullptr;
1186 }
1187 std::string const & varName = varExpr->var->name;
1188
1189 // Index Intrinsic:
1190 if ( "?[?]" == varName ) {
1191 assert( expr->result );
1192 assert( 2 == expr->args.size() );
1193
1194 ast::Type const * baseType1 =
1195 isPolyPtr( expr->args.front()->result, scopeTypeVars, typeSubs );
1196 ast::Type const * baseType2 =
1197 isPolyPtr( expr->args.back()->result, scopeTypeVars, typeSubs );
1198 // If neither argument is a polymorphic pointer, do nothing.
1199 if ( !baseType1 && !baseType2 ) {
1200 return expr;
1201 }
1202 // The arguments cannot both be polymorphic pointers.
1203 assert( !baseType1 || !baseType2 );
1204 // (So exactly one of the arguments is a polymorphic pointer.)
1205
1206 CodeLocation const & location = expr->location;
1207 CodeLocation const & location1 = expr->args.front()->location;
1208 CodeLocation const & location2 = expr->args.back()->location;
1209
1210 ast::UntypedExpr * ret = new ast::UntypedExpr( location,
1211 new ast::NameExpr( location, "?+?" ) );
1212 if ( baseType1 ) {
1213 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1214 expr->args.back(),
1215 new ast::SizeofExpr( location1, deepCopy( baseType1 ) ),
1216 } );
1217 ret->args.push_back( expr->args.front() );
1218 ret->args.push_back( multiply );
1219 } else {
1220 assert( baseType2 );
1221 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1222 expr->args.front(),
1223 new ast::SizeofExpr( location2, deepCopy( baseType2 ) ),
1224 } );
1225 ret->args.push_back( multiply );
1226 ret->args.push_back( expr->args.back() );
1227 }
1228 ret->result = ast::deepCopy( expr->result );
1229 ret->env = expr->env ? expr->env : ret->env;
1230 return ret;
1231 // Dereference Intrinsic:
1232 } else if ( "*?" == varName ) {
1233 assert( expr->result );
1234 assert( 1 == expr->args.size() );
1235
1236 // If this isn't for a poly type, then do nothing.
1237 if ( !isPolyType( expr->result, scopeTypeVars, typeSubs ) ) {
1238 return expr;
1239 }
1240
1241 // Remove dereference from polymorphic types since they are boxed.
1242 ast::Expr * ret = ast::deepCopy( expr->args.front() );
1243 // Fix expression type to remove pointer.
1244 ret->result = expr->result;
1245 ret->env = expr->env ? expr->env : ret->env;
1246 return ret;
1247 // Post-Increment/Decrement Intrinsics:
1248 } else if ( "?++" == varName || "?--" == varName ) {
1249 assert( expr->result );
1250 assert( 1 == expr->args.size() );
1251
1252 ast::Type const * baseType =
1253 isPolyType( expr->result, scopeTypeVars, typeSubs );
1254 if ( nullptr == baseType ) {
1255 return expr;
1256 }
1257 ast::Type * tempType = ast::deepCopy( expr->result );
1258 if ( typeSubs ) {
1259 auto result = typeSubs->apply( tempType );
1260 tempType = ast::mutate( result.node.release() );
1261 }
1262 CodeLocation const & location = expr->location;
1263 ast::ObjectDecl * newObj = makeTemporary( location, tempType );
1264 ast::VariableExpr * tempExpr =
1265 new ast::VariableExpr( location, newObj );
1266 ast::UntypedExpr * assignExpr = new ast::UntypedExpr( location,
1267 new ast::NameExpr( location, "?=?" ) );
1268 assignExpr->args.push_back( ast::deepCopy( tempExpr ) );
1269 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1270 assignExpr->args.push_back( ast::deepCopy( address->arg ) );
1271 } else {
1272 assignExpr->args.push_back( ast::deepCopy( expr->args.front() ) );
1273 }
1274 return new ast::CommaExpr( location,
1275 new ast::CommaExpr( location,
1276 assignExpr,
1277 makeIncrDecrExpr( location, expr, baseType, "?++" == varName )
1278 ),
1279 tempExpr
1280 );
1281 // Pre-Increment/Decrement Intrinsics:
1282 } else if ( "++?" == varName || "--?" == varName ) {
1283 assert( expr->result );
1284 assert( 1 == expr->args.size() );
1285
1286 ast::Type const * baseType =
1287 isPolyType( expr->result, scopeTypeVars, typeSubs );
1288 if ( nullptr == baseType ) {
1289 return expr;
1290 }
1291 return makeIncrDecrExpr(
1292 expr->location, expr, baseType, "++?" == varName );
1293 // Addition and Subtration Intrinsics:
1294 } else if ( "?+?" == varName || "?-?" == varName ) {
1295 assert( expr->result );
1296 assert( 2 == expr->args.size() );
1297
1298 auto baseType1 =
1299 isPolyPtr( expr->args.front()->result, scopeTypeVars, typeSubs );
1300 auto baseType2 =
1301 isPolyPtr( expr->args.back()->result, scopeTypeVars, typeSubs );
1302
1303 CodeLocation const & location = expr->location;
1304 CodeLocation const & location1 = expr->args.front()->location;
1305 CodeLocation const & location2 = expr->args.back()->location;
1306 // LHS op RHS -> (LHS op RHS) / sizeof(LHS)
1307 if ( baseType1 && baseType2 ) {
1308 auto divide = ast::UntypedExpr::createCall( location, "?/?", {
1309 expr,
1310 new ast::SizeofExpr( location, deepCopy( baseType1 ) ),
1311 } );
1312 if ( expr->env ) divide->env = expr->env;
1313 return divide;
1314 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1315 } else if ( baseType1 ) {
1316 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1317 expr->args.back(),
1318 new ast::SizeofExpr( location1, deepCopy( baseType1 ) ),
1319 } );
1320 return ast::mutate_field_index(
1321 expr, &ast::ApplicationExpr::args, 1, multiply );
1322 // LHS op RHS -> (LHS * sizeof(RHS)) op RHS
1323 } else if ( baseType2 ) {
1324 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1325 expr->args.front(),
1326 new ast::SizeofExpr( location2, deepCopy( baseType2 ) ),
1327 } );
1328 return ast::mutate_field_index(
1329 expr, &ast::ApplicationExpr::args, 0, multiply );
1330 }
1331 // Addition and Subtration Relative Assignment Intrinsics:
1332 } else if ( "?+=?" == varName || "?-=?" == varName ) {
1333 assert( expr->result );
1334 assert( 2 == expr->args.size() );
1335
1336 CodeLocation const & location1 = expr->args.front()->location;
1337 CodeLocation const & location2 = expr->args.back()->location;
1338 auto baseType = isPolyPtr( expr->result, scopeTypeVars, typeSubs );
1339 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1340 if ( baseType ) {
1341 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1342 expr->args.back(),
1343 new ast::SizeofExpr( location1, deepCopy( baseType ) ),
1344 } );
1345 return ast::mutate_field_index(
1346 expr, &ast::ApplicationExpr::args, 1, multiply );
1347 }
1348 }
1349 return expr;
1350}
1351
1352ast::ObjectDecl * CallAdapter::makeTemporary(
1353 CodeLocation const & location, ast::Type const * type ) {
1354 auto newObj = new ast::ObjectDecl( location, tmpNamer.newName(), type );
1355 stmtsToAddBefore.push_back( new ast::DeclStmt( location, newObj ) );
1356 return newObj;
1357}
1358
1359// --------------------------------------------------------------------------
1360/// Modifies declarations to accept implicit parameters.
1361/// * Move polymorphic returns in function types to pointer-type parameters.
1362/// * Adds type size and assertion parameters to parameter lists.
1363struct DeclAdapter final {
1364 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
1365 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
1366private:
1367 void addAdapters( ast::FunctionDecl * decl, TypeVarMap & localTypeVars );
1368};
1369
1370ast::ObjectDecl * makeObj(
1371 CodeLocation const & location, std::string const & name ) {
1372 // The size/align parameters may be unused, so add the unused attribute.
1373 return new ast::ObjectDecl( location, name,
1374 makeLayoutCType(),
1375 nullptr, ast::Storage::Classes(), ast::Linkage::C, nullptr,
1376 { new ast::Attribute( "unused" ) } );
1377}
1378
1379/// A modified and specialized version of ast::add_qualifiers.
1380ast::Type const * addConst( ast::Type const * type ) {
1381 ast::CV::Qualifiers cvq = { ast::CV::Const };
1382 if ( ( type->qualifiers & cvq ) != 0 ) return type;
1383 auto mutType = ast::mutate( type );
1384 mutType->qualifiers |= cvq;
1385 return mutType;
1386}
1387
1388ast::FunctionDecl const * DeclAdapter::previsit( ast::FunctionDecl const * decl ) {
1389 TypeVarMap localTypeVars;
1390 makeTypeVarMap( decl, localTypeVars );
1391
1392 auto mutDecl = mutate( decl );
1393
1394 // Move polymorphic return type to parameter list.
1395 if ( isDynRet( mutDecl->type ) ) {
1396 auto ret = strict_dynamic_cast<ast::ObjectDecl *>(
1397 mutDecl->returns.front().get_and_mutate() );
1398 ret->set_type( new ast::PointerType( ret->type ) );
1399 mutDecl->params.insert( mutDecl->params.begin(), ret );
1400 mutDecl->returns.erase( mutDecl->returns.begin() );
1401 ret->init = nullptr;
1402 }
1403
1404 // Add size/align and assertions for type parameters to parameter list.
1405 ast::vector<ast::DeclWithType> inferredParams;
1406 ast::vector<ast::DeclWithType> layoutParams;
1407 for ( ast::ptr<ast::TypeDecl> & typeParam : mutDecl->type_params ) {
1408 auto mutParam = mutate( typeParam.get() );
1409 // Add all size and alignment parameters to parameter list.
1410 if ( mutParam->isComplete() ) {
1411 ast::TypeInstType paramType( mutParam );
1412 std::string paramName = Mangle::mangleType( &paramType );
1413
1414 auto sizeParam = makeObj( typeParam->location, sizeofName( paramName ) );
1415 layoutParams.emplace_back( sizeParam );
1416
1417 auto alignParam = makeObj( typeParam->location, alignofName( paramName ) );
1418 layoutParams.emplace_back( alignParam );
1419 }
1420 // Assertions should be stored in the main list.
1421 assert( mutParam->assertions.empty() );
1422 typeParam = mutParam;
1423 }
1424 for ( ast::ptr<ast::DeclWithType> & assert : mutDecl->assertions ) {
1425 ast::DeclWithType * mutAssert = ast::mutate( assert.get() );
1426 // Assertion parameters may not be used in body,
1427 // pass along with unused attribute.
1428 mutAssert->attributes.push_back( new ast::Attribute( "unused" ) );
1429 mutAssert->set_type( addConst( mutAssert->get_type() ) );
1430 inferredParams.emplace_back( mutAssert );
1431 }
1432 mutDecl->assertions.clear();
1433
1434 // Prepend each argument group. From last group to first. addAdapters
1435 // does do the same, it just does it itself and see all other parameters.
1436 spliceBegin( mutDecl->params, inferredParams );
1437 spliceBegin( mutDecl->params, layoutParams );
1438 addAdapters( mutDecl, localTypeVars );
1439
1440 // Now have to update the type to match the declaration.
1441 ast::FunctionType * type = new ast::FunctionType(
1442 mutDecl->type->isVarArgs, mutDecl->type->qualifiers );
1443 // The forall clauses don't match until Eraser. The assertions are empty.
1444 for ( auto param : mutDecl->params ) {
1445 type->params.emplace_back( param->get_type() );
1446 }
1447 for ( auto retval : mutDecl->returns ) {
1448 type->returns.emplace_back( retval->get_type() );
1449 }
1450 mutDecl->type = type;
1451
1452 return mutDecl;
1453}
1454
1455ast::FunctionDecl const * DeclAdapter::postvisit(
1456 ast::FunctionDecl const * decl ) {
1457 ast::FunctionDecl * mutDecl = mutate( decl );
1458 if ( !mutDecl->returns.empty() && mutDecl->stmts
1459 // Intrinsic functions won't be using the _retval so no need to
1460 // generate it.
1461 && mutDecl->linkage != ast::Linkage::Intrinsic
1462 // Remove check for prefix once thunks properly use ctor/dtors.
1463 && !isPrefix( mutDecl->name, "_thunk" )
1464 && !isPrefix( mutDecl->name, "_adapter" ) ) {
1465 assert( 1 == mutDecl->returns.size() );
1466 ast::DeclWithType const * retval = mutDecl->returns.front();
1467 if ( "" == retval->name ) {
1468 retval = ast::mutate_field(
1469 retval, &ast::DeclWithType::name, "_retval" );
1470 mutDecl->returns.front() = retval;
1471 }
1472 auto stmts = mutDecl->stmts.get_and_mutate();
1473 stmts->kids.push_front( new ast::DeclStmt( retval->location, retval ) );
1474 ast::DeclWithType * newRet = ast::deepCopy( retval );
1475 mutDecl->returns.front() = newRet;
1476 }
1477 // Errors should have been caught by this point, remove initializers from
1478 // parameters to allow correct codegen of default arguments.
1479 for ( ast::ptr<ast::DeclWithType> & param : mutDecl->params ) {
1480 if ( auto obj = param.as<ast::ObjectDecl>() ) {
1481 param = ast::mutate_field( obj, &ast::ObjectDecl::init, nullptr );
1482 }
1483 }
1484 return mutDecl;
1485}
1486
1487void DeclAdapter::addAdapters(
1488 ast::FunctionDecl * mutDecl, TypeVarMap & localTypeVars ) {
1489 ast::vector<ast::FunctionType> functions;
1490 for ( ast::ptr<ast::DeclWithType> & arg : mutDecl->params ) {
1491 ast::Type const * type = arg->get_type();
1492 type = findAndReplaceFunction( type, functions, localTypeVars, needsAdapter );
1493 arg.get_and_mutate()->set_type( type );
1494 }
1495 std::set<std::string> adaptersDone;
1496 for ( ast::ptr<ast::FunctionType> const & func : functions ) {
1497 std::string mangleName = mangleAdapterName( func, localTypeVars );
1498 if ( adaptersDone.find( mangleName ) != adaptersDone.end() ) {
1499 continue;
1500 }
1501 std::string adapterName = makeAdapterName( mangleName );
1502 // The adapter may not actually be used, so make sure it has unused.
1503 mutDecl->params.insert( mutDecl->params.begin(), new ast::ObjectDecl(
1504 mutDecl->location, adapterName,
1505 new ast::PointerType( makeAdapterType( func, localTypeVars ) ),
1506 nullptr, {}, {}, nullptr,
1507 { new ast::Attribute( "unused" ) } ) );
1508 adaptersDone.insert( adaptersDone.begin(), mangleName );
1509 }
1510}
1511
1512// --------------------------------------------------------------------------
1513/// Corrects the floating nodes created in CallAdapter.
1514struct RewireAdapters final : public ast::WithGuards {
1515 ScopedMap<std::string, ast::ObjectDecl const *> adapters;
1516 void beginScope() { adapters.beginScope(); }
1517 void endScope() { adapters.endScope(); }
1518 void previsit( ast::FunctionDecl const * decl );
1519 ast::VariableExpr const * previsit( ast::VariableExpr const * expr );
1520};
1521
1522void RewireAdapters::previsit( ast::FunctionDecl const * decl ) {
1523 GuardScope( adapters );
1524 for ( ast::ptr<ast::DeclWithType> const & param : decl->params ) {
1525 if ( auto objectParam = param.as<ast::ObjectDecl>() ) {
1526 adapters.insert( objectParam->name, objectParam );
1527 }
1528 }
1529}
1530
1531ast::VariableExpr const * RewireAdapters::previsit(
1532 ast::VariableExpr const * expr ) {
1533 // If the node is not floating, we can skip.
1534 if ( expr->var->isManaged() ) return expr;
1535 auto it = adapters.find( expr->var->name );
1536 assertf( it != adapters.end(), "Could not correct floating node." );
1537 return ast::mutate_field( expr, &ast::VariableExpr::var, it->second );
1538}
1539
1540// --------------------------------------------------------------------------
1541/// Inserts code to access polymorphic layout inforation.
1542/// * Replaces member and size/alignment/offsetof expressions on polymorphic
1543/// generic types with calculated expressions.
1544/// * Replaces member expressions for polymorphic types with calculated
1545/// add-field-offset-and-dereference.
1546/// * Calculates polymorphic offsetof expressions from offset array.
1547/// * Inserts dynamic calculation of polymorphic type layouts where needed.
1548struct PolyGenericCalculator final :
1549 public ast::WithConstTypeSubstitution,
1550 public ast::WithDeclsToAdd<>,
1551 public ast::WithGuards,
1552 public ast::WithStmtsToAdd<>,
1553 public ast::WithVisitorRef<PolyGenericCalculator> {
1554 PolyGenericCalculator();
1555
1556 void previsit( ast::FunctionDecl const * decl );
1557 void previsit( ast::TypedefDecl const * decl );
1558 void previsit( ast::TypeDecl const * decl );
1559 ast::Decl const * postvisit( ast::TypeDecl const * decl );
1560 ast::StructDecl const * previsit( ast::StructDecl const * decl );
1561 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
1562 ast::DeclStmt const * previsit( ast::DeclStmt const * stmt );
1563 ast::Expr const * postvisit( ast::MemberExpr const * expr );
1564 void previsit( ast::AddressExpr const * expr );
1565 ast::Expr const * postvisit( ast::AddressExpr const * expr );
1566 ast::Expr const * postvisit( ast::SizeofExpr const * expr );
1567 ast::Expr const * postvisit( ast::AlignofExpr const * expr );
1568 ast::Expr const * postvisit( ast::OffsetofExpr const * expr );
1569 ast::Expr const * postvisit( ast::OffsetPackExpr const * expr );
1570
1571 void beginScope();
1572 void endScope();
1573private:
1574 /// Makes a new variable in the current scope with the given name,
1575 /// type and optional initializer.
1576 ast::ObjectDecl * makeVar(
1577 CodeLocation const & location, std::string const & name,
1578 ast::Type const * type, ast::Init const * init = nullptr );
1579 /// Returns true if the type has a dynamic layout;
1580 /// such a layout will be stored in appropriately-named local variables
1581 /// when the function returns.
1582 bool findGeneric( CodeLocation const & location, ast::Type const * );
1583 /// Adds type parameters to the layout call; will generate the
1584 /// appropriate parameters if needed.
1585 void addSTypeParamsToLayoutCall(
1586 ast::UntypedExpr * layoutCall,
1587 const ast::vector<ast::Type> & otypeParams );
1588 /// Change the type of generic aggregate members to char[].
1589 void mutateMembers( ast::AggregateDecl * aggr );
1590 /// Returns the calculated sizeof expression for type, or nullptr for use
1591 /// C sizeof().
1592 ast::Expr const * genSizeof( CodeLocation const &, ast::Type const * );
1593 /// Enters a new scope for type-variables,
1594 /// adding the type variables from the provided type.
1595 void beginTypeScope( ast::Type const * );
1596
1597 /// The type variables and polymorphic parameters currently in scope.
1598 TypeVarMap scopeTypeVars;
1599 /// Set of generic type layouts known in the current scope,
1600 /// indexed by sizeofName.
1601 ScopedSet<std::string> knownLayouts;
1602 /// Set of non-generic types for which the offset array exists in the
1603 /// current scope, indexed by offsetofName.
1604 ScopedSet<std::string> knownOffsets;
1605 /// Namer for VLA (variable length array) buffers.
1606 UniqueName bufNamer;
1607 /// If the argument of an AddressExpr is MemberExpr, it is stored here.
1608 ast::MemberExpr const * addrMember = nullptr;
1609};
1610
1611PolyGenericCalculator::PolyGenericCalculator() :
1612 knownLayouts(), knownOffsets(), bufNamer( "_buf" )
1613{}
1614
1615/// Converts polymorphic type into a suitable monomorphic representation.
1616/// Currently: __attribute__(( aligned(8) )) char[size_T];
1617ast::Type * polyToMonoType( CodeLocation const & location,
1618 ast::Type const * declType ) {
1619 auto charType = new ast::BasicType( ast::BasicType::Char );
1620 auto size = new ast::NameExpr( location,
1621 sizeofName( Mangle::mangleType( declType ) ) );
1622 auto ret = new ast::ArrayType( charType, size,
1623 ast::VariableLen, ast::DynamicDim, ast::CV::Qualifiers() );
1624 ret->attributes.emplace_back( new ast::Attribute( "aligned",
1625 { ast::ConstantExpr::from_int( location, 8 ) } ) );
1626 return ret;
1627}
1628
1629void PolyGenericCalculator::previsit( ast::FunctionDecl const * decl ) {
1630 GuardScope( *this );
1631 beginTypeScope( decl->type );
1632}
1633
1634void PolyGenericCalculator::previsit( ast::TypedefDecl const * decl ) {
1635 assertf( false, "All typedef declarations should be removed." );
1636 beginTypeScope( decl->base );
1637}
1638
1639void PolyGenericCalculator::previsit( ast::TypeDecl const * decl ) {
1640 addToTypeVarMap( decl, scopeTypeVars );
1641}
1642
1643ast::Decl const * PolyGenericCalculator::postvisit(
1644 ast::TypeDecl const * decl ) {
1645 ast::Type const * base = decl->base;
1646 if ( nullptr == base ) return decl;
1647
1648 // Add size/align variables for opaque type declarations.
1649 ast::TypeInstType inst( decl->name, decl );
1650 std::string typeName = Mangle::mangleType( &inst );
1651
1652 ast::ObjectDecl * sizeDecl = new ast::ObjectDecl( decl->location,
1653 sizeofName( typeName ), makeLayoutCType(),
1654 new ast::SingleInit( decl->location,
1655 new ast::SizeofExpr( decl->location, deepCopy( base ) )
1656 )
1657 );
1658 ast::ObjectDecl * alignDecl = new ast::ObjectDecl( decl->location,
1659 alignofName( typeName ), makeLayoutCType(),
1660 new ast::SingleInit( decl->location,
1661 new ast::AlignofExpr( decl->location, deepCopy( base ) )
1662 )
1663 );
1664
1665 // Ensure that the initializing sizeof/alignof exprs are properly mutated.
1666 sizeDecl->accept( *visitor );
1667 alignDecl->accept( *visitor );
1668
1669 // A little trick to replace this with two declarations.
1670 // Adding after makes sure that there is no conflict with adding stmts.
1671 declsToAddAfter.push_back( alignDecl );
1672 return sizeDecl;
1673}
1674
1675ast::StructDecl const * PolyGenericCalculator::previsit(
1676 ast::StructDecl const * decl ) {
1677 auto mutDecl = mutate( decl );
1678 mutateMembers( mutDecl );
1679 return mutDecl;
1680}
1681
1682ast::UnionDecl const * PolyGenericCalculator::previsit(
1683 ast::UnionDecl const * decl ) {
1684 auto mutDecl = mutate( decl );
1685 mutateMembers( mutDecl );
1686 return mutDecl;
1687}
1688
1689ast::DeclStmt const * PolyGenericCalculator::previsit( ast::DeclStmt const * stmt ) {
1690 ast::ObjectDecl const * decl = stmt->decl.as<ast::ObjectDecl>();
1691 if ( !decl || !findGeneric( decl->location, decl->type ) ) {
1692 return stmt;
1693 }
1694
1695 // Change initialization of a polymorphic value object to allocate via a
1696 // variable-length-array (alloca cannot be safely used in loops).
1697 ast::ObjectDecl * newBuf = new ast::ObjectDecl( decl->location,
1698 bufNamer.newName(),
1699 polyToMonoType( decl->location, decl->type ),
1700 nullptr, {}, ast::Linkage::C
1701 );
1702 stmtsToAddBefore.push_back( new ast::DeclStmt( stmt->location, newBuf ) );
1703
1704 // If the object has a cleanup attribute, the clean-up should be on the
1705 // buffer, not the pointer. [Perhaps this should be lifted?]
1706 auto matchAndMove = [newBuf]( ast::ptr<ast::Attribute> & attr ) {
1707 if ( "cleanup" == attr->name ) {
1708 newBuf->attributes.push_back( attr );
1709 return true;
1710 }
1711 return false;
1712 };
1713
1714 auto mutDecl = mutate( decl );
1715
1716 // Forally, side effects are not safe in this function. But it works.
1717 erase_if( mutDecl->attributes, matchAndMove );
1718
1719 mutDecl->init = new ast::SingleInit( decl->location,
1720 new ast::VariableExpr( decl->location, newBuf ) );
1721
1722 return ast::mutate_field( stmt, &ast::DeclStmt::decl, mutDecl );
1723}
1724
1725/// Checks if memberDecl matches the decl from an aggregate.
1726bool isMember( ast::DeclWithType const * memberDecl, ast::Decl const * decl ) {
1727 // No matter the field, if the name is different it is not the same.
1728 if ( memberDecl->name != decl->name ) {
1729 return false;
1730 }
1731
1732 if ( memberDecl->name.empty() ) {
1733 // Plan-9 Field: Match on unique_id.
1734 return ( memberDecl->uniqueId == decl->uniqueId );
1735 }
1736
1737 ast::DeclWithType const * declWithType =
1738 strict_dynamic_cast<ast::DeclWithType const *>( decl );
1739
1740 if ( memberDecl->mangleName.empty() || declWithType->mangleName.empty() ) {
1741 // Tuple-Element Field: Expect neither had mangled name;
1742 // accept match on simple name (like field_2) only.
1743 assert( memberDecl->mangleName.empty() );
1744 assert( declWithType->mangleName.empty() );
1745 return true;
1746 }
1747
1748 // Ordinary Field: Use full name to accommodate overloading.
1749 return ( memberDecl->mangleName == declWithType->mangleName );
1750}
1751
1752/// Finds the member in the base list that matches the given declaration;
1753/// returns its index, or -1 if not present.
1754long findMember( ast::DeclWithType const * memberDecl,
1755 const ast::vector<ast::Decl> & baseDecls ) {
1756 for ( auto const & [index, value] : enumerate( baseDecls ) ) {
1757 if ( isMember( memberDecl, value.get() ) ) {
1758 return index;
1759 }
1760 }
1761 return -1;
1762}
1763
1764/// Returns an index expression into the offset array for a type.
1765ast::Expr * makeOffsetIndex( CodeLocation const & location,
1766 ast::Type const * objectType, long i ) {
1767 std::string name = offsetofName( Mangle::mangleType( objectType ) );
1768 return ast::UntypedExpr::createCall( location, "?[?]", {
1769 new ast::NameExpr( location, name ),
1770 ast::ConstantExpr::from_ulong( location, i ),
1771 } );
1772}
1773
1774ast::Expr const * PolyGenericCalculator::postvisit(
1775 ast::MemberExpr const * expr ) {
1776 // Only mutate member expressions for polymorphic types.
1777 ast::Type const * objectType = hasPolyBase(
1778 expr->aggregate->result, scopeTypeVars
1779 );
1780 if ( !objectType ) return expr;
1781 // Ensure layout for this type is available.
1782 // The boolean result is ignored.
1783 findGeneric( expr->location, objectType );
1784
1785 // Replace member expression with dynamically-computed layout expression.
1786 ast::Expr * newMemberExpr = nullptr;
1787 if ( auto structType = dynamic_cast<ast::StructInstType const *>( objectType ) ) {
1788 long offsetIndex = findMember( expr->member, structType->base->members );
1789 if ( -1 == offsetIndex ) return expr;
1790
1791 // Replace member expression with pointer to struct plus offset.
1792 ast::UntypedExpr * fieldLoc = new ast::UntypedExpr( expr->location,
1793 new ast::NameExpr( expr->location, "?+?" ) );
1794 ast::Expr * aggr = deepCopy( expr->aggregate );
1795 aggr->env = nullptr;
1796 fieldLoc->args.push_back( aggr );
1797 fieldLoc->args.push_back(
1798 makeOffsetIndex( expr->location, objectType, offsetIndex ) );
1799 fieldLoc->result = deepCopy( expr->result );
1800 newMemberExpr = fieldLoc;
1801 // Union members are all at offset zero, so just use the aggregate expr.
1802 } else if ( dynamic_cast<ast::UnionInstType const *>( objectType ) ) {
1803 ast::Expr * aggr = deepCopy( expr->aggregate );
1804 aggr->env = nullptr;
1805 aggr->result = deepCopy( expr->result );
1806 newMemberExpr = aggr;
1807 } else {
1808 return expr;
1809 }
1810 assert( newMemberExpr );
1811
1812 // Must apply the generic substitution to the member type to handle cases
1813 // where the member is a generic parameter subsituted by a known concrete
1814 // type. [ex]
1815 // forall( T ) struct Box { T x; }
1816 // forall( T ) void f() {
1817 // Box( T * ) b; b.x;
1818 // }
1819 // TODO: expr->result should be exactly expr->member->get_type() after
1820 // substitution, so it doesn't seem like it should be necessary to apply
1821 // the substitution manually. For some reason this is not currently the
1822 // case. This requires more investigation.
1823 ast::ptr<ast::Type> memberType = deepCopy( expr->member->get_type() );
1824 ast::TypeSubstitution sub = genericSubstitution( objectType );
1825 sub.apply( memberType );
1826
1827 // Not all members of a polymorphic type are themselves of a polymorphic
1828 // type; in this case the member expression should be wrapped and
1829 // dereferenced to form an lvalue.
1830 if ( !isPolyType( memberType, scopeTypeVars ) ) {
1831 auto ptrCastExpr = new ast::CastExpr( expr->location, newMemberExpr,
1832 new ast::PointerType( memberType ) );
1833 auto derefExpr = ast::UntypedExpr::createDeref( expr->location,
1834 ptrCastExpr );
1835 newMemberExpr = derefExpr;
1836 }
1837
1838 return newMemberExpr;
1839}
1840
1841void PolyGenericCalculator::previsit( ast::AddressExpr const * expr ) {
1842 GuardValue( addrMember ) = expr->arg.as<ast::MemberExpr>();
1843}
1844
1845ast::Expr const * PolyGenericCalculator::postvisit(
1846 ast::AddressExpr const * expr ) {
1847 // arg has to have been a MemberExpr and has been mutated.
1848 if ( nullptr == addrMember || expr->arg == addrMember ) {
1849 return expr;
1850 }
1851 ast::UntypedExpr const * untyped = expr->arg.as<ast::UntypedExpr>();
1852 if ( !untyped || getFunctionName( untyped ) != "?+?" ) {
1853 return expr;
1854 }
1855 // MemberExpr was converted to pointer + offset; and it is not valid C to
1856 // take the address of an addition, so strip away the address-of.
1857 // It also preserves the env value.
1858 return ast::mutate_field( expr->arg.get(), &ast::Expr::env, expr->env );
1859}
1860
1861ast::Expr const * PolyGenericCalculator::postvisit(
1862 ast::SizeofExpr const * expr ) {
1863 ast::Type const * type = expr->type ? expr->type : expr->expr->result;
1864 ast::Expr const * gen = genSizeof( expr->location, type );
1865 return ( gen ) ? gen : expr;
1866}
1867
1868ast::Expr const * PolyGenericCalculator::postvisit(
1869 ast::AlignofExpr const * expr ) {
1870 ast::Type const * type = expr->type ? expr->type : expr->expr->result;
1871 if ( findGeneric( expr->location, type ) ) {
1872 return new ast::NameExpr( expr->location,
1873 alignofName( Mangle::mangleType( type ) ) );
1874 } else {
1875 return expr;
1876 }
1877}
1878
1879ast::Expr const * PolyGenericCalculator::postvisit(
1880 ast::OffsetofExpr const * expr ) {
1881 ast::Type const * type = expr->type;
1882 if ( !findGeneric( expr->location, type ) ) return expr;
1883
1884 // Structures replace offsetof expression with an index into offset array.
1885 if ( auto structType = dynamic_cast<ast::StructInstType const *>( type ) ) {
1886 long offsetIndex = findMember( expr->member, structType->base->members );
1887 if ( -1 == offsetIndex ) return expr;
1888
1889 return makeOffsetIndex( expr->location, type, offsetIndex );
1890 // All union members are at offset zero.
1891 } else if ( dynamic_cast<ast::UnionInstType const *>( type ) ) {
1892 return ast::ConstantExpr::from_ulong( expr->location, 0 );
1893 } else {
1894 return expr;
1895 }
1896}
1897
1898ast::Expr const * PolyGenericCalculator::postvisit(
1899 ast::OffsetPackExpr const * expr ) {
1900 ast::StructInstType const * type = expr->type;
1901
1902 // Pull offset back from generated type information.
1903 if ( findGeneric( expr->location, type ) ) {
1904 return new ast::NameExpr( expr->location,
1905 offsetofName( Mangle::mangleType( type ) ) );
1906 }
1907
1908 std::string offsetName = offsetofName( Mangle::mangleType( type ) );
1909 // Use the already generated offsets for this type.
1910 if ( knownOffsets.contains( offsetName ) ) {
1911 return new ast::NameExpr( expr->location, offsetName );
1912 }
1913
1914 knownOffsets.insert( offsetName );
1915
1916 // Build initializer list for offset array.
1917 ast::vector<ast::Init> inits;
1918 for ( ast::ptr<ast::Decl> const & member : type->base->members ) {
1919 auto memberDecl = member.as<ast::DeclWithType>();
1920 assertf( memberDecl, "Requesting offset of non-DWT member: %s",
1921 toCString( member ) );
1922 inits.push_back( new ast::SingleInit( expr->location,
1923 new ast::OffsetofExpr( expr->location,
1924 deepCopy( type ),
1925 memberDecl
1926 )
1927 ) );
1928 }
1929
1930 auto offsetArray = makeVar( expr->location, offsetName,
1931 new ast::ArrayType(
1932 makeLayoutType(),
1933 ast::ConstantExpr::from_ulong( expr->location, inits.size() ),
1934 ast::FixedLen,
1935 ast::DynamicDim
1936 ),
1937 new ast::ListInit( expr->location, std::move( inits ) )
1938 );
1939
1940 return new ast::VariableExpr( expr->location, offsetArray );
1941}
1942
1943void PolyGenericCalculator::beginScope() {
1944 knownLayouts.beginScope();
1945 knownOffsets.beginScope();
1946}
1947
1948void PolyGenericCalculator::endScope() {
1949 knownOffsets.endScope();
1950 knownLayouts.endScope();
1951}
1952
1953ast::ObjectDecl * PolyGenericCalculator::makeVar(
1954 CodeLocation const & location, std::string const & name,
1955 ast::Type const * type, ast::Init const * init ) {
1956 ast::ObjectDecl * ret = new ast::ObjectDecl( location, name, type, init );
1957 stmtsToAddBefore.push_back( new ast::DeclStmt( location, ret ) );
1958 return ret;
1959}
1960
1961/// Returns true if any of the otype parameters have a dynamic layout; and
1962/// puts all otype parameters in the output list.
1963bool findGenericParams(
1964 ast::vector<ast::Type> & out,
1965 ast::vector<ast::TypeDecl> const & baseParams,
1966 ast::vector<ast::Expr> const & typeParams ) {
1967 bool hasDynamicLayout = false;
1968
1969 for ( auto const & [baseParam, typeParam] : group_iterate(
1970 baseParams, typeParams ) ) {
1971 if ( !baseParam->isComplete() ) continue;
1972 ast::TypeExpr const * typeExpr = typeParam.as<ast::TypeExpr>();
1973 assertf( typeExpr, "All type parameters should be type expressions." );
1974
1975 ast::Type const * type = typeExpr->type.get();
1976 out.push_back( type );
1977 if ( isPolyType( type ) ) hasDynamicLayout = true;
1978 }
1979
1980 return hasDynamicLayout;
1981}
1982
1983bool PolyGenericCalculator::findGeneric(
1984 CodeLocation const & location, ast::Type const * type ) {
1985 type = replaceTypeInst( type, typeSubs );
1986
1987 if ( auto inst = dynamic_cast<ast::TypeInstType const *>( type ) ) {
1988 // Assumes that getting put in the scopeTypeVars includes having the
1989 // layout variables set.
1990 if ( scopeTypeVars.contains( *inst ) ) {
1991 return true;
1992 }
1993 } else if ( auto inst = dynamic_cast<ast::StructInstType const *>( type ) ) {
1994 // Check if this type already has a layout generated for it.
1995 std::string typeName = Mangle::mangleType( type );
1996 if ( knownLayouts.contains( typeName ) ) return true;
1997
1998 // Check if any type parameters have dynamic layout;
1999 // If none do, this type is (or will be) monomorphized.
2000 ast::vector<ast::Type> sizedParams;
2001 if ( !findGenericParams( sizedParams,
2002 inst->base->params, inst->params ) ) {
2003 return false;
2004 }
2005
2006 // Insert local variables for layout and generate call to layout
2007 // function.
2008 // Done early so as not to interfere with the later addition of
2009 // parameters to the layout call.
2010 knownLayouts.insert( typeName );
2011
2012 int memberCount = inst->base->members.size();
2013 if ( 0 == memberCount ) {
2014 // All empty structures have the same layout (size 1, align 1).
2015 makeVar( location,
2016 sizeofName( typeName ), makeLayoutType(),
2017 new ast::SingleInit( location,
2018 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2019 makeVar( location,
2020 alignofName( typeName ), makeLayoutType(),
2021 new ast::SingleInit( location,
2022 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2023 // Since 0-length arrays are forbidden in C, skip the offset array.
2024 } else {
2025 ast::ObjectDecl const * sizeofVar = makeVar( location,
2026 sizeofName( typeName ), makeLayoutType(), nullptr );
2027 ast::ObjectDecl const * alignofVar = makeVar( location,
2028 alignofName( typeName ), makeLayoutType(), nullptr );
2029 ast::ObjectDecl const * offsetofVar = makeVar( location,
2030 offsetofName( typeName ),
2031 new ast::ArrayType(
2032 makeLayoutType(),
2033 ast::ConstantExpr::from_int( location, memberCount ),
2034 ast::FixedLen,
2035 ast::DynamicDim
2036 ),
2037 nullptr
2038 );
2039
2040 // Generate call to layout function.
2041 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2042 new ast::NameExpr( location, layoutofName( inst->base ) ),
2043 {
2044 new ast::AddressExpr(
2045 new ast::VariableExpr( location, sizeofVar ) ),
2046 new ast::AddressExpr(
2047 new ast::VariableExpr( location, alignofVar ) ),
2048 new ast::VariableExpr( location, offsetofVar ),
2049 } );
2050
2051 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2052
2053 stmtsToAddBefore.emplace_back(
2054 new ast::ExprStmt( location, layoutCall ) );
2055 }
2056
2057 return true;
2058 } else if ( auto inst = dynamic_cast<ast::UnionInstType const *>( type ) ) {
2059 // Check if this type already has a layout generated for it.
2060 std::string typeName = Mangle::mangleType( type );
2061 if ( knownLayouts.contains( typeName ) ) return true;
2062
2063 // Check if any type parameters have dynamic layout;
2064 // If none do, this type is (or will be) monomorphized.
2065 ast::vector<ast::Type> sizedParams;
2066 if ( !findGenericParams( sizedParams,
2067 inst->base->params, inst->params ) ) {
2068 return false;
2069 }
2070
2071 // Insert local variables for layout and generate call to layout
2072 // function.
2073 // Done early so as not to interfere with the later addition of
2074 // parameters to the layout call.
2075 knownLayouts.insert( typeName );
2076
2077 ast::ObjectDecl * sizeofVar = makeVar( location,
2078 sizeofName( typeName ), makeLayoutType() );
2079 ast::ObjectDecl * alignofVar = makeVar( location,
2080 alignofName( typeName ), makeLayoutType() );
2081
2082 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2083 new ast::NameExpr( location, layoutofName( inst->base ) ),
2084 {
2085 new ast::AddressExpr(
2086 new ast::VariableExpr( location, sizeofVar ) ),
2087 new ast::AddressExpr(
2088 new ast::VariableExpr( location, alignofVar ) ),
2089 } );
2090
2091 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2092
2093 stmtsToAddBefore.emplace_back(
2094 new ast::ExprStmt( location, layoutCall ) );
2095
2096 return true;
2097 }
2098 return false;
2099}
2100
2101void PolyGenericCalculator::addSTypeParamsToLayoutCall(
2102 ast::UntypedExpr * layoutCall,
2103 const ast::vector<ast::Type> & otypeParams ) {
2104 CodeLocation const & location = layoutCall->location;
2105 ast::vector<ast::Expr> & args = layoutCall->args;
2106 for ( ast::ptr<ast::Type> const & param : otypeParams ) {
2107 if ( findGeneric( location, param ) ) {
2108 // Push size/align vars for a generic parameter back.
2109 std::string paramName = Mangle::mangleType( param );
2110 args.emplace_back(
2111 new ast::NameExpr( location, sizeofName( paramName ) ) );
2112 args.emplace_back(
2113 new ast::NameExpr( location, alignofName( paramName ) ) );
2114 } else {
2115 args.emplace_back(
2116 new ast::SizeofExpr( location, ast::deepCopy( param ) ) );
2117 args.emplace_back(
2118 new ast::AlignofExpr( location, ast::deepCopy( param ) ) );
2119 }
2120 }
2121}
2122
2123void PolyGenericCalculator::mutateMembers( ast::AggregateDecl * aggr ) {
2124 std::set<std::string> genericParams;
2125 for ( ast::ptr<ast::TypeDecl> const & decl : aggr->params ) {
2126 genericParams.insert( decl->name );
2127 }
2128 for ( ast::ptr<ast::Decl> & decl : aggr->members ) {
2129 auto field = decl.as<ast::ObjectDecl>();
2130 if ( nullptr == field ) continue;
2131
2132 ast::Type const * type = replaceTypeInst( field->type, typeSubs );
2133 auto typeInst = dynamic_cast<ast::TypeInstType const *>( type );
2134 if ( nullptr == typeInst ) continue;
2135
2136 // Do not try to monoporphize generic parameters.
2137 if ( scopeTypeVars.contains( ast::TypeEnvKey( *typeInst ) ) &&
2138 !genericParams.count( typeInst->name ) ) {
2139 // Polymorphic aggregate members should be converted into
2140 // monomorphic members. Using char[size_T] here respects
2141 // the expected sizing rules of an aggregate type.
2142 decl = ast::mutate_field( field, &ast::ObjectDecl::type,
2143 polyToMonoType( field->location, field->type ) );
2144 }
2145 }
2146}
2147
2148ast::Expr const * PolyGenericCalculator::genSizeof(
2149 CodeLocation const & location, ast::Type const * type ) {
2150 if ( auto * array = dynamic_cast<ast::ArrayType const *>( type ) ) {
2151 // Generate calculated size for possibly generic array.
2152 ast::Expr const * sizeofBase = genSizeof( location, array->base );
2153 if ( nullptr == sizeofBase ) return nullptr;
2154 ast::Expr const * dim = array->dimension;
2155 return makeOp( location, "?*?", sizeofBase, dim );
2156 } else if ( findGeneric( location, type ) ) {
2157 // Generate calculated size for generic type.
2158 return new ast::NameExpr( location, sizeofName(
2159 Mangle::mangleType( type ) ) );
2160 } else {
2161 return nullptr;
2162 }
2163}
2164
2165void PolyGenericCalculator::beginTypeScope( ast::Type const * type ) {
2166 GuardScope( scopeTypeVars );
2167 makeTypeVarMap( type, scopeTypeVars );
2168}
2169
2170// --------------------------------------------------------------------------
2171/// Removes unneeded or incorrect type information.
2172/// * Replaces initialization of polymorphic values with alloca.
2173/// * Replaces declaration of dtype/ftype with appropriate void expression.
2174/// * Replaces sizeof expressions of polymorphic types with a variable.
2175/// * Strips fields from generic structure declarations.
2176struct Eraser final :
2177 public ast::WithGuards {
2178 void guardTypeVarMap( ast::Type const * type ) {
2179 GuardScope( scopeTypeVars );
2180 makeTypeVarMap( type, scopeTypeVars );
2181 }
2182
2183 ast::ObjectDecl const * previsit( ast::ObjectDecl const * decl );
2184 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
2185 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
2186 ast::TypedefDecl const * previsit( ast::TypedefDecl const * decl );
2187 ast::StructDecl const * previsit( ast::StructDecl const * decl );
2188 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
2189 void previsit( ast::TypeDecl const * decl );
2190 void previsit( ast::PointerType const * type );
2191 void previsit( ast::FunctionType const * type );
2192public:
2193 TypeVarMap scopeTypeVars;
2194};
2195
2196ast::ObjectDecl const * Eraser::previsit( ast::ObjectDecl const * decl ) {
2197 guardTypeVarMap( decl->type );
2198 return scrubAllTypeVars( decl );
2199}
2200
2201ast::FunctionDecl const * Eraser::previsit( ast::FunctionDecl const * decl ) {
2202 guardTypeVarMap( decl->type );
2203 return scrubAllTypeVars( decl );
2204}
2205
2206ast::FunctionDecl const * Eraser::postvisit( ast::FunctionDecl const * decl ) {
2207 if ( decl->type_params.empty() ) return decl;
2208 auto mutDecl = mutate( decl );
2209 mutDecl->type_params.clear();
2210 return mutDecl;
2211}
2212
2213ast::TypedefDecl const * Eraser::previsit( ast::TypedefDecl const * decl ) {
2214 guardTypeVarMap( decl->base );
2215 return scrubAllTypeVars( decl );
2216}
2217
2218/// Strips the members from a generic aggregate.
2219template<typename node_t>
2220node_t const * stripGenericMembers( node_t const * decl ) {
2221 if ( decl->params.empty() ) return decl;
2222 auto mutDecl = ast::mutate( decl );
2223 mutDecl->members.clear();
2224 return mutDecl;
2225}
2226
2227ast::StructDecl const * Eraser::previsit( ast::StructDecl const * decl ) {
2228 return stripGenericMembers( decl );
2229}
2230
2231ast::UnionDecl const * Eraser::previsit( ast::UnionDecl const * decl ) {
2232 return stripGenericMembers( decl );
2233}
2234
2235void Eraser::previsit( ast::TypeDecl const * decl ) {
2236 addToTypeVarMap( decl, scopeTypeVars );
2237}
2238
2239void Eraser::previsit( ast::PointerType const * type ) {
2240 guardTypeVarMap( type );
2241}
2242
2243void Eraser::previsit( ast::FunctionType const * type ) {
2244 guardTypeVarMap( type );
2245}
2246
2247} // namespace
2248
2249// --------------------------------------------------------------------------
2250void box( ast::TranslationUnit & translationUnit ) {
2251 ast::Pass<LayoutFunctionBuilder>::run( translationUnit );
2252 ast::Pass<CallAdapter>::run( translationUnit );
2253 ast::Pass<DeclAdapter>::run( translationUnit );
2254 ast::Pass<RewireAdapters>::run( translationUnit );
2255 ast::Pass<PolyGenericCalculator>::run( translationUnit );
2256 ast::Pass<Eraser>::run( translationUnit );
2257}
2258
2259} // namespace GenPoly
2260
2261// Local Variables: //
2262// tab-width: 4 //
2263// mode: c++ //
2264// compile-command: "make install" //
2265// End: //
Note: See TracBrowser for help on using the repository browser.