source: src/GenPoly/Box.cpp@ ecaedf35

Last change on this file since ecaedf35 was 82d5816, checked in by Andrew Beach <ajbeach@…>, 14 months ago

Bit of clean-up to the box pass. Mostly just wrapping a new common set of operations and checks into a helpper function.

  • Property mode set to 100644
File size: 84.3 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cpp -- Implement polymorphic function calls and types.
8//
9// Author : Andrew Beach
10// Created On : Thr Oct 6 13:39:00 2022
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Dec 14 17:42:17 2023
13// Update Count : 7
14//
15
16#include "Box.hpp"
17
18#include "AST/Decl.hpp" // for Decl, FunctionDecl, ...
19#include "AST/Expr.hpp" // for AlignofExpr, ConstantExpr, ...
20#include "AST/Init.hpp" // for Init, SingleInit
21#include "AST/Inspect.hpp" // for getFunctionName
22#include "AST/Pass.hpp" // for Pass, WithDeclsToAdd, ...
23#include "AST/Stmt.hpp" // for CompoundStmt, ExprStmt, ...
24#include "AST/Vector.hpp" // for vector
25#include "AST/GenericSubstitution.hpp" // for genericSubstitution
26#include "CodeGen/OperatorTable.hpp" // for isAssignment
27#include "Common/Iterate.hpp" // for group_iterate
28#include "Common/ScopedMap.hpp" // for ScopedMap
29#include "Common/ToString.hpp" // for toCString
30#include "Common/UniqueName.hpp" // for UniqueName
31#include "GenPoly/FindFunction.hpp" // for findFunction
32#include "GenPoly/GenPoly.hpp" // for getFunctionType, isPolyType, ...
33#include "GenPoly/Lvalue.hpp" // for generalizedLvalue
34#include "GenPoly/ScopedSet.hpp" // for ScopedSet
35#include "GenPoly/ScrubTypeVars.hpp" // for scrubTypeVars, scrubAllTypeVars
36#include "ResolvExpr/Unify.hpp" // for typesCompatible
37#include "SymTab/Mangler.hpp" // for mangle, mangleType
38
39namespace GenPoly {
40
41namespace {
42
43/// The layout type is used to represent sizes, alignments and offsets.
44ast::BasicType * makeLayoutType() {
45 return new ast::BasicType( ast::BasicKind::LongUnsignedInt );
46}
47
48/// Fixed version of layout type (just adding a 'C' in C++ style).
49ast::BasicType * makeLayoutCType() {
50 return new ast::BasicType( ast::BasicKind::LongUnsignedInt,
51 ast::CV::Qualifiers( ast::CV::Const ) );
52}
53
54// --------------------------------------------------------------------------
55/// Adds layout-generation functions to polymorphic types.
56struct LayoutFunctionBuilder final :
57 public ast::WithDeclsToAdd<>,
58 public ast::WithShortCircuiting,
59 public ast::WithVisitorRef<LayoutFunctionBuilder> {
60 void previsit( ast::StructDecl const * decl );
61 void previsit( ast::UnionDecl const * decl );
62};
63
64/// Get all sized type declarations; those that affect a layout function.
65ast::vector<ast::TypeDecl> takeSizedParams(
66 ast::vector<ast::TypeDecl> const & decls ) {
67 ast::vector<ast::TypeDecl> sizedParams;
68 for ( ast::ptr<ast::TypeDecl> const & decl : decls ) {
69 if ( decl->isComplete() ) {
70 sizedParams.emplace_back( decl );
71 }
72 }
73 return sizedParams;
74}
75
76/// Adds parameters for otype size and alignment to a function type.
77void addSTypeParams(
78 ast::vector<ast::DeclWithType> & params,
79 ast::vector<ast::TypeDecl> const & sizedParams ) {
80 for ( ast::ptr<ast::TypeDecl> const & sizedParam : sizedParams ) {
81 ast::TypeInstType inst( sizedParam );
82 std::string paramName = Mangle::mangleType( &inst );
83 params.emplace_back( new ast::ObjectDecl(
84 sizedParam->location,
85 sizeofName( paramName ),
86 makeLayoutCType()
87 ) );
88 params.emplace_back( new ast::ObjectDecl(
89 sizedParam->location,
90 alignofName( paramName ),
91 makeLayoutCType()
92 ) );
93 }
94}
95
96ast::Type * makeLayoutOutType() {
97 return new ast::PointerType( makeLayoutType() );
98}
99
100struct LayoutData {
101 ast::FunctionDecl * function;
102 ast::ObjectDecl * sizeofParam;
103 ast::ObjectDecl * alignofParam;
104 ast::ObjectDecl * offsetofParam;
105};
106
107LayoutData buildLayoutFunction(
108 CodeLocation const & location, ast::AggregateDecl const * aggr,
109 ast::vector<ast::TypeDecl> const & sizedParams,
110 bool isInFunction, bool isStruct ) {
111 ast::ObjectDecl * sizeParam = new ast::ObjectDecl(
112 location,
113 sizeofName( aggr->name ),
114 makeLayoutOutType()
115 );
116 ast::ObjectDecl * alignParam = new ast::ObjectDecl(
117 location,
118 alignofName( aggr->name ),
119 makeLayoutOutType()
120 );
121 ast::ObjectDecl * offsetParam = nullptr;
122 ast::vector<ast::DeclWithType> params = { sizeParam, alignParam };
123 if ( isStruct ) {
124 offsetParam = new ast::ObjectDecl(
125 location,
126 offsetofName( aggr->name ),
127 makeLayoutOutType()
128 );
129 params.push_back( offsetParam );
130 }
131 addSTypeParams( params, sizedParams );
132
133 // Routines at global scope marked "static" to prevent multiple
134 // definitions is separate translation units because each unit generates
135 // copies of the default routines for each aggregate.
136 ast::FunctionDecl * layoutDecl = new ast::FunctionDecl(
137 location,
138 layoutofName( aggr ),
139 {}, // forall
140 {}, // assertions
141 std::move( params ),
142 {}, // returns
143 new ast::CompoundStmt( location ),
144 isInFunction ? ast::Storage::Classes() : ast::Storage::Static,
145 ast::Linkage::AutoGen,
146 {}, // attrs
147 ast::Function::Inline,
148 ast::FixedArgs
149 );
150 layoutDecl->fixUniqueId();
151 return LayoutData{ layoutDecl, sizeParam, alignParam, offsetParam };
152}
153
154/// Makes a binary operation.
155ast::Expr * makeOp( CodeLocation const & location, std::string const & name,
156 ast::Expr const * lhs, ast::Expr const * rhs ) {
157 return new ast::UntypedExpr( location,
158 new ast::NameExpr( location, name ), { lhs, rhs } );
159}
160
161/// Make a binary operation and wrap it in a statement.
162ast::Stmt * makeOpStmt( CodeLocation const & location, std::string const & name,
163 ast::Expr const * lhs, ast::Expr const * rhs ) {
164 return new ast::ExprStmt( location, makeOp( location, name, lhs, rhs ) );
165}
166
167/// Returns the dereference of a local pointer variable.
168ast::Expr * derefVar(
169 CodeLocation const & location, ast::ObjectDecl const * var ) {
170 return ast::UntypedExpr::createDeref( location,
171 new ast::VariableExpr( location, var ) );
172}
173
174/// Makes an if-statement with a single-expression then and no else.
175ast::Stmt * makeCond( CodeLocation const & location,
176 ast::Expr const * cond, ast::Expr const * thenPart ) {
177 return new ast::IfStmt( location,
178 cond, new ast::ExprStmt( location, thenPart ), nullptr );
179}
180
181/// Makes a statement that aligns lhs to rhs (rhs should be an integer
182/// power of two).
183ast::Stmt * makeAlignTo( CodeLocation const & location,
184 ast::Expr const * lhs, ast::Expr const * rhs ) {
185 // Check that the lhs is zeroed out to the level of rhs.
186 ast::Expr * ifCond = makeOp( location, "?&?", lhs,
187 makeOp( location, "?-?", rhs,
188 ast::ConstantExpr::from_ulong( location, 1 ) ) );
189 // If not aligned, increment to alignment.
190 ast::Expr * ifExpr = makeOp( location, "?+=?", ast::deepCopy( lhs ),
191 makeOp( location, "?-?", ast::deepCopy( rhs ),
192 ast::deepCopy( ifCond ) ) );
193 return makeCond( location, ifCond, ifExpr );
194}
195
196/// Makes a statement that assigns rhs to lhs if lhs < rhs.
197ast::Stmt * makeAssignMax( CodeLocation const & location,
198 ast::Expr const * lhs, ast::Expr const * rhs ) {
199 return makeCond( location,
200 makeOp( location, "?<?", ast::deepCopy( lhs ), ast::deepCopy( rhs ) ),
201 makeOp( location, "?=?", lhs, rhs ) );
202}
203
204void LayoutFunctionBuilder::previsit( ast::StructDecl const * decl ) {
205 // Do not generate layout function for empty tag structures.
206 visit_children = false;
207 if ( decl->members.empty() ) return;
208
209 // Get parameters that can change layout, exiting early if none.
210 ast::vector<ast::TypeDecl> sizedParams =
211 takeSizedParams( decl->params );
212 if ( sizedParams.empty() ) return;
213
214 CodeLocation const & location = decl->location;
215
216 // Build layout function signature.
217 LayoutData layout = buildLayoutFunction(
218 location, decl, sizedParams, isInFunction(), true );
219 ast::FunctionDecl * layoutDecl = layout.function;
220 // Also return these or extract them from the parameter list?
221 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
222 ast::ObjectDecl const * alignofParam = layout.alignofParam;
223 ast::ObjectDecl const * offsetofParam = layout.offsetofParam;
224 assert( nullptr != layout.offsetofParam );
225
226 // Calculate structure layout in function body.
227 // Initialize size and alignment to 0 and 1
228 // (Will have at least one member to update size).
229 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
230 kids.emplace_back( makeOpStmt( location, "?=?",
231 derefVar( location, sizeofParam ),
232 ast::ConstantExpr::from_ulong( location, 0 )
233 ) );
234 kids.emplace_back( makeOpStmt( location, "?=?",
235 derefVar( location, alignofParam ),
236 ast::ConstantExpr::from_ulong( location, 1 )
237 ) );
238 // TODO: Polymorphic types will be out of the struct declaration scope.
239 // This breaks invariants until it is corrected later.
240 for ( auto const & member : enumerate( decl->members ) ) {
241 auto dwt = member.val.strict_as<ast::DeclWithType>();
242 ast::Type const * memberType = dwt->get_type();
243
244 if ( 0 < member.idx ) {
245 // Make sure all later members have padding to align them.
246 kids.emplace_back( makeAlignTo( location,
247 derefVar( location, sizeofParam ),
248 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
249 ) );
250 }
251
252 // Place current size in the current offset index.
253 kids.emplace_back( makeOpStmt( location, "?=?",
254 makeOp( location, "?[?]",
255 new ast::VariableExpr( location, offsetofParam ),
256 ast::ConstantExpr::from_ulong( location, member.idx ) ),
257 derefVar( location, sizeofParam ) ) );
258
259 // Add member size to current size.
260 kids.emplace_back( makeOpStmt( location, "?+=?",
261 derefVar( location, sizeofParam ),
262 new ast::SizeofExpr( location, ast::deepCopy( memberType ) ) ) );
263
264 // Take max of member alignment and global alignment.
265 // (As align is always 2^n, this will always be a multiple of both.)
266 kids.emplace_back( makeAssignMax( location,
267 derefVar( location, alignofParam ),
268 new ast::AlignofExpr( location, ast::deepCopy( memberType ) ) ) );
269 }
270 // Make sure the type is end-padded to a multiple of its alignment.
271 kids.emplace_back( makeAlignTo( location,
272 derefVar( location, sizeofParam ),
273 derefVar( location, alignofParam ) ) );
274
275 declsToAddAfter.emplace_back( layoutDecl );
276}
277
278void LayoutFunctionBuilder::previsit( ast::UnionDecl const * decl ) {
279 visit_children = false;
280 // Do not generate layout function for empty tag unions.
281 if ( decl->members.empty() ) return;
282
283 // Get parameters that can change layout, exiting early if none.
284 ast::vector<ast::TypeDecl> sizedParams =
285 takeSizedParams( decl->params );
286 if ( sizedParams.empty() ) return;
287
288 CodeLocation const & location = decl->location;
289
290 // Build layout function signature.
291 LayoutData layout = buildLayoutFunction(
292 location, decl, sizedParams, isInFunction(), false );
293 ast::FunctionDecl * layoutDecl = layout.function;
294 // Also return these or extract them from the parameter list?
295 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
296 ast::ObjectDecl const * alignofParam = layout.alignofParam;
297 assert( nullptr == layout.offsetofParam );
298
299 // Calculate union layout in function body.
300 // Both are simply the maximum for union (actually align is always the
301 // LCM, but with powers of two that is also the maximum).
302 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
303 kids.emplace_back( makeOpStmt( location,
304 "?=?", derefVar( location, sizeofParam ),
305 ast::ConstantExpr::from_ulong( location, 1 )
306 ) );
307 kids.emplace_back( makeOpStmt( location,
308 "?=?", derefVar( location, alignofParam ),
309 ast::ConstantExpr::from_ulong( location, 1 )
310 ) );
311 // TODO: Polymorphic types will be out of the union declaration scope.
312 // This breaks invariants until it is corrected later.
313 for ( auto const & member : decl->members ) {
314 auto dwt = member.strict_as<ast::DeclWithType>();
315 ast::Type const * memberType = dwt->get_type();
316
317 // Take max member size and global size.
318 kids.emplace_back( makeAssignMax( location,
319 derefVar( location, sizeofParam ),
320 new ast::SizeofExpr( location, ast::deepCopy( memberType ) )
321 ) );
322
323 // Take max of member alignment and global alignment.
324 kids.emplace_back( makeAssignMax( location,
325 derefVar( location, alignofParam ),
326 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
327 ) );
328 }
329 kids.emplace_back( makeAlignTo( location,
330 derefVar( location, sizeofParam ),
331 derefVar( location, alignofParam ) ) );
332
333 declsToAddAfter.emplace_back( layoutDecl );
334}
335
336// --------------------------------------------------------------------------
337/// Application expression transformer.
338/// * Replaces polymorphic return types with out-parameters.
339/// * Replaces call to polymorphic functions with adapter calls which handles
340/// dynamic arguments and return values.
341/// * Adds appropriate type variables to the function calls.
342struct CallAdapter final :
343 public ast::WithConstTypeSubstitution,
344 public ast::WithGuards,
345 public ast::WithShortCircuiting,
346 public ast::WithStmtsToAdd<>,
347 public ast::WithVisitorRef<CallAdapter> {
348 CallAdapter();
349
350 void previsit( ast::Decl const * decl );
351 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
352 void previsit( ast::TypeDecl const * decl );
353 void previsit( ast::CommaExpr const * expr );
354 ast::Expr const * postvisit( ast::ApplicationExpr const * expr );
355 ast::Expr const * postvisit( ast::UntypedExpr const * expr );
356 void previsit( ast::AddressExpr const * expr );
357 ast::Expr const * postvisit( ast::AddressExpr const * expr );
358 ast::ReturnStmt const * previsit( ast::ReturnStmt const * stmt );
359
360 void beginScope();
361 void endScope();
362private:
363 // Many helpers here use a mutable ApplicationExpr as an in/out parameter
364 // instead of using the return value, to save on mutates and free up the
365 // return value.
366
367 /// Passes extra layout arguments for sized polymorphic type parameters.
368 void passTypeVars(
369 ast::ApplicationExpr * expr,
370 ast::vector<ast::Expr> & extraArgs,
371 ast::FunctionType const * funcType );
372 /// Wraps a function application with a new temporary for the
373 /// out-parameter return value.
374 ast::Expr const * addRetParam(
375 ast::ApplicationExpr * expr, ast::Type const * retType );
376 /// Wraps a function application returning a polymorphic type with a new
377 /// temporary for the out-parameter return value.
378 ast::Expr const * addDynRetParam(
379 ast::ApplicationExpr * expr, ast::Type const * polyType );
380 /// Modify a call so it passes the function through the correct adapter.
381 ast::Expr const * applyAdapter(
382 ast::ApplicationExpr * expr,
383 ast::FunctionType const * function );
384 /// Convert a single argument into its boxed form to pass the parameter.
385 void boxParam( ast::ptr<ast::Expr> & arg,
386 ast::Type const * formal, TypeVarMap const & exprTyVars );
387 /// Box every argument from arg forward, matching the functionType
388 /// parameter list. arg should point into expr's argument list.
389 void boxParams(
390 ast::ApplicationExpr * expr,
391 ast::Type const * polyRetType,
392 ast::FunctionType const * function,
393 const TypeVarMap & typeVars );
394 /// Adds the inferred parameters derived from the assertions of the
395 /// expression to the call.
396 void addInferredParams(
397 ast::ApplicationExpr * expr,
398 ast::vector<ast::Expr> & extraArgs,
399 ast::FunctionType const * functionType,
400 const TypeVarMap & typeVars );
401 /// Stores assignment operators from assertion list in
402 /// local map of assignment operations.
403 void passAdapters(
404 ast::ApplicationExpr * expr,
405 ast::FunctionType const * type,
406 const TypeVarMap & typeVars );
407 /// Create an adapter function based on the type of the adaptee and the
408 /// real type with the type substitutions applied.
409 ast::FunctionDecl * makeAdapter(
410 ast::FunctionType const * adaptee,
411 ast::FunctionType const * realType,
412 std::string const & mangleName,
413 TypeVarMap const & typeVars,
414 CodeLocation const & location ) const;
415 /// Replaces intrinsic operator functions with their arithmetic desugaring.
416 ast::Expr const * handleIntrinsics( ast::ApplicationExpr const * );
417 /// Inserts a new temporary variable into the current scope with an
418 /// auto-generated name.
419 ast::ObjectDecl * makeTemporary(
420 CodeLocation const & location, ast::Type const * type );
421
422 TypeVarMap scopeTypeVars;
423 ScopedMap< std::string, ast::DeclWithType const * > adapters;
424 std::map< ast::ApplicationExpr const *, ast::Expr const * > retVals;
425 ast::DeclWithType const * retval;
426 UniqueName tmpNamer;
427};
428
429/// Replaces a polymorphic type with its concrete equivalant under the
430/// current environment (returns itself if concrete).
431/// If `doClone` is set to false, will not clone interior types
432ast::Type const * replaceWithConcrete(
433 ast::Type const * type,
434 ast::TypeSubstitution const & typeSubs,
435 bool doCopy = true );
436
437/// Replaces all the type parameters of a generic type with their
438/// concrete equivalents under the current environment.
439void replaceParametersWithConcrete(
440 ast::vector<ast::Expr> & params,
441 ast::TypeSubstitution const & typeSubs ) {
442 for ( ast::ptr<ast::Expr> & paramExpr : params ) {
443 ast::TypeExpr const * param = paramExpr.as<ast::TypeExpr>();
444 assertf( param, "Aggregate parameters should be type expressions." );
445 paramExpr = ast::mutate_field( param, &ast::TypeExpr::type,
446 replaceWithConcrete( param->type.get(), typeSubs, false ) );
447 }
448}
449
450ast::Type const * replaceWithConcrete(
451 ast::Type const * type,
452 ast::TypeSubstitution const & typeSubs,
453 bool doCopy ) {
454 if ( auto instType = dynamic_cast<ast::TypeInstType const *>( type ) ) {
455 ast::Type const * concrete = typeSubs.lookup( instType );
456 return ( nullptr != concrete ) ? concrete : instType;
457 } else if ( auto structType =
458 dynamic_cast<ast::StructInstType const *>( type ) ) {
459 ast::StructInstType * newType =
460 doCopy ? ast::deepCopy( structType ) : ast::mutate( structType );
461 replaceParametersWithConcrete( newType->params, typeSubs );
462 return newType;
463 } else if ( auto unionType =
464 dynamic_cast<ast::UnionInstType const *>( type ) ) {
465 ast::UnionInstType * newType =
466 doCopy ? ast::deepCopy( unionType ) : ast::mutate( unionType );
467 replaceParametersWithConcrete( newType->params, typeSubs );
468 return newType;
469 } else {
470 return type;
471 }
472}
473
474std::string makePolyMonoSuffix(
475 ast::FunctionType const * function,
476 TypeVarMap const & typeVars ) {
477 // If the return type or a parameter type involved polymorphic types,
478 // then the adapter will need to take those polymorphic types as pointers.
479 // Therefore, there can be two different functions with the same mangled
480 // name, so we need to further mangle the names.
481 std::stringstream name;
482 for ( auto ret : function->returns ) {
483 name << ( isPolyType( ret, typeVars ) ? 'P' : 'M' );
484 }
485 name << '_';
486 for ( auto arg : function->params ) {
487 name << ( isPolyType( arg, typeVars ) ? 'P' : 'M' );
488 }
489 return name.str();
490}
491
492std::string mangleAdapterName(
493 ast::FunctionType const * function,
494 TypeVarMap const & typeVars ) {
495 return Mangle::mangle( function, {} )
496 + makePolyMonoSuffix( function, typeVars );
497}
498
499std::string makeAdapterName( std::string const & mangleName ) {
500 return "_adapter" + mangleName;
501}
502
503void makeRetParam( ast::FunctionType * type ) {
504 ast::ptr<ast::Type> & retParam = type->returns.front();
505
506 // Make a new parameter that is a pointer to the type of the old return value.
507 retParam = new ast::PointerType( retParam.get() );
508 type->params.emplace( type->params.begin(), retParam );
509
510 // We don't need the return value any more.
511 type->returns.clear();
512}
513
514ast::FunctionType * makeAdapterType(
515 ast::FunctionType const * adaptee,
516 TypeVarMap const & typeVars ) {
517 ast::FunctionType * adapter = ast::deepCopy( adaptee );
518 if ( isDynRet( adapter, typeVars ) ) {
519 makeRetParam( adapter );
520 }
521 adapter->params.emplace( adapter->params.begin(),
522 new ast::PointerType( new ast::FunctionType( ast::VariableArgs ) )
523 );
524 return adapter;
525}
526
527CallAdapter::CallAdapter() : tmpNamer( "_temp" ) {}
528
529void CallAdapter::previsit( ast::Decl const * ) {
530 // Prevent type declaration information from leaking out.
531 GuardScope( scopeTypeVars );
532}
533
534ast::FunctionDecl const * CallAdapter::previsit( ast::FunctionDecl const * decl ) {
535 // Prevent type declaration information from leaking out.
536 GuardScope( scopeTypeVars );
537
538 if ( nullptr == decl->stmts ) {
539 return decl;
540 }
541
542 GuardValue( retval );
543
544 // Process polymorphic return value.
545 retval = nullptr;
546 ast::FunctionType const * type = decl->type;
547 if ( isDynRet( type ) && decl->linkage != ast::Linkage::C ) {
548 retval = decl->returns.front();
549
550 // Give names to unnamed return values.
551 if ( "" == retval->name ) {
552 auto mutRet = ast::mutate( retval );
553 mutRet->name = "_retparam";
554 mutRet->linkage = ast::Linkage::C;
555 retval = mutRet;
556 decl = ast::mutate_field_index( decl,
557 &ast::FunctionDecl::returns, 0, mutRet );
558 }
559 }
560
561 // The formal_usage/expr_id values may be off if we get them from the
562 // type, trying the declaration instead.
563 makeTypeVarMap( type, scopeTypeVars );
564
565 // Get all needed adapters from the call. We will forward them.
566 ast::vector<ast::FunctionType> functions;
567 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
568 auto atype = assertion->result.get();
569 findFunction( atype, functions, scopeTypeVars, needsAdapter );
570 }
571
572 for ( ast::ptr<ast::Type> const & arg : type->params ) {
573 findFunction( arg, functions, scopeTypeVars, needsAdapter );
574 }
575
576 for ( auto funcType : functions ) {
577 std::string mangleName = mangleAdapterName( funcType, scopeTypeVars );
578 if ( adapters.contains( mangleName ) ) continue;
579 std::string adapterName = makeAdapterName( mangleName );
580 // NODE: This creates floating nodes, breaking invariants.
581 // This is corrected in the RewireAdapters sub-pass.
582 adapters.insert(
583 mangleName,
584 new ast::ObjectDecl(
585 decl->location,
586 adapterName,
587 new ast::PointerType(
588 makeAdapterType( funcType, scopeTypeVars ) ),
589 nullptr, // init
590 ast::Storage::Classes(),
591 ast::Linkage::C
592 )
593 );
594 }
595
596 return decl;
597}
598
599void CallAdapter::previsit( ast::TypeDecl const * decl ) {
600 addToTypeVarMap( decl, scopeTypeVars );
601}
602
603void CallAdapter::previsit( ast::CommaExpr const * expr ) {
604 // Attempting to find application expressions that were mutated by the
605 // copy constructor passes to use an explicit return variable, so that
606 // the variable can be reused as a parameter to the call rather than
607 // creating a new temporary variable. Previously this step was an
608 // optimization, but with the introduction of tuples and UniqueExprs,
609 // it is necessary to ensure that they use the same variable.
610 // Essentially, looking for pattern:
611 // (x=f(...), x)
612 // To compound the issue, the right side can be *x, etc.
613 // because of lvalue-returning functions
614 if ( auto assign = expr->arg1.as<ast::UntypedExpr>() ) {
615 if ( CodeGen::isAssignment( ast::getFunctionName( assign ) ) ) {
616 assert( 2 == assign->args.size() );
617 if ( auto app = assign->args.back().as<ast::ApplicationExpr>() ) {
618 // First argument is assignable, so it must be an lvalue,
619 // so it should be legal to takes its address.
620 retVals.insert_or_assign( app, assign->args.front() );
621 }
622 }
623 }
624}
625
626ast::Expr const * CallAdapter::postvisit( ast::ApplicationExpr const * expr ) {
627 assert( expr->func->result );
628 ast::FunctionType const * function = getFunctionType( expr->func->result );
629 assertf( function, "ApplicationExpr has non-function type %s",
630 toCString( expr->func->result ) );
631
632 if ( auto newExpr = handleIntrinsics( expr ) ) {
633 return newExpr;
634 }
635
636 ast::ApplicationExpr * mutExpr = ast::mutate( expr );
637 ast::Expr const * ret = expr;
638
639 TypeVarMap exprTypeVars;
640 makeTypeVarMap( function, exprTypeVars );
641 auto dynRetType = isDynRet( function, exprTypeVars );
642
643 // NOTE: addDynRetParam needs to know the actual (generated) return type
644 // so it can make a temporary variable, so pass the result type form the
645 // `expr` `passTypeVars` needs to know the program-text return type ([ex]
646 // the distinction between _conc_T30 and T3(int)) concRetType may not be
647 // a good name in one or both of these places.
648 if ( dynRetType ) {
649 ast::Type const * result = mutExpr->result;
650 ast::Type const * concRetType = result->isVoid() ? nullptr : result;
651 // [Comment from before translation.]
652 // Used to use dynRetType instead of concRetType.
653 ret = addDynRetParam( mutExpr, concRetType );
654 } else if ( needsAdapter( function, scopeTypeVars )
655 && !needsAdapter( function, exprTypeVars ) ) {
656 // Change the application so it calls the adapter rather than the
657 // passed function.
658 ret = applyAdapter( mutExpr, function );
659 }
660
661 ast::vector<ast::Expr> prependArgs;
662 passTypeVars( mutExpr, prependArgs, function );
663 addInferredParams( mutExpr, prependArgs, function, exprTypeVars );
664
665 boxParams( mutExpr, dynRetType, function, exprTypeVars );
666 spliceBegin( mutExpr->args, prependArgs );
667 passAdapters( mutExpr, function, exprTypeVars );
668
669 return ret;
670}
671
672// Get the referent (base type of pointer). Must succeed.
673ast::Type const * getReferentType( ast::ptr<ast::Type> const & type ) {
674 auto pointerType = type.strict_as<ast::PointerType>();
675 assertf( pointerType->base, "getReferentType: pointer base is nullptr." );
676 return pointerType->base.get();
677}
678
679bool isPolyDeref( ast::UntypedExpr const * expr,
680 TypeVarMap const & typeVars,
681 ast::TypeSubstitution const * typeSubs ) {
682 auto name = expr->func.as<ast::NameExpr>();
683 if ( name && "*?" == name->name ) {
684 // It's a deref.
685 // Must look under the * (and strip its ptr-ty) because expr's
686 // result could be ar/ptr-decayed. If expr.inner:T(*)[n], then
687 // expr is a poly deref, even though expr:T*, which is not poly.
688 auto referentType = getReferentType( expr->args.front()->result );
689 return isPolyType( referentType, typeVars, typeSubs );
690 }
691 return false;
692}
693
694ast::Expr const * CallAdapter::postvisit( ast::UntypedExpr const * expr ) {
695 if ( isPolyDeref( expr, scopeTypeVars, typeSubs ) ) {
696 return expr->args.front();
697 }
698 return expr;
699}
700
701void CallAdapter::previsit( ast::AddressExpr const * ) {
702 visit_children = false;
703}
704
705ast::Expr const * CallAdapter::postvisit( ast::AddressExpr const * expr ) {
706 assert( expr->arg->result );
707 assert( !expr->arg->result->isVoid() );
708
709 bool doesNeedAdapter = false;
710 if ( auto un = expr->arg.as<ast::UntypedExpr>() ) {
711 if ( isPolyDeref( un, scopeTypeVars, typeSubs ) ) {
712 if ( auto app = un->args.front().as<ast::ApplicationExpr>() ) {
713 assert( app->func->result );
714 auto function = getFunctionType( app->func->result );
715 assert( function );
716 doesNeedAdapter = needsAdapter( function, scopeTypeVars );
717 }
718 }
719 }
720 // isPolyType check needs to happen before mutating expr arg,
721 // so pull it forward out of the if condition.
722 expr = ast::mutate_field( expr, &ast::AddressExpr::arg,
723 expr->arg->accept( *visitor ) );
724 // But must happen after mutate, since argument might change
725 // (ex. intrinsic *?, ?[?]) re-evaluate above comment.
726 bool polyType = isPolyType( expr->arg->result, scopeTypeVars, typeSubs );
727 if ( polyType || doesNeedAdapter ) {
728 ast::Expr * ret = ast::mutate( expr->arg.get() );
729 ret->result = ast::deepCopy( expr->result );
730 return ret;
731 } else {
732 return expr;
733 }
734}
735
736ast::ReturnStmt const * CallAdapter::previsit( ast::ReturnStmt const * stmt ) {
737 // Since retval is set when the return type is dynamic, this function
738 // should have been converted to void return & out parameter.
739 if ( retval && stmt->expr ) {
740 assert( stmt->expr->result );
741 assert( !stmt->expr->result->isVoid() );
742 return ast::mutate_field( stmt, &ast::ReturnStmt::expr, nullptr );
743 }
744 return stmt;
745}
746
747void CallAdapter::beginScope() {
748 adapters.beginScope();
749}
750
751void CallAdapter::endScope() {
752 adapters.endScope();
753}
754
755/// Find instances of polymorphic type parameters.
756struct PolyFinder {
757 TypeVarMap const & typeVars;
758 bool result = false;
759 PolyFinder( TypeVarMap const & tvs ) : typeVars( tvs ) {}
760
761 void previsit( ast::TypeInstType const * type ) {
762 if ( isPolyType( type, typeVars ) ) result = true;
763 }
764};
765
766/// True if these is an instance of a polymorphic type parameter in the type.
767bool hasPolymorphism( ast::Type const * type, TypeVarMap const & typeVars ) {
768 return ast::Pass<PolyFinder>::read( type, typeVars );
769}
770
771void CallAdapter::passTypeVars(
772 ast::ApplicationExpr * expr,
773 ast::vector<ast::Expr> & extraArgs,
774 ast::FunctionType const * function ) {
775 assert( typeSubs );
776 // Pass size/align for type variables.
777 for ( ast::ptr<ast::TypeInstType> const & typeVar : function->forall ) {
778 if ( !typeVar->base->isComplete() ) continue;
779 ast::Type const * concrete = typeSubs->lookup( typeVar );
780 if ( !concrete ) {
781 // Should this be an assertion?
782 SemanticError( expr->location, "\nunbound type variable %s in application %s",
783 toString( typeSubs ).c_str(), typeVar->typeString().c_str() );
784 }
785 extraArgs.emplace_back(
786 new ast::SizeofExpr( expr->location, ast::deepCopy( concrete ) ) );
787 extraArgs.emplace_back(
788 new ast::AlignofExpr( expr->location, ast::deepCopy( concrete ) ) );
789 }
790}
791
792ast::Expr const * CallAdapter::addRetParam(
793 ast::ApplicationExpr * expr, ast::Type const * retType ) {
794 // Create temporary to hold return value of polymorphic function and
795 // produce that temporary as a result using a comma expression.
796 assert( retType );
797
798 ast::Expr * paramExpr = nullptr;
799 // Try to use existing return value parameter if it exists,
800 // otherwise create a new temporary.
801 if ( retVals.count( expr ) ) {
802 paramExpr = ast::deepCopy( retVals[ expr ] );
803 } else {
804 auto newObj = makeTemporary( expr->location, ast::deepCopy( retType ) );
805 paramExpr = new ast::VariableExpr( expr->location, newObj );
806 }
807 ast::Expr * retExpr = ast::deepCopy( paramExpr );
808
809 // If the type of the temporary is not polpmorphic, box temporary by
810 // taking its address; otherwise the temporary is already boxed and can
811 // be used directly.
812 if ( !isPolyType( paramExpr->result, scopeTypeVars, typeSubs ) ) {
813 paramExpr = new ast::AddressExpr( paramExpr->location, paramExpr );
814 }
815 // Add argument to function call.
816 expr->args.insert( expr->args.begin(), paramExpr );
817 // Build a comma expression to call the function and return a value.
818 ast::CommaExpr * comma = new ast::CommaExpr(
819 expr->location, expr, retExpr );
820 comma->env = expr->env;
821 expr->env = nullptr;
822 return comma;
823}
824
825ast::Expr const * CallAdapter::addDynRetParam(
826 ast::ApplicationExpr * expr, ast::Type const * polyType ) {
827 assert( typeSubs );
828 ast::Type const * concrete = replaceWithConcrete( polyType, *typeSubs );
829 // Add out-parameter for return value.
830 return addRetParam( expr, concrete );
831}
832
833ast::Expr const * CallAdapter::applyAdapter(
834 ast::ApplicationExpr * expr,
835 ast::FunctionType const * function ) {
836 ast::Expr const * ret = expr;
837 if ( isDynRet( function, scopeTypeVars ) ) {
838 ret = addRetParam( expr, function->returns.front() );
839 }
840 std::string mangleName = mangleAdapterName( function, scopeTypeVars );
841 std::string adapterName = makeAdapterName( mangleName );
842
843 // Cast adaptee to `void (*)()`, since it may have any type inside a
844 // polymorphic function.
845 ast::Type const * adapteeType = new ast::PointerType(
846 new ast::FunctionType( ast::VariableArgs ) );
847 expr->args.insert( expr->args.begin(),
848 new ast::CastExpr( expr->location, expr->func, adapteeType ) );
849 // The result field is never set on NameExpr. / Now it is.
850 auto head = new ast::NameExpr( expr->location, adapterName );
851 head->result = ast::deepCopy( adapteeType );
852 expr->func = head;
853
854 return ret;
855}
856
857/// Cast parameters to polymorphic functions so that types are replaced with
858/// `void *` if they are type parameters in the formal type.
859/// This gets rid of warnings from gcc.
860void addCast(
861 ast::ptr<ast::Expr> & actual,
862 ast::Type const * formal,
863 TypeVarMap const & typeVars ) {
864 // Type contains polymorphism, but isn't exactly a polytype, in which
865 // case it has some real actual type (ex. unsigned int) and casting to
866 // `void *` is wrong.
867 if ( hasPolymorphism( formal, typeVars )
868 && !isPolyType( formal, typeVars ) ) {
869 ast::Type const * newType = ast::deepCopy( formal );
870 newType = scrubTypeVars( newType, typeVars );
871 actual = new ast::CastExpr( actual->location, actual, newType );
872 }
873}
874
875void CallAdapter::boxParam( ast::ptr<ast::Expr> & arg,
876 ast::Type const * param, TypeVarMap const & exprTypeVars ) {
877 assertf( arg->result, "arg does not have result: %s", toCString( arg ) );
878 addCast( arg, param, exprTypeVars );
879 if ( !needsBoxing( param, arg->result, exprTypeVars, typeSubs ) ) {
880 return;
881 }
882 CodeLocation const & location = arg->location;
883
884 if ( arg->get_lvalue() ) {
885 // The argument expression may be CFA lvalue, but not C lvalue,
886 // so apply generalizedLvalue transformations.
887 // if ( auto var = dynamic_cast<ast::VariableExpr const *>( arg ) ) {
888 // if ( dynamic_cast<ast::ArrayType const *>( varExpr->var->get_type() ) ){
889 // // temporary hack - don't box arrays, because &arr is not the same as &arr[0]
890 // return;
891 // }
892 // }
893 arg = generalizedLvalue( new ast::AddressExpr( arg->location, arg ) );
894 if ( !ResolvExpr::typesCompatible( param, arg->result ) ) {
895 // Silence warnings by casting boxed parameters when the actually
896 // type does not match up with the formal type.
897 arg = new ast::CastExpr( location, arg, ast::deepCopy( param ) );
898 }
899 } else {
900 // Use type computed in unification to declare boxed variables.
901 ast::ptr<ast::Type> newType = ast::deepCopy( param );
902 if ( typeSubs ) typeSubs->apply( newType );
903 ast::ObjectDecl * newObj = makeTemporary( location, newType );
904 auto assign = ast::UntypedExpr::createCall( location, "?=?", {
905 new ast::VariableExpr( location, newObj ),
906 arg,
907 } );
908 stmtsToAddBefore.push_back( new ast::ExprStmt( location, assign ) );
909 arg = new ast::AddressExpr(
910 new ast::VariableExpr( location, newObj ) );
911 }
912}
913
914void CallAdapter::boxParams(
915 ast::ApplicationExpr * expr,
916 ast::Type const * polyRetType,
917 ast::FunctionType const * function,
918 const TypeVarMap & typeVars ) {
919 // Start at the beginning, but the return argument may have been added.
920 auto arg = expr->args.begin();
921 if ( polyRetType ) ++arg;
922
923 for ( auto param : function->params ) {
924 assertf( arg != expr->args.end(),
925 "boxParams: missing argument for param %s to %s in %s",
926 toCString( param ), toCString( function ), toCString( expr ) );
927 boxParam( *arg, param, typeVars );
928 ++arg;
929 }
930}
931
932void CallAdapter::addInferredParams(
933 ast::ApplicationExpr * expr,
934 ast::vector<ast::Expr> & extraArgs,
935 ast::FunctionType const * functionType,
936 TypeVarMap const & typeVars ) {
937 for ( auto assertion : functionType->assertions ) {
938 auto inferParam = expr->inferred.inferParams().find(
939 assertion->var->uniqueId );
940 assertf( inferParam != expr->inferred.inferParams().end(),
941 "addInferredParams missing inferred parameter: %s in: %s",
942 toCString( assertion ), toCString( expr ) );
943 ast::ptr<ast::Expr> newExpr = ast::deepCopy( inferParam->second.expr );
944 boxParam( newExpr, assertion->result, typeVars );
945 extraArgs.emplace_back( newExpr.release() );
946 }
947}
948
949/// Modifies the ApplicationExpr to accept adapter functions for its
950/// assertion and parameters, declares the required adapters.
951void CallAdapter::passAdapters(
952 ast::ApplicationExpr * expr,
953 ast::FunctionType const * type,
954 const TypeVarMap & exprTypeVars ) {
955 // Collect a list of function types passed as parameters or implicit
956 // parameters (assertions).
957 ast::vector<ast::Type> const & paramList = type->params;
958 ast::vector<ast::FunctionType> functions;
959
960 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
961 findFunction( assertion->result, functions, exprTypeVars, needsAdapter );
962 }
963 for ( ast::ptr<ast::Type> const & arg : paramList ) {
964 findFunction( arg, functions, exprTypeVars, needsAdapter );
965 }
966
967 // Parameter function types for which an appropriate adapter has been
968 // generated. We cannot use the types after applying substitutions,
969 // since two different parameter types may be unified to the same type.
970 std::set<std::string> adaptersDone;
971
972 CodeLocation const & location = expr->location;
973
974 for ( ast::ptr<ast::FunctionType> const & funcType : functions ) {
975 std::string mangleName = Mangle::mangle( funcType );
976
977 // Only attempt to create an adapter or pass one as a parameter if we
978 // haven't already done so for this pre-substitution parameter
979 // function type.
980 // The second part of the result if is if the element was inserted.
981 if ( !adaptersDone.insert( mangleName ).second ) continue;
982
983 // Apply substitution to type variables to figure out what the
984 // adapter's type should look like. (Copy to make the release safe.)
985 assert( typeSubs );
986 auto result = typeSubs->apply( ast::deepCopy( funcType ) );
987 ast::FunctionType * realType = ast::mutate( result.node.release() );
988 mangleName = Mangle::mangle( realType );
989 mangleName += makePolyMonoSuffix( funcType, exprTypeVars );
990
991 // Check if the adapter has already been created, or has to be.
992 using AdapterIter = decltype(adapters)::iterator;
993 AdapterIter adapter = adapters.find( mangleName );
994 if ( adapter == adapters.end() ) {
995 ast::FunctionDecl * newAdapter = makeAdapter(
996 funcType, realType, mangleName, exprTypeVars, location );
997 std::pair<AdapterIter, bool> answer =
998 adapters.insert( mangleName, newAdapter );
999 adapter = answer.first;
1000 stmtsToAddBefore.push_back(
1001 new ast::DeclStmt( location, newAdapter ) );
1002 }
1003 assert( adapter != adapters.end() );
1004
1005 // Add the approprate adapter as a parameter.
1006 expr->args.insert( expr->args.begin(),
1007 new ast::VariableExpr( location, adapter->second ) );
1008 }
1009}
1010
1011// Parameter and argument may be used wrong around here.
1012ast::Expr * makeAdapterArg(
1013 ast::DeclWithType const * param,
1014 ast::Type const * arg,
1015 ast::Type const * realParam,
1016 TypeVarMap const & typeVars,
1017 CodeLocation const & location ) {
1018 assert( param );
1019 assert( arg );
1020 assert( realParam );
1021 if ( isPolyType( realParam, typeVars ) && !isPolyType( arg ) ) {
1022 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref(
1023 location,
1024 new ast::CastExpr( location,
1025 new ast::VariableExpr( location, param ),
1026 new ast::PointerType( ast::deepCopy( arg ) )
1027 )
1028 );
1029 deref->result = ast::deepCopy( arg );
1030 return deref;
1031 }
1032 return new ast::VariableExpr( location, param );
1033}
1034
1035// This seems to be one of the problematic functions.
1036void addAdapterParams(
1037 ast::ApplicationExpr * adaptee,
1038 ast::vector<ast::Type>::const_iterator arg,
1039 ast::vector<ast::DeclWithType>::iterator param,
1040 ast::vector<ast::DeclWithType>::iterator paramEnd,
1041 ast::vector<ast::Type>::const_iterator realParam,
1042 TypeVarMap const & typeVars,
1043 CodeLocation const & location ) {
1044 UniqueName paramNamer( "_p" );
1045 for ( ; param != paramEnd ; ++param, ++arg, ++realParam ) {
1046 if ( "" == (*param)->name ) {
1047 auto mutParam = (*param).get_and_mutate();
1048 mutParam->name = paramNamer.newName();
1049 mutParam->linkage = ast::Linkage::C;
1050 }
1051 adaptee->args.push_back(
1052 makeAdapterArg( *param, *arg, *realParam, typeVars, location ) );
1053 }
1054}
1055
1056ast::FunctionDecl * CallAdapter::makeAdapter(
1057 ast::FunctionType const * adaptee,
1058 ast::FunctionType const * realType,
1059 std::string const & mangleName,
1060 TypeVarMap const & typeVars,
1061 CodeLocation const & location ) const {
1062 ast::FunctionType * adapterType = makeAdapterType( adaptee, typeVars );
1063 adapterType = ast::mutate( scrubTypeVars( adapterType, typeVars ) );
1064
1065 // Some of these names will be overwritten, but it gives a default.
1066 UniqueName pNamer( "_param" );
1067 UniqueName rNamer( "_ret" );
1068
1069 bool first = true;
1070
1071 ast::FunctionDecl * adapterDecl = new ast::FunctionDecl( location,
1072 makeAdapterName( mangleName ),
1073 {}, // forall
1074 {}, // assertions
1075 map_range<ast::vector<ast::DeclWithType>>( adapterType->params,
1076 [&pNamer, &location, &first]( ast::ptr<ast::Type> const & param ) {
1077 // [Trying to make the generated code match exactly more often.]
1078 if ( first ) {
1079 first = false;
1080 return new ast::ObjectDecl( location, "_adaptee", param );
1081 }
1082 return new ast::ObjectDecl( location, pNamer.newName(), param );
1083 } ),
1084 map_range<ast::vector<ast::DeclWithType>>( adapterType->returns,
1085 [&rNamer, &location]( ast::ptr<ast::Type> const & retval ) {
1086 return new ast::ObjectDecl( location, rNamer.newName(), retval );
1087 } ),
1088 nullptr, // stmts
1089 {}, // storage
1090 ast::Linkage::C
1091 );
1092
1093 ast::DeclWithType * adapteeDecl =
1094 adapterDecl->params.front().get_and_mutate();
1095 adapteeDecl->name = "_adaptee";
1096
1097 // Do not carry over attributes to real type parameters/return values.
1098 auto mutRealType = ast::mutate( realType );
1099 for ( ast::ptr<ast::Type> & decl : mutRealType->params ) {
1100 if ( decl->attributes.empty() ) continue;
1101 auto mut = ast::mutate( decl.get() );
1102 mut->attributes.clear();
1103 decl = mut;
1104 }
1105 for ( ast::ptr<ast::Type> & decl : mutRealType->returns ) {
1106 if ( decl->attributes.empty() ) continue;
1107 auto mut = ast::mutate( decl.get() );
1108 mut->attributes.clear();
1109 decl = mut;
1110 }
1111 realType = mutRealType;
1112
1113 ast::ApplicationExpr * adapteeApp = new ast::ApplicationExpr( location,
1114 new ast::CastExpr( location,
1115 new ast::VariableExpr( location, adapteeDecl ),
1116 new ast::PointerType( realType )
1117 )
1118 );
1119
1120 for ( auto const & [assertArg, assertParam, assertReal] : group_iterate(
1121 realType->assertions, adapterType->assertions, adaptee->assertions ) ) {
1122 adapteeApp->args.push_back( makeAdapterArg(
1123 assertParam->var, assertArg->var->get_type(),
1124 assertReal->var->get_type(), typeVars, location
1125 ) );
1126 }
1127
1128 ast::vector<ast::Type>::const_iterator
1129 arg = realType->params.begin(),
1130 param = adapterType->params.begin(),
1131 realParam = adaptee->params.begin();
1132 ast::vector<ast::DeclWithType>::iterator
1133 paramDecl = adapterDecl->params.begin();
1134 // Skip adaptee parameter in the adapter type.
1135 ++param;
1136 ++paramDecl;
1137
1138 ast::Stmt * bodyStmt;
1139 // Returns void/nothing.
1140 if ( realType->returns.empty() ) {
1141 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1142 realParam, typeVars, location );
1143 bodyStmt = new ast::ExprStmt( location, adapteeApp );
1144 // Returns a polymorphic type.
1145 } else if ( isDynType( adaptee->returns.front(), typeVars ) ) {
1146 ast::UntypedExpr * assign = new ast::UntypedExpr( location,
1147 new ast::NameExpr( location, "?=?" ) );
1148 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref( location,
1149 new ast::CastExpr( location,
1150 new ast::VariableExpr( location, *paramDecl++ ),
1151 new ast::PointerType(
1152 ast::deepCopy( realType->returns.front() ) ) ) );
1153 assign->args.push_back( deref );
1154 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1155 realParam, typeVars, location );
1156 assign->args.push_back( adapteeApp );
1157 bodyStmt = new ast::ExprStmt( location, assign );
1158 // Adapter for a function that returns a monomorphic value.
1159 } else {
1160 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1161 realParam, typeVars, location );
1162 bodyStmt = new ast::ReturnStmt( location, adapteeApp );
1163 }
1164
1165 adapterDecl->stmts = new ast::CompoundStmt( location, { bodyStmt } );
1166 return adapterDecl;
1167}
1168
1169ast::Expr const * makeIncrDecrExpr(
1170 CodeLocation const & location,
1171 ast::ApplicationExpr const * expr,
1172 ast::Type const * polyType,
1173 bool isIncr ) {
1174 ast::NameExpr * opExpr =
1175 new ast::NameExpr( location, isIncr ? "?+=?" : "?-=?" );
1176 ast::UntypedExpr * addAssign = new ast::UntypedExpr( location, opExpr );
1177 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1178 addAssign->args.push_back( address->arg );
1179 } else {
1180 addAssign->args.push_back( expr->args.front() );
1181 }
1182 addAssign->args.push_back( new ast::NameExpr( location,
1183 sizeofName( Mangle::mangleType( polyType ) ) ) );
1184 addAssign->result = ast::deepCopy( expr->result );
1185 addAssign->env = expr->env ? expr->env : addAssign->env;
1186 return addAssign;
1187}
1188
1189/// Handles intrinsic functions for postvisit ApplicationExpr.
1190ast::Expr const * CallAdapter::handleIntrinsics(
1191 ast::ApplicationExpr const * expr ) {
1192 auto varExpr = expr->func.as<ast::VariableExpr>();
1193 if ( !varExpr || varExpr->var->linkage != ast::Linkage::Intrinsic ) {
1194 return nullptr;
1195 }
1196 std::string const & varName = varExpr->var->name;
1197
1198 // Index Intrinsic:
1199 if ( "?[?]" == varName ) {
1200 assert( expr->result );
1201 assert( 2 == expr->args.size() );
1202
1203 ast::ptr<ast::Type> const & argType1 = expr->args.front()->result;
1204 ast::ptr<ast::Type> const & argType2 = expr->args.back()->result;
1205
1206 // Two Cases: a[i] with first arg poly ptr, i[a] with second arg poly ptr
1207 bool isPoly1 = isPolyPtr( argType1, scopeTypeVars, typeSubs ) != nullptr;
1208 bool isPoly2 = isPolyPtr( argType2, scopeTypeVars, typeSubs ) != nullptr;
1209
1210 // If neither argument is a polymorphic pointer, do nothing.
1211 if ( !isPoly1 && !isPoly2 ) {
1212 return expr;
1213 }
1214 // The arguments cannot both be polymorphic pointers.
1215 assert( !isPoly1 || !isPoly2 );
1216 // (So exactly one of the arguments is a polymorphic pointer.)
1217
1218 CodeLocation const & location = expr->location;
1219 CodeLocation const & location1 = expr->args.front()->location;
1220 CodeLocation const & location2 = expr->args.back()->location;
1221
1222 ast::UntypedExpr * ret = new ast::UntypedExpr( location,
1223 new ast::NameExpr( location, "?+?" ) );
1224 if ( isPoly1 ) {
1225 auto referentType = getReferentType( argType1 );
1226 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1227 expr->args.back(),
1228 new ast::SizeofExpr( location1, deepCopy( referentType ) ),
1229 } );
1230 ret->args.push_back( expr->args.front() );
1231 ret->args.push_back( multiply );
1232 } else {
1233 assert( isPoly2 );
1234 auto referentType = getReferentType( argType2 );
1235 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1236 expr->args.front(),
1237 new ast::SizeofExpr( location2, deepCopy( referentType ) ),
1238 } );
1239 ret->args.push_back( multiply );
1240 ret->args.push_back( expr->args.back() );
1241 }
1242 ret->result = ast::deepCopy( expr->result );
1243 ret->env = expr->env ? expr->env : ret->env;
1244 return ret;
1245 // Dereference Intrinsic:
1246 } else if ( "*?" == varName ) {
1247 assert( expr->result );
1248 assert( 1 == expr->args.size() );
1249
1250 // If this isn't for a poly type, then do nothing.
1251 auto referentType = getReferentType( expr->args.front()->result );
1252 if ( !isPolyType( referentType, scopeTypeVars, typeSubs ) ) {
1253 return expr;
1254 }
1255
1256 // Remove dereference from polymorphic types since they are boxed.
1257 ast::Expr * ret = ast::deepCopy( expr->args.front() );
1258 // Fix expression type to remove pointer.
1259 ret->result = expr->result;
1260 // apply pointer decay
1261 if (auto retArTy = ret->result.as<ast::ArrayType>()) {
1262 ret->result = new ast::PointerType( retArTy->base );
1263 }
1264 ret->env = expr->env ? expr->env : ret->env;
1265 return ret;
1266 // Post-Increment/Decrement Intrinsics:
1267 } else if ( "?++" == varName || "?--" == varName ) {
1268 assert( expr->result );
1269 assert( 1 == expr->args.size() );
1270
1271 ast::Type const * baseType =
1272 isPolyType( expr->result, scopeTypeVars, typeSubs );
1273 if ( nullptr == baseType ) {
1274 return expr;
1275 }
1276 ast::Type * tempType = ast::deepCopy( expr->result );
1277 if ( typeSubs ) {
1278 auto result = typeSubs->apply( tempType );
1279 tempType = ast::mutate( result.node.release() );
1280 }
1281 CodeLocation const & location = expr->location;
1282 ast::ObjectDecl * newObj = makeTemporary( location, tempType );
1283 ast::VariableExpr * tempExpr =
1284 new ast::VariableExpr( location, newObj );
1285 ast::UntypedExpr * assignExpr = new ast::UntypedExpr( location,
1286 new ast::NameExpr( location, "?=?" ) );
1287 assignExpr->args.push_back( ast::deepCopy( tempExpr ) );
1288 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1289 assignExpr->args.push_back( ast::deepCopy( address->arg ) );
1290 } else {
1291 assignExpr->args.push_back( ast::deepCopy( expr->args.front() ) );
1292 }
1293 return new ast::CommaExpr( location,
1294 new ast::CommaExpr( location,
1295 assignExpr,
1296 makeIncrDecrExpr( location, expr, baseType, "?++" == varName )
1297 ),
1298 tempExpr
1299 );
1300 // Pre-Increment/Decrement Intrinsics:
1301 } else if ( "++?" == varName || "--?" == varName ) {
1302 assert( expr->result );
1303 assert( 1 == expr->args.size() );
1304
1305 ast::Type const * baseType =
1306 isPolyType( expr->result, scopeTypeVars, typeSubs );
1307 if ( nullptr == baseType ) {
1308 return expr;
1309 }
1310 return makeIncrDecrExpr(
1311 expr->location, expr, baseType, "++?" == varName );
1312 // Addition and Subtraction Intrinsics:
1313 } else if ( "?+?" == varName || "?-?" == varName ) {
1314 assert( expr->result );
1315 assert( 2 == expr->args.size() );
1316
1317 ast::ptr<ast::Type> const & argType1 = expr->args.front()->result;
1318 ast::ptr<ast::Type> const & argType2 = expr->args.back()->result;
1319
1320 bool isPoly1 = isPolyPtr( argType1, scopeTypeVars, typeSubs ) != nullptr;
1321 bool isPoly2 = isPolyPtr( argType2, scopeTypeVars, typeSubs ) != nullptr;
1322
1323 CodeLocation const & location = expr->location;
1324 CodeLocation const & location1 = expr->args.front()->location;
1325 CodeLocation const & location2 = expr->args.back()->location;
1326 // LHS - RHS -> (LHS - RHS) / sizeof(LHS)
1327 if ( isPoly1 && isPoly2 ) {
1328 // There are only subtraction intrinsics for this pattern.
1329 assert( "?-?" == varName );
1330 auto referentType = getReferentType( argType1 );
1331 auto divide = ast::UntypedExpr::createCall( location, "?/?", {
1332 expr,
1333 new ast::SizeofExpr( location, deepCopy( referentType ) ),
1334 } );
1335 if ( expr->env ) divide->env = expr->env;
1336 return divide;
1337 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1338 } else if ( isPoly1 ) {
1339 auto referentType = getReferentType( argType1 );
1340 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1341 expr->args.back(),
1342 new ast::SizeofExpr( location1, deepCopy( referentType ) ),
1343 } );
1344 return ast::mutate_field_index(
1345 expr, &ast::ApplicationExpr::args, 1, multiply );
1346 // LHS op RHS -> (LHS * sizeof(RHS)) op RHS
1347 } else if ( isPoly2 ) {
1348 auto referentType = getReferentType( argType2 );
1349 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1350 expr->args.front(),
1351 new ast::SizeofExpr( location2, deepCopy( referentType ) ),
1352 } );
1353 return ast::mutate_field_index(
1354 expr, &ast::ApplicationExpr::args, 0, multiply );
1355 }
1356 // Addition and Subtraction Relative Assignment Intrinsics:
1357 } else if ( "?+=?" == varName || "?-=?" == varName ) {
1358 assert( expr->result );
1359 assert( 2 == expr->args.size() );
1360
1361 CodeLocation const & location1 = expr->args.front()->location;
1362 CodeLocation const & location2 = expr->args.back()->location;
1363 auto baseType = isPolyPtr( expr->result, scopeTypeVars, typeSubs );
1364 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1365 if ( baseType ) {
1366 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1367 expr->args.back(),
1368 new ast::SizeofExpr( location1, deepCopy( baseType ) ),
1369 } );
1370 return ast::mutate_field_index(
1371 expr, &ast::ApplicationExpr::args, 1, multiply );
1372 }
1373 }
1374 return expr;
1375}
1376
1377ast::ObjectDecl * CallAdapter::makeTemporary(
1378 CodeLocation const & location, ast::Type const * type ) {
1379 auto newObj = new ast::ObjectDecl( location, tmpNamer.newName(), type );
1380 stmtsToAddBefore.push_back( new ast::DeclStmt( location, newObj ) );
1381 return newObj;
1382}
1383
1384// --------------------------------------------------------------------------
1385/// Modifies declarations to accept implicit parameters.
1386/// * Move polymorphic returns in function types to pointer-type parameters.
1387/// * Adds type size and assertion parameters to parameter lists.
1388struct DeclAdapter final {
1389 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
1390 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
1391private:
1392 void addAdapters( ast::FunctionDecl * decl, TypeVarMap & localTypeVars );
1393};
1394
1395ast::ObjectDecl * makeObj(
1396 CodeLocation const & location, std::string const & name ) {
1397 // The size/align parameters may be unused, so add the unused attribute.
1398 return new ast::ObjectDecl( location, name,
1399 makeLayoutCType(),
1400 nullptr, ast::Storage::Classes(), ast::Linkage::C, nullptr,
1401 { new ast::Attribute( "unused" ) } );
1402}
1403
1404/// A modified and specialized version of ast::add_qualifiers.
1405ast::Type const * addConst( ast::Type const * type ) {
1406 ast::CV::Qualifiers cvq = { ast::CV::Const };
1407 if ( ( type->qualifiers & cvq ) != 0 ) return type;
1408 auto mutType = ast::mutate( type );
1409 mutType->qualifiers |= cvq;
1410 return mutType;
1411}
1412
1413ast::FunctionDecl const * DeclAdapter::previsit( ast::FunctionDecl const * decl ) {
1414 TypeVarMap localTypeVars;
1415 makeTypeVarMap( decl, localTypeVars );
1416
1417 auto mutDecl = mutate( decl );
1418
1419 // Move polymorphic return type to parameter list.
1420 if ( isDynRet( mutDecl->type ) ) {
1421 auto ret = strict_dynamic_cast<ast::ObjectDecl *>(
1422 mutDecl->returns.front().get_and_mutate() );
1423 ret->set_type( new ast::PointerType( ret->type ) );
1424 mutDecl->params.insert( mutDecl->params.begin(), ret );
1425 mutDecl->returns.erase( mutDecl->returns.begin() );
1426 ret->init = nullptr;
1427 }
1428
1429 // Add size/align and assertions for type parameters to parameter list.
1430 ast::vector<ast::DeclWithType> inferredParams;
1431 ast::vector<ast::DeclWithType> layoutParams;
1432 for ( ast::ptr<ast::TypeDecl> & typeParam : mutDecl->type_params ) {
1433 auto mutParam = mutate( typeParam.get() );
1434 // Add all size and alignment parameters to parameter list.
1435 if ( mutParam->isComplete() ) {
1436 ast::TypeInstType paramType( mutParam );
1437 std::string paramName = Mangle::mangleType( &paramType );
1438
1439 auto sizeParam = makeObj( typeParam->location, sizeofName( paramName ) );
1440 layoutParams.emplace_back( sizeParam );
1441
1442 auto alignParam = makeObj( typeParam->location, alignofName( paramName ) );
1443 layoutParams.emplace_back( alignParam );
1444 }
1445 // Assertions should be stored in the main list.
1446 assert( mutParam->assertions.empty() );
1447 typeParam = mutParam;
1448 }
1449 for ( ast::ptr<ast::DeclWithType> & assert : mutDecl->assertions ) {
1450 ast::DeclWithType * mutAssert = ast::mutate( assert.get() );
1451 // Assertion parameters may not be used in body,
1452 // pass along with unused attribute.
1453 mutAssert->attributes.push_back( new ast::Attribute( "unused" ) );
1454 mutAssert->set_type( addConst( mutAssert->get_type() ) );
1455 inferredParams.emplace_back( mutAssert );
1456 }
1457 mutDecl->assertions.clear();
1458
1459 // Prepend each argument group. From last group to first. addAdapters
1460 // does do the same, it just does it itself and see all other parameters.
1461 spliceBegin( mutDecl->params, inferredParams );
1462 spliceBegin( mutDecl->params, layoutParams );
1463 addAdapters( mutDecl, localTypeVars );
1464
1465 // Now have to update the type to match the declaration.
1466 ast::FunctionType * type = new ast::FunctionType(
1467 mutDecl->type->isVarArgs, mutDecl->type->qualifiers );
1468 // The forall clauses don't match until Eraser. The assertions are empty.
1469 for ( auto param : mutDecl->params ) {
1470 type->params.emplace_back( param->get_type() );
1471 }
1472 for ( auto retval : mutDecl->returns ) {
1473 type->returns.emplace_back( retval->get_type() );
1474 }
1475 mutDecl->type = type;
1476
1477 return mutDecl;
1478}
1479
1480ast::FunctionDecl const * DeclAdapter::postvisit(
1481 ast::FunctionDecl const * decl ) {
1482 ast::FunctionDecl * mutDecl = mutate( decl );
1483 if ( !mutDecl->returns.empty() && mutDecl->stmts
1484 // Intrinsic functions won't be using the _retval so no need to
1485 // generate it.
1486 && mutDecl->linkage != ast::Linkage::Intrinsic
1487 // Remove check for prefix once thunks properly use ctor/dtors.
1488 && !isPrefix( mutDecl->name, "_thunk" )
1489 && !isPrefix( mutDecl->name, "_adapter" ) ) {
1490 assert( 1 == mutDecl->returns.size() );
1491 ast::DeclWithType const * retval = mutDecl->returns.front();
1492 if ( "" == retval->name ) {
1493 retval = ast::mutate_field(
1494 retval, &ast::DeclWithType::name, "_retval" );
1495 mutDecl->returns.front() = retval;
1496 }
1497 auto stmts = mutDecl->stmts.get_and_mutate();
1498 stmts->kids.push_front( new ast::DeclStmt( retval->location, retval ) );
1499 ast::DeclWithType * newRet = ast::deepCopy( retval );
1500 mutDecl->returns.front() = newRet;
1501 }
1502 // Errors should have been caught by this point, remove initializers from
1503 // parameters to allow correct codegen of default arguments.
1504 for ( ast::ptr<ast::DeclWithType> & param : mutDecl->params ) {
1505 if ( auto obj = param.as<ast::ObjectDecl>() ) {
1506 param = ast::mutate_field( obj, &ast::ObjectDecl::init, nullptr );
1507 }
1508 }
1509 return mutDecl;
1510}
1511
1512void DeclAdapter::addAdapters(
1513 ast::FunctionDecl * mutDecl, TypeVarMap & localTypeVars ) {
1514 ast::vector<ast::FunctionType> functions;
1515 for ( ast::ptr<ast::DeclWithType> & arg : mutDecl->params ) {
1516 ast::Type const * type = arg->get_type();
1517 type = findAndReplaceFunction( type, functions, localTypeVars, needsAdapter );
1518 arg.get_and_mutate()->set_type( type );
1519 }
1520 std::set<std::string> adaptersDone;
1521 for ( ast::ptr<ast::FunctionType> const & func : functions ) {
1522 std::string mangleName = mangleAdapterName( func, localTypeVars );
1523 if ( adaptersDone.find( mangleName ) != adaptersDone.end() ) {
1524 continue;
1525 }
1526 std::string adapterName = makeAdapterName( mangleName );
1527 // The adapter may not actually be used, so make sure it has unused.
1528 mutDecl->params.insert( mutDecl->params.begin(), new ast::ObjectDecl(
1529 mutDecl->location, adapterName,
1530 new ast::PointerType( makeAdapterType( func, localTypeVars ) ),
1531 nullptr, {}, {}, nullptr,
1532 { new ast::Attribute( "unused" ) } ) );
1533 adaptersDone.insert( adaptersDone.begin(), mangleName );
1534 }
1535}
1536
1537// --------------------------------------------------------------------------
1538/// Corrects the floating nodes created in CallAdapter.
1539struct RewireAdapters final : public ast::WithGuards {
1540 ScopedMap<std::string, ast::ObjectDecl const *> adapters;
1541 void beginScope() { adapters.beginScope(); }
1542 void endScope() { adapters.endScope(); }
1543 void previsit( ast::FunctionDecl const * decl );
1544 ast::VariableExpr const * previsit( ast::VariableExpr const * expr );
1545};
1546
1547void RewireAdapters::previsit( ast::FunctionDecl const * decl ) {
1548 GuardScope( adapters );
1549 for ( ast::ptr<ast::DeclWithType> const & param : decl->params ) {
1550 if ( auto objectParam = param.as<ast::ObjectDecl>() ) {
1551 adapters.insert( objectParam->name, objectParam );
1552 }
1553 }
1554}
1555
1556ast::VariableExpr const * RewireAdapters::previsit(
1557 ast::VariableExpr const * expr ) {
1558 // If the node is not floating, we can skip.
1559 if ( expr->var->isManaged() ) return expr;
1560 auto it = adapters.find( expr->var->name );
1561 assertf( it != adapters.end(), "Could not correct floating node." );
1562 return ast::mutate_field( expr, &ast::VariableExpr::var, it->second );
1563}
1564
1565// --------------------------------------------------------------------------
1566/// Inserts code to access polymorphic layout inforation.
1567/// * Replaces member and size/alignment/offsetof expressions on polymorphic
1568/// generic types with calculated expressions.
1569/// * Replaces member expressions for polymorphic types with calculated
1570/// add-field-offset-and-dereference.
1571/// * Calculates polymorphic offsetof expressions from offset array.
1572/// * Inserts dynamic calculation of polymorphic type layouts where needed.
1573struct PolyGenericCalculator final :
1574 public ast::WithConstTypeSubstitution,
1575 public ast::WithDeclsToAdd<>,
1576 public ast::WithGuards,
1577 public ast::WithStmtsToAdd<>,
1578 public ast::WithVisitorRef<PolyGenericCalculator> {
1579 PolyGenericCalculator();
1580
1581 void previsit( ast::FunctionDecl const * decl );
1582 void previsit( ast::TypedefDecl const * decl );
1583 void previsit( ast::TypeDecl const * decl );
1584 ast::Decl const * postvisit( ast::TypeDecl const * decl );
1585 ast::StructDecl const * previsit( ast::StructDecl const * decl );
1586 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
1587 ast::DeclStmt const * previsit( ast::DeclStmt const * stmt );
1588 ast::Expr const * postvisit( ast::MemberExpr const * expr );
1589 void previsit( ast::AddressExpr const * expr );
1590 ast::Expr const * postvisit( ast::AddressExpr const * expr );
1591 ast::Expr const * postvisit( ast::SizeofExpr const * expr );
1592 ast::Expr const * postvisit( ast::AlignofExpr const * expr );
1593 ast::Expr const * postvisit( ast::OffsetofExpr const * expr );
1594 ast::Expr const * postvisit( ast::OffsetPackExpr const * expr );
1595
1596 void beginScope();
1597 void endScope();
1598private:
1599 /// Makes a new variable in the current scope with the given name,
1600 /// type and optional initializer.
1601 ast::ObjectDecl * makeVar(
1602 CodeLocation const & location, std::string const & name,
1603 ast::Type const * type, ast::Init const * init = nullptr );
1604 /// Returns true if the type has a dynamic layout;
1605 /// such a layout will be stored in appropriately-named local variables
1606 /// when the function returns.
1607 bool findGeneric( CodeLocation const & location, ast::Type const * );
1608 /// Adds type parameters to the layout call; will generate the
1609 /// appropriate parameters if needed.
1610 void addSTypeParamsToLayoutCall(
1611 ast::UntypedExpr * layoutCall,
1612 const ast::vector<ast::Type> & otypeParams );
1613 /// Change the type of generic aggregate members to char[].
1614 void mutateMembers( ast::AggregateDecl * aggr );
1615 /// Returns the calculated sizeof/alignof expressions for type, or
1616 /// nullptr for use C size/alignof().
1617 ast::Expr const * genSizeof( CodeLocation const &, ast::Type const * );
1618 ast::Expr const * genAlignof( CodeLocation const &, ast::Type const * );
1619 /// Enters a new scope for type-variables,
1620 /// adding the type variables from the provided type.
1621 void beginTypeScope( ast::Type const * );
1622
1623 /// The type variables and polymorphic parameters currently in scope.
1624 TypeVarMap scopeTypeVars;
1625 /// Set of generic type layouts known in the current scope,
1626 /// indexed by sizeofName.
1627 ScopedSet<std::string> knownLayouts;
1628 /// Set of non-generic types for which the offset array exists in the
1629 /// current scope, indexed by offsetofName.
1630 ScopedSet<std::string> knownOffsets;
1631 /// Namer for VLA (variable length array) buffers.
1632 UniqueName bufNamer;
1633 /// If the argument of an AddressExpr is MemberExpr, it is stored here.
1634 ast::MemberExpr const * addrMember = nullptr;
1635};
1636
1637PolyGenericCalculator::PolyGenericCalculator() :
1638 knownLayouts(), knownOffsets(), bufNamer( "_buf" )
1639{}
1640
1641static ast::Type * polyToMonoTypeRec( CodeLocation const & loc,
1642 ast::Type const * ty ) {
1643 ast::Type * ret;
1644 if ( auto aTy = dynamic_cast<ast::ArrayType const *>( ty ) ) {
1645 // recursive case
1646 auto monoBase = polyToMonoTypeRec( loc, aTy->base );
1647 ret = new ast::ArrayType( monoBase, aTy->dimension,
1648 aTy->isVarLen, aTy->isStatic, aTy->qualifiers );
1649 } else {
1650 // base case
1651 auto charType = new ast::BasicType( ast::BasicKind::Char );
1652 auto size = new ast::NameExpr( loc,
1653 sizeofName( Mangle::mangleType( ty ) ) );
1654 ret = new ast::ArrayType( charType, size,
1655 ast::VariableLen, ast::DynamicDim, ast::CV::Qualifiers() );
1656 }
1657 return ret;
1658}
1659
1660/// Converts polymorphic type into a suitable monomorphic representation.
1661/// Simple cases: T -> __attribute__(( aligned(8) )) char[sizeof_T];
1662/// Array cases: T[eOut][eIn] -> __attribute__(( aligned(8) )) char[eOut][eIn][sizeof_T];
1663ast::Type * polyToMonoType( CodeLocation const & loc, ast::Type const * ty ) {
1664 auto ret = polyToMonoTypeRec( loc, ty );
1665 ret->attributes.emplace_back( new ast::Attribute( "aligned",
1666 { ast::ConstantExpr::from_int( loc, 8 ) } ) );
1667 return ret;
1668}
1669
1670void PolyGenericCalculator::previsit( ast::FunctionDecl const * decl ) {
1671 GuardScope( *this );
1672 beginTypeScope( decl->type );
1673}
1674
1675void PolyGenericCalculator::previsit( ast::TypedefDecl const * decl ) {
1676 assertf( false, "All typedef declarations should be removed." );
1677 beginTypeScope( decl->base );
1678}
1679
1680void PolyGenericCalculator::previsit( ast::TypeDecl const * decl ) {
1681 addToTypeVarMap( decl, scopeTypeVars );
1682}
1683
1684ast::Decl const * PolyGenericCalculator::postvisit(
1685 ast::TypeDecl const * decl ) {
1686 ast::Type const * base = decl->base;
1687 if ( nullptr == base ) return decl;
1688
1689 // Add size/align variables for opaque type declarations.
1690 ast::TypeInstType inst( decl->name, decl );
1691 std::string typeName = Mangle::mangleType( &inst );
1692
1693 ast::ObjectDecl * sizeDecl = new ast::ObjectDecl( decl->location,
1694 sizeofName( typeName ), makeLayoutCType(),
1695 new ast::SingleInit( decl->location,
1696 new ast::SizeofExpr( decl->location, deepCopy( base ) )
1697 )
1698 );
1699 ast::ObjectDecl * alignDecl = new ast::ObjectDecl( decl->location,
1700 alignofName( typeName ), makeLayoutCType(),
1701 new ast::SingleInit( decl->location,
1702 new ast::AlignofExpr( decl->location, deepCopy( base ) )
1703 )
1704 );
1705
1706 // Ensure that the initializing sizeof/alignof exprs are properly mutated.
1707 sizeDecl->accept( *visitor );
1708 alignDecl->accept( *visitor );
1709
1710 // A little trick to replace this with two declarations.
1711 // Adding after makes sure that there is no conflict with adding stmts.
1712 declsToAddAfter.push_back( alignDecl );
1713 return sizeDecl;
1714}
1715
1716ast::StructDecl const * PolyGenericCalculator::previsit(
1717 ast::StructDecl const * decl ) {
1718 auto mutDecl = mutate( decl );
1719 mutateMembers( mutDecl );
1720 return mutDecl;
1721}
1722
1723ast::UnionDecl const * PolyGenericCalculator::previsit(
1724 ast::UnionDecl const * decl ) {
1725 auto mutDecl = mutate( decl );
1726 mutateMembers( mutDecl );
1727 return mutDecl;
1728}
1729
1730ast::DeclStmt const * PolyGenericCalculator::previsit( ast::DeclStmt const * stmt ) {
1731 ast::ObjectDecl const * decl = stmt->decl.as<ast::ObjectDecl>();
1732 if ( !decl || !findGeneric( decl->location, decl->type ) ) {
1733 return stmt;
1734 }
1735
1736 // Change initialization of a polymorphic value object to allocate via a
1737 // variable-length-array (alloca cannot be safely used in loops).
1738 ast::ObjectDecl * newBuf = new ast::ObjectDecl( decl->location,
1739 bufNamer.newName(),
1740 polyToMonoType( decl->location, decl->type ),
1741 nullptr, {}, ast::Linkage::C
1742 );
1743 stmtsToAddBefore.push_back( new ast::DeclStmt( stmt->location, newBuf ) );
1744
1745 // If the object has a cleanup attribute, the clean-up should be on the
1746 // buffer, not the pointer. [Perhaps this should be lifted?]
1747 auto matchAndMove = [newBuf]( ast::ptr<ast::Attribute> & attr ) {
1748 if ( "cleanup" == attr->name ) {
1749 newBuf->attributes.push_back( attr );
1750 return true;
1751 }
1752 return false;
1753 };
1754
1755 auto mutDecl = mutate( decl );
1756
1757 // Forally, side effects are not safe in this function. But it works.
1758 erase_if( mutDecl->attributes, matchAndMove );
1759
1760 // Change the decl's type.
1761 // Upon finishing the box pass, it shall be void*.
1762 // At this middle-of-box-pass point, that type is T.
1763
1764 // example 1
1765 // before box: T t ;
1766 // before here: char _bufxx [_sizeof_Y1T]; T t = _bufxx;
1767 // after here: char _bufxx [_sizeof_Y1T]; T t = _bufxx; (no change here - non array case)
1768 // after box: char _bufxx [_sizeof_Y1T]; void *t = _bufxx;
1769
1770 // example 2
1771 // before box: T t[42] ;
1772 // before here: char _bufxx[42][_sizeof_Y1T]; T t[42] = _bufxx;
1773 // after here: char _bufxx[42][_sizeof_Y1T]; T t = _bufxx;
1774 // after box: char _bufxx[42][_sizeof_Y1T]; void *t = _bufxx;
1775
1776 // Strip all "array of" wrappers
1777 while ( auto arrayType = dynamic_cast<ast::ArrayType const *>( mutDecl->type.get() ) ) {
1778 mutDecl->type = arrayType->base;
1779 }
1780
1781 mutDecl->init = new ast::SingleInit( decl->location,
1782 new ast::VariableExpr( decl->location, newBuf ) );
1783
1784 return ast::mutate_field( stmt, &ast::DeclStmt::decl, mutDecl );
1785}
1786
1787/// Checks if memberDecl matches the decl from an aggregate.
1788bool isMember( ast::DeclWithType const * memberDecl, ast::Decl const * decl ) {
1789 // No matter the field, if the name is different it is not the same.
1790 if ( memberDecl->name != decl->name ) {
1791 return false;
1792 }
1793
1794 if ( memberDecl->name.empty() ) {
1795 // Plan-9 Field: Match on unique_id.
1796 return ( memberDecl->uniqueId == decl->uniqueId );
1797 }
1798
1799 ast::DeclWithType const * declWithType =
1800 strict_dynamic_cast<ast::DeclWithType const *>( decl );
1801
1802 if ( memberDecl->mangleName.empty() || declWithType->mangleName.empty() ) {
1803 // Tuple-Element Field: Expect neither had mangled name;
1804 // accept match on simple name (like field_2) only.
1805 assert( memberDecl->mangleName.empty() );
1806 assert( declWithType->mangleName.empty() );
1807 return true;
1808 }
1809
1810 // Ordinary Field: Use full name to accommodate overloading.
1811 return ( memberDecl->mangleName == declWithType->mangleName );
1812}
1813
1814/// Finds the member in the base list that matches the given declaration;
1815/// returns its index, or -1 if not present.
1816long findMember( ast::DeclWithType const * memberDecl,
1817 const ast::vector<ast::Decl> & baseDecls ) {
1818 for ( auto const & [index, value] : enumerate( baseDecls ) ) {
1819 if ( isMember( memberDecl, value.get() ) ) {
1820 return index;
1821 }
1822 }
1823 return -1;
1824}
1825
1826/// Returns an index expression into the offset array for a type.
1827ast::Expr * makeOffsetIndex( CodeLocation const & location,
1828 ast::Type const * objectType, long i ) {
1829 std::string name = offsetofName( Mangle::mangleType( objectType ) );
1830 return ast::UntypedExpr::createCall( location, "?[?]", {
1831 new ast::NameExpr( location, name ),
1832 ast::ConstantExpr::from_ulong( location, i ),
1833 } );
1834}
1835
1836ast::Expr const * PolyGenericCalculator::postvisit(
1837 ast::MemberExpr const * expr ) {
1838 // Only mutate member expressions for polymorphic types.
1839 ast::Type const * objectType = hasPolyBase(
1840 expr->aggregate->result, scopeTypeVars
1841 );
1842 if ( !objectType ) return expr;
1843 // Ensure layout for this type is available.
1844 // The boolean result is ignored.
1845 findGeneric( expr->location, objectType );
1846
1847 // Replace member expression with dynamically-computed layout expression.
1848 ast::Expr * newMemberExpr = nullptr;
1849 if ( auto structType = dynamic_cast<ast::StructInstType const *>( objectType ) ) {
1850 long offsetIndex = findMember( expr->member, structType->base->members );
1851 if ( -1 == offsetIndex ) return expr;
1852
1853 // Replace member expression with pointer to struct plus offset.
1854 ast::UntypedExpr * fieldLoc = new ast::UntypedExpr( expr->location,
1855 new ast::NameExpr( expr->location, "?+?" ) );
1856 ast::Expr * aggr = deepCopy( expr->aggregate );
1857 aggr->env = nullptr;
1858 fieldLoc->args.push_back( aggr );
1859 fieldLoc->args.push_back(
1860 makeOffsetIndex( expr->location, objectType, offsetIndex ) );
1861 fieldLoc->result = deepCopy( expr->result );
1862 newMemberExpr = fieldLoc;
1863 // Union members are all at offset zero, so just use the aggregate expr.
1864 } else if ( dynamic_cast<ast::UnionInstType const *>( objectType ) ) {
1865 ast::Expr * aggr = deepCopy( expr->aggregate );
1866 aggr->env = nullptr;
1867 aggr->result = deepCopy( expr->result );
1868 newMemberExpr = aggr;
1869 } else {
1870 return expr;
1871 }
1872 assert( newMemberExpr );
1873
1874 // Must apply the generic substitution to the member type to handle cases
1875 // where the member is a generic parameter subsituted by a known concrete
1876 // type. [ex]
1877 // forall( T ) struct Box { T x; }
1878 // forall( T ) void f() {
1879 // Box( T * ) b; b.x;
1880 // }
1881 // TODO: expr->result should be exactly expr->member->get_type() after
1882 // substitution, so it doesn't seem like it should be necessary to apply
1883 // the substitution manually. For some reason this is not currently the
1884 // case. This requires more investigation.
1885 ast::ptr<ast::Type> memberType = deepCopy( expr->member->get_type() );
1886 ast::TypeSubstitution sub = genericSubstitution( objectType );
1887 sub.apply( memberType );
1888
1889 // Not all members of a polymorphic type are themselves of a polymorphic
1890 // type; in this case the member expression should be wrapped and
1891 // dereferenced to form an lvalue.
1892 if ( !isPolyType( memberType, scopeTypeVars ) ) {
1893 auto ptrCastExpr = new ast::CastExpr( expr->location, newMemberExpr,
1894 new ast::PointerType( memberType ) );
1895 auto derefExpr = ast::UntypedExpr::createDeref( expr->location,
1896 ptrCastExpr );
1897 newMemberExpr = derefExpr;
1898 }
1899
1900 return newMemberExpr;
1901}
1902
1903void PolyGenericCalculator::previsit( ast::AddressExpr const * expr ) {
1904 GuardValue( addrMember ) = expr->arg.as<ast::MemberExpr>();
1905}
1906
1907ast::Expr const * PolyGenericCalculator::postvisit(
1908 ast::AddressExpr const * expr ) {
1909 // arg has to have been a MemberExpr and has been mutated.
1910 if ( nullptr == addrMember || expr->arg == addrMember ) {
1911 return expr;
1912 }
1913 ast::UntypedExpr const * untyped = expr->arg.as<ast::UntypedExpr>();
1914 if ( !untyped || getFunctionName( untyped ) != "?+?" ) {
1915 return expr;
1916 }
1917 // MemberExpr was converted to pointer + offset; and it is not valid C to
1918 // take the address of an addition, so strip away the address-of.
1919 // It also preserves the env value.
1920 return ast::mutate_field( expr->arg.get(), &ast::Expr::env, expr->env );
1921}
1922
1923ast::Expr const * PolyGenericCalculator::postvisit(
1924 ast::SizeofExpr const * expr ) {
1925 ast::Type const * type = expr->type ? expr->type : expr->expr->result;
1926 ast::Expr const * gen = genSizeof( expr->location, type );
1927 return ( gen ) ? gen : expr;
1928}
1929
1930ast::Expr const * PolyGenericCalculator::postvisit(
1931 ast::AlignofExpr const * expr ) {
1932 ast::Type const * type = expr->type ? expr->type : expr->expr->result;
1933 ast::Expr const * gen = genAlignof( expr->location, type );
1934 return ( gen ) ? gen : expr;
1935}
1936
1937ast::Expr const * PolyGenericCalculator::postvisit(
1938 ast::OffsetofExpr const * expr ) {
1939 ast::Type const * type = expr->type;
1940 if ( !findGeneric( expr->location, type ) ) return expr;
1941
1942 // Structures replace offsetof expression with an index into offset array.
1943 if ( auto structType = dynamic_cast<ast::StructInstType const *>( type ) ) {
1944 long offsetIndex = findMember( expr->member, structType->base->members );
1945 if ( -1 == offsetIndex ) return expr;
1946
1947 return makeOffsetIndex( expr->location, type, offsetIndex );
1948 // All union members are at offset zero.
1949 } else if ( dynamic_cast<ast::UnionInstType const *>( type ) ) {
1950 return ast::ConstantExpr::from_ulong( expr->location, 0 );
1951 } else {
1952 return expr;
1953 }
1954}
1955
1956ast::Expr const * PolyGenericCalculator::postvisit(
1957 ast::OffsetPackExpr const * expr ) {
1958 ast::StructInstType const * type = expr->type;
1959
1960 // Pull offset back from generated type information.
1961 if ( findGeneric( expr->location, type ) ) {
1962 return new ast::NameExpr( expr->location,
1963 offsetofName( Mangle::mangleType( type ) ) );
1964 }
1965
1966 std::string offsetName = offsetofName( Mangle::mangleType( type ) );
1967 // Use the already generated offsets for this type.
1968 if ( knownOffsets.contains( offsetName ) ) {
1969 return new ast::NameExpr( expr->location, offsetName );
1970 }
1971
1972 knownOffsets.insert( offsetName );
1973
1974 // Build initializer list for offset array.
1975 ast::vector<ast::Init> inits;
1976 for ( ast::ptr<ast::Decl> const & member : type->base->members ) {
1977 auto memberDecl = member.as<ast::DeclWithType>();
1978 assertf( memberDecl, "Requesting offset of non-DWT member: %s",
1979 toCString( member ) );
1980 inits.push_back( new ast::SingleInit( expr->location,
1981 new ast::OffsetofExpr( expr->location,
1982 deepCopy( type ),
1983 memberDecl
1984 )
1985 ) );
1986 }
1987
1988 auto offsetArray = makeVar( expr->location, offsetName,
1989 new ast::ArrayType(
1990 makeLayoutType(),
1991 ast::ConstantExpr::from_ulong( expr->location, inits.size() ),
1992 ast::FixedLen,
1993 ast::DynamicDim
1994 ),
1995 new ast::ListInit( expr->location, std::move( inits ) )
1996 );
1997
1998 return new ast::VariableExpr( expr->location, offsetArray );
1999}
2000
2001void PolyGenericCalculator::beginScope() {
2002 knownLayouts.beginScope();
2003 knownOffsets.beginScope();
2004}
2005
2006void PolyGenericCalculator::endScope() {
2007 knownOffsets.endScope();
2008 knownLayouts.endScope();
2009}
2010
2011ast::ObjectDecl * PolyGenericCalculator::makeVar(
2012 CodeLocation const & location, std::string const & name,
2013 ast::Type const * type, ast::Init const * init ) {
2014 ast::ObjectDecl * ret = new ast::ObjectDecl( location, name, type, init );
2015 stmtsToAddBefore.push_back( new ast::DeclStmt( location, ret ) );
2016 return ret;
2017}
2018
2019/// Returns true if any of the otype parameters have a dynamic layout; and
2020/// puts all otype parameters in the output list.
2021bool findGenericParams(
2022 ast::vector<ast::Type> & out,
2023 ast::vector<ast::TypeDecl> const & baseParams,
2024 ast::vector<ast::Expr> const & typeParams ) {
2025 bool hasDynamicLayout = false;
2026
2027 for ( auto const & [baseParam, typeParam] : group_iterate(
2028 baseParams, typeParams ) ) {
2029 if ( !baseParam->isComplete() ) continue;
2030 ast::TypeExpr const * typeExpr = typeParam.as<ast::TypeExpr>();
2031 assertf( typeExpr, "All type parameters should be type expressions." );
2032
2033 ast::Type const * type = typeExpr->type.get();
2034 out.push_back( type );
2035 if ( isPolyType( type ) ) hasDynamicLayout = true;
2036 }
2037
2038 return hasDynamicLayout;
2039}
2040
2041bool PolyGenericCalculator::findGeneric(
2042 CodeLocation const & location, ast::Type const * type ) {
2043 type = replaceTypeInst( type, typeSubs );
2044
2045 if ( auto inst = dynamic_cast<ast::TypeInstType const *>( type ) ) {
2046 // Assumes that getting put in the scopeTypeVars includes having the
2047 // layout variables set.
2048 if ( scopeTypeVars.contains( *inst ) ) {
2049 return true;
2050 }
2051 } else if ( auto inst = dynamic_cast<ast::StructInstType const *>( type ) ) {
2052 // Check if this type already has a layout generated for it.
2053 std::string typeName = Mangle::mangleType( type );
2054 if ( knownLayouts.contains( typeName ) ) return true;
2055
2056 // Check if any type parameters have dynamic layout;
2057 // If none do, this type is (or will be) monomorphized.
2058 ast::vector<ast::Type> sizedParams;
2059 if ( !findGenericParams( sizedParams,
2060 inst->base->params, inst->params ) ) {
2061 return false;
2062 }
2063
2064 // Insert local variables for layout and generate call to layout
2065 // function.
2066 // Done early so as not to interfere with the later addition of
2067 // parameters to the layout call.
2068 knownLayouts.insert( typeName );
2069
2070 int memberCount = inst->base->members.size();
2071 if ( 0 == memberCount ) {
2072 // All empty structures have the same layout (size 1, align 1).
2073 makeVar( location,
2074 sizeofName( typeName ), makeLayoutType(),
2075 new ast::SingleInit( location,
2076 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2077 makeVar( location,
2078 alignofName( typeName ), makeLayoutType(),
2079 new ast::SingleInit( location,
2080 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2081 // Since 0-length arrays are forbidden in C, skip the offset array.
2082 } else {
2083 ast::ObjectDecl const * sizeofVar = makeVar( location,
2084 sizeofName( typeName ), makeLayoutType(), nullptr );
2085 ast::ObjectDecl const * alignofVar = makeVar( location,
2086 alignofName( typeName ), makeLayoutType(), nullptr );
2087 ast::ObjectDecl const * offsetofVar = makeVar( location,
2088 offsetofName( typeName ),
2089 new ast::ArrayType(
2090 makeLayoutType(),
2091 ast::ConstantExpr::from_int( location, memberCount ),
2092 ast::FixedLen,
2093 ast::DynamicDim
2094 ),
2095 nullptr
2096 );
2097
2098 // Generate call to layout function.
2099 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2100 new ast::NameExpr( location, layoutofName( inst->base ) ),
2101 {
2102 new ast::AddressExpr(
2103 new ast::VariableExpr( location, sizeofVar ) ),
2104 new ast::AddressExpr(
2105 new ast::VariableExpr( location, alignofVar ) ),
2106 new ast::VariableExpr( location, offsetofVar ),
2107 } );
2108
2109 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2110
2111 stmtsToAddBefore.emplace_back(
2112 new ast::ExprStmt( location, layoutCall ) );
2113 }
2114
2115 return true;
2116 } else if ( auto inst = dynamic_cast<ast::UnionInstType const *>( type ) ) {
2117 // Check if this type already has a layout generated for it.
2118 std::string typeName = Mangle::mangleType( type );
2119 if ( knownLayouts.contains( typeName ) ) return true;
2120
2121 // Check if any type parameters have dynamic layout;
2122 // If none do, this type is (or will be) monomorphized.
2123 ast::vector<ast::Type> sizedParams;
2124 if ( !findGenericParams( sizedParams,
2125 inst->base->params, inst->params ) ) {
2126 return false;
2127 }
2128
2129 // Insert local variables for layout and generate call to layout
2130 // function.
2131 // Done early so as not to interfere with the later addition of
2132 // parameters to the layout call.
2133 knownLayouts.insert( typeName );
2134
2135 ast::ObjectDecl * sizeofVar = makeVar( location,
2136 sizeofName( typeName ), makeLayoutType() );
2137 ast::ObjectDecl * alignofVar = makeVar( location,
2138 alignofName( typeName ), makeLayoutType() );
2139
2140 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2141 new ast::NameExpr( location, layoutofName( inst->base ) ),
2142 {
2143 new ast::AddressExpr(
2144 new ast::VariableExpr( location, sizeofVar ) ),
2145 new ast::AddressExpr(
2146 new ast::VariableExpr( location, alignofVar ) ),
2147 } );
2148
2149 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2150
2151 stmtsToAddBefore.emplace_back(
2152 new ast::ExprStmt( location, layoutCall ) );
2153
2154 return true;
2155
2156 } else if ( auto inst = dynamic_cast<ast::ArrayType const *>( type ) ) {
2157 return findGeneric( location, inst->base );
2158 }
2159 return false;
2160}
2161
2162void PolyGenericCalculator::addSTypeParamsToLayoutCall(
2163 ast::UntypedExpr * layoutCall,
2164 const ast::vector<ast::Type> & otypeParams ) {
2165 CodeLocation const & location = layoutCall->location;
2166 ast::vector<ast::Expr> & args = layoutCall->args;
2167 for ( ast::ptr<ast::Type> const & param : otypeParams ) {
2168 if ( findGeneric( location, param ) ) {
2169 // Push size/align vars for a generic parameter back.
2170 std::string paramName = Mangle::mangleType( param );
2171 args.emplace_back(
2172 new ast::NameExpr( location, sizeofName( paramName ) ) );
2173 args.emplace_back(
2174 new ast::NameExpr( location, alignofName( paramName ) ) );
2175 } else {
2176 args.emplace_back(
2177 new ast::SizeofExpr( location, ast::deepCopy( param ) ) );
2178 args.emplace_back(
2179 new ast::AlignofExpr( location, ast::deepCopy( param ) ) );
2180 }
2181 }
2182}
2183
2184void PolyGenericCalculator::mutateMembers( ast::AggregateDecl * aggr ) {
2185 std::set<std::string> genericParams;
2186 for ( ast::ptr<ast::TypeDecl> const & decl : aggr->params ) {
2187 genericParams.insert( decl->name );
2188 }
2189 for ( ast::ptr<ast::Decl> & decl : aggr->members ) {
2190 auto field = decl.as<ast::ObjectDecl>();
2191 if ( nullptr == field ) continue;
2192
2193 ast::Type const * type = replaceTypeInst( field->type, typeSubs );
2194 auto typeInst = dynamic_cast<ast::TypeInstType const *>( type );
2195 if ( nullptr == typeInst ) continue;
2196
2197 // Do not try to monoporphize generic parameters.
2198 if ( scopeTypeVars.contains( ast::TypeEnvKey( *typeInst ) ) &&
2199 !genericParams.count( typeInst->name ) ) {
2200 // Polymorphic aggregate members should be converted into
2201 // monomorphic members. Using char[size_T] here respects
2202 // the expected sizing rules of an aggregate type.
2203 decl = ast::mutate_field( field, &ast::ObjectDecl::type,
2204 polyToMonoType( field->location, field->type ) );
2205 }
2206 }
2207}
2208
2209ast::Expr const * PolyGenericCalculator::genSizeof(
2210 CodeLocation const & location, ast::Type const * type ) {
2211 if ( auto * array = dynamic_cast<ast::ArrayType const *>( type ) ) {
2212 // Generate calculated size for possibly generic array.
2213 ast::Expr const * sizeofBase = genSizeof( location, array->base );
2214 if ( nullptr == sizeofBase ) return nullptr;
2215 ast::Expr const * dim = array->dimension;
2216 return makeOp( location, "?*?", sizeofBase, dim );
2217 } else if ( findGeneric( location, type ) ) {
2218 // Generate reference to _sizeof parameter
2219 return new ast::NameExpr( location, sizeofName(
2220 Mangle::mangleType( type ) ) );
2221 } else {
2222 return nullptr;
2223 }
2224}
2225
2226ast::Expr const * PolyGenericCalculator::genAlignof(
2227 CodeLocation const & location, ast::Type const * type ) {
2228 if ( auto * array = dynamic_cast<ast::ArrayType const *>( type ) ) {
2229 // alignof array is alignof element
2230 return genAlignof( location, array->base );
2231 } else if ( findGeneric( location, type ) ) {
2232 // Generate reference to _alignof parameter
2233 return new ast::NameExpr( location, alignofName(
2234 Mangle::mangleType( type ) ) );
2235 } else {
2236 return nullptr;
2237 }
2238}
2239
2240void PolyGenericCalculator::beginTypeScope( ast::Type const * type ) {
2241 GuardScope( scopeTypeVars );
2242 makeTypeVarMap( type, scopeTypeVars );
2243}
2244
2245// --------------------------------------------------------------------------
2246/// Removes unneeded or incorrect type information.
2247/// * Replaces initialization of polymorphic values with alloca.
2248/// * Replaces declaration of dtype/ftype with appropriate void expression.
2249/// * Replaces sizeof expressions of polymorphic types with a variable.
2250/// * Strips fields from generic structure declarations.
2251struct Eraser final :
2252 public ast::WithGuards {
2253 void guardTypeVarMap( ast::Type const * type ) {
2254 GuardScope( scopeTypeVars );
2255 makeTypeVarMap( type, scopeTypeVars );
2256 }
2257
2258 ast::ObjectDecl const * previsit( ast::ObjectDecl const * decl );
2259 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
2260 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
2261 ast::TypedefDecl const * previsit( ast::TypedefDecl const * decl );
2262 ast::StructDecl const * previsit( ast::StructDecl const * decl );
2263 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
2264 void previsit( ast::TypeDecl const * decl );
2265 void previsit( ast::PointerType const * type );
2266 void previsit( ast::FunctionType const * type );
2267public:
2268 TypeVarMap scopeTypeVars;
2269};
2270
2271ast::ObjectDecl const * Eraser::previsit( ast::ObjectDecl const * decl ) {
2272 guardTypeVarMap( decl->type );
2273 return scrubAllTypeVars( decl );
2274}
2275
2276ast::FunctionDecl const * Eraser::previsit( ast::FunctionDecl const * decl ) {
2277 guardTypeVarMap( decl->type );
2278 return scrubAllTypeVars( decl );
2279}
2280
2281ast::FunctionDecl const * Eraser::postvisit( ast::FunctionDecl const * decl ) {
2282 if ( decl->type_params.empty() ) return decl;
2283 auto mutDecl = mutate( decl );
2284 mutDecl->type_params.clear();
2285 return mutDecl;
2286}
2287
2288ast::TypedefDecl const * Eraser::previsit( ast::TypedefDecl const * decl ) {
2289 guardTypeVarMap( decl->base );
2290 return scrubAllTypeVars( decl );
2291}
2292
2293/// Strips the members from a generic aggregate.
2294template<typename node_t>
2295node_t const * stripGenericMembers( node_t const * decl ) {
2296 if ( decl->params.empty() ) return decl;
2297 auto mutDecl = ast::mutate( decl );
2298 mutDecl->members.clear();
2299 return mutDecl;
2300}
2301
2302ast::StructDecl const * Eraser::previsit( ast::StructDecl const * decl ) {
2303 return stripGenericMembers( decl );
2304}
2305
2306ast::UnionDecl const * Eraser::previsit( ast::UnionDecl const * decl ) {
2307 return stripGenericMembers( decl );
2308}
2309
2310void Eraser::previsit( ast::TypeDecl const * decl ) {
2311 addToTypeVarMap( decl, scopeTypeVars );
2312}
2313
2314void Eraser::previsit( ast::PointerType const * type ) {
2315 guardTypeVarMap( type );
2316}
2317
2318void Eraser::previsit( ast::FunctionType const * type ) {
2319 guardTypeVarMap( type );
2320}
2321
2322} // namespace
2323
2324// --------------------------------------------------------------------------
2325void box( ast::TranslationUnit & translationUnit ) {
2326 ast::Pass<LayoutFunctionBuilder>::run( translationUnit );
2327 ast::Pass<CallAdapter>::run( translationUnit );
2328 ast::Pass<DeclAdapter>::run( translationUnit );
2329 ast::Pass<RewireAdapters>::run( translationUnit );
2330 ast::Pass<PolyGenericCalculator>::run( translationUnit );
2331 ast::Pass<Eraser>::run( translationUnit );
2332}
2333
2334} // namespace GenPoly
2335
2336// Local Variables: //
2337// tab-width: 4 //
2338// mode: c++ //
2339// compile-command: "make install" //
2340// End: //
Note: See TracBrowser for help on using the repository browser.