source: src/GenPoly/Box.cpp@ dd78dbc

Last change on this file since dd78dbc was fd4df379, checked in by Michael Brooks <mlbrooks@…>, 14 months ago

Implement boxing for arrays.

The added test is things that did not work before.

  • Property mode set to 100644
File size: 84.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cpp -- Implement polymorphic function calls and types.
8//
9// Author : Andrew Beach
10// Created On : Thr Oct 6 13:39:00 2022
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Dec 14 17:42:17 2023
13// Update Count : 7
14//
15
16#include "Box.hpp"
17
18#include "AST/Decl.hpp" // for Decl, FunctionDecl, ...
19#include "AST/Expr.hpp" // for AlignofExpr, ConstantExpr, ...
20#include "AST/Init.hpp" // for Init, SingleInit
21#include "AST/Inspect.hpp" // for getFunctionName
22#include "AST/Pass.hpp" // for Pass, WithDeclsToAdd, ...
23#include "AST/Stmt.hpp" // for CompoundStmt, ExprStmt, ...
24#include "AST/Vector.hpp" // for vector
25#include "AST/GenericSubstitution.hpp" // for genericSubstitution
26#include "CodeGen/OperatorTable.hpp" // for isAssignment
27#include "Common/Iterate.hpp" // for group_iterate
28#include "Common/ScopedMap.hpp" // for ScopedMap
29#include "Common/ToString.hpp" // for toCString
30#include "Common/UniqueName.hpp" // for UniqueName
31#include "GenPoly/FindFunction.hpp" // for findFunction
32#include "GenPoly/GenPoly.hpp" // for getFunctionType, ...
33#include "GenPoly/Lvalue.hpp" // for generalizedLvalue
34#include "GenPoly/ScopedSet.hpp" // for ScopedSet
35#include "GenPoly/ScrubTypeVars.hpp" // for scrubTypeVars, scrubAllTypeVars
36#include "ResolvExpr/Unify.hpp" // for typesCompatible
37#include "SymTab/Mangler.hpp" // for mangle, mangleType
38
39namespace GenPoly {
40
41namespace {
42
43/// The layout type is used to represent sizes, alignments and offsets.
44ast::BasicType * makeLayoutType() {
45 return new ast::BasicType( ast::BasicKind::LongUnsignedInt );
46}
47
48/// Fixed version of layout type (just adding a 'C' in C++ style).
49ast::BasicType * makeLayoutCType() {
50 return new ast::BasicType( ast::BasicKind::LongUnsignedInt,
51 ast::CV::Qualifiers( ast::CV::Const ) );
52}
53
54// --------------------------------------------------------------------------
55/// Adds layout-generation functions to polymorphic types.
56struct LayoutFunctionBuilder final :
57 public ast::WithDeclsToAdd<>,
58 public ast::WithShortCircuiting,
59 public ast::WithVisitorRef<LayoutFunctionBuilder> {
60 void previsit( ast::StructDecl const * decl );
61 void previsit( ast::UnionDecl const * decl );
62};
63
64/// Get all sized type declarations; those that affect a layout function.
65ast::vector<ast::TypeDecl> takeSizedParams(
66 ast::vector<ast::TypeDecl> const & decls ) {
67 ast::vector<ast::TypeDecl> sizedParams;
68 for ( ast::ptr<ast::TypeDecl> const & decl : decls ) {
69 if ( decl->isComplete() ) {
70 sizedParams.emplace_back( decl );
71 }
72 }
73 return sizedParams;
74}
75
76/// Adds parameters for otype size and alignment to a function type.
77void addSTypeParams(
78 ast::vector<ast::DeclWithType> & params,
79 ast::vector<ast::TypeDecl> const & sizedParams ) {
80 for ( ast::ptr<ast::TypeDecl> const & sizedParam : sizedParams ) {
81 ast::TypeInstType inst( sizedParam );
82 std::string paramName = Mangle::mangleType( &inst );
83 params.emplace_back( new ast::ObjectDecl(
84 sizedParam->location,
85 sizeofName( paramName ),
86 makeLayoutCType()
87 ) );
88 params.emplace_back( new ast::ObjectDecl(
89 sizedParam->location,
90 alignofName( paramName ),
91 makeLayoutCType()
92 ) );
93 }
94}
95
96ast::Type * makeLayoutOutType() {
97 return new ast::PointerType( makeLayoutType() );
98}
99
100struct LayoutData {
101 ast::FunctionDecl * function;
102 ast::ObjectDecl * sizeofParam;
103 ast::ObjectDecl * alignofParam;
104 ast::ObjectDecl * offsetofParam;
105};
106
107LayoutData buildLayoutFunction(
108 CodeLocation const & location, ast::AggregateDecl const * aggr,
109 ast::vector<ast::TypeDecl> const & sizedParams,
110 bool isInFunction, bool isStruct ) {
111 ast::ObjectDecl * sizeParam = new ast::ObjectDecl(
112 location,
113 sizeofName( aggr->name ),
114 makeLayoutOutType()
115 );
116 ast::ObjectDecl * alignParam = new ast::ObjectDecl(
117 location,
118 alignofName( aggr->name ),
119 makeLayoutOutType()
120 );
121 ast::ObjectDecl * offsetParam = nullptr;
122 ast::vector<ast::DeclWithType> params = { sizeParam, alignParam };
123 if ( isStruct ) {
124 offsetParam = new ast::ObjectDecl(
125 location,
126 offsetofName( aggr->name ),
127 makeLayoutOutType()
128 );
129 params.push_back( offsetParam );
130 }
131 addSTypeParams( params, sizedParams );
132
133 // Routines at global scope marked "static" to prevent multiple
134 // definitions is separate translation units because each unit generates
135 // copies of the default routines for each aggregate.
136 ast::FunctionDecl * layoutDecl = new ast::FunctionDecl(
137 location,
138 layoutofName( aggr ),
139 {}, // forall
140 {}, // assertions
141 std::move( params ),
142 {}, // returns
143 new ast::CompoundStmt( location ),
144 isInFunction ? ast::Storage::Classes() : ast::Storage::Static,
145 ast::Linkage::AutoGen,
146 {}, // attrs
147 ast::Function::Inline,
148 ast::FixedArgs
149 );
150 layoutDecl->fixUniqueId();
151 return LayoutData{ layoutDecl, sizeParam, alignParam, offsetParam };
152}
153
154/// Makes a binary operation.
155ast::Expr * makeOp( CodeLocation const & location, std::string const & name,
156 ast::Expr const * lhs, ast::Expr const * rhs ) {
157 return new ast::UntypedExpr( location,
158 new ast::NameExpr( location, name ), { lhs, rhs } );
159}
160
161/// Make a binary operation and wrap it in a statement.
162ast::Stmt * makeOpStmt( CodeLocation const & location, std::string const & name,
163 ast::Expr const * lhs, ast::Expr const * rhs ) {
164 return new ast::ExprStmt( location, makeOp( location, name, lhs, rhs ) );
165}
166
167/// Returns the dereference of a local pointer variable.
168ast::Expr * derefVar(
169 CodeLocation const & location, ast::ObjectDecl const * var ) {
170 return ast::UntypedExpr::createDeref( location,
171 new ast::VariableExpr( location, var ) );
172}
173
174/// Makes an if-statement with a single-expression then and no else.
175ast::Stmt * makeCond( CodeLocation const & location,
176 ast::Expr const * cond, ast::Expr const * thenPart ) {
177 return new ast::IfStmt( location,
178 cond, new ast::ExprStmt( location, thenPart ), nullptr );
179}
180
181/// Makes a statement that aligns lhs to rhs (rhs should be an integer
182/// power of two).
183ast::Stmt * makeAlignTo( CodeLocation const & location,
184 ast::Expr const * lhs, ast::Expr const * rhs ) {
185 // Check that the lhs is zeroed out to the level of rhs.
186 ast::Expr * ifCond = makeOp( location, "?&?", lhs,
187 makeOp( location, "?-?", rhs,
188 ast::ConstantExpr::from_ulong( location, 1 ) ) );
189 // If not aligned, increment to alignment.
190 ast::Expr * ifExpr = makeOp( location, "?+=?", ast::deepCopy( lhs ),
191 makeOp( location, "?-?", ast::deepCopy( rhs ),
192 ast::deepCopy( ifCond ) ) );
193 return makeCond( location, ifCond, ifExpr );
194}
195
196/// Makes a statement that assigns rhs to lhs if lhs < rhs.
197ast::Stmt * makeAssignMax( CodeLocation const & location,
198 ast::Expr const * lhs, ast::Expr const * rhs ) {
199 return makeCond( location,
200 makeOp( location, "?<?", ast::deepCopy( lhs ), ast::deepCopy( rhs ) ),
201 makeOp( location, "?=?", lhs, rhs ) );
202}
203
204void LayoutFunctionBuilder::previsit( ast::StructDecl const * decl ) {
205 // Do not generate layout function for empty tag structures.
206 visit_children = false;
207 if ( decl->members.empty() ) return;
208
209 // Get parameters that can change layout, exiting early if none.
210 ast::vector<ast::TypeDecl> sizedParams =
211 takeSizedParams( decl->params );
212 if ( sizedParams.empty() ) return;
213
214 CodeLocation const & location = decl->location;
215
216 // Build layout function signature.
217 LayoutData layout = buildLayoutFunction(
218 location, decl, sizedParams, isInFunction(), true );
219 ast::FunctionDecl * layoutDecl = layout.function;
220 // Also return these or extract them from the parameter list?
221 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
222 ast::ObjectDecl const * alignofParam = layout.alignofParam;
223 ast::ObjectDecl const * offsetofParam = layout.offsetofParam;
224 assert( nullptr != layout.offsetofParam );
225
226 // Calculate structure layout in function body.
227 // Initialize size and alignment to 0 and 1
228 // (Will have at least one member to update size).
229 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
230 kids.emplace_back( makeOpStmt( location, "?=?",
231 derefVar( location, sizeofParam ),
232 ast::ConstantExpr::from_ulong( location, 0 )
233 ) );
234 kids.emplace_back( makeOpStmt( location, "?=?",
235 derefVar( location, alignofParam ),
236 ast::ConstantExpr::from_ulong( location, 1 )
237 ) );
238 // TODO: Polymorphic types will be out of the struct declaration scope.
239 // This breaks invariants until it is corrected later.
240 for ( auto const & member : enumerate( decl->members ) ) {
241 auto dwt = member.val.strict_as<ast::DeclWithType>();
242 ast::Type const * memberType = dwt->get_type();
243
244 if ( 0 < member.idx ) {
245 // Make sure all later members have padding to align them.
246 kids.emplace_back( makeAlignTo( location,
247 derefVar( location, sizeofParam ),
248 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
249 ) );
250 }
251
252 // Place current size in the current offset index.
253 kids.emplace_back( makeOpStmt( location, "?=?",
254 makeOp( location, "?[?]",
255 new ast::VariableExpr( location, offsetofParam ),
256 ast::ConstantExpr::from_ulong( location, member.idx ) ),
257 derefVar( location, sizeofParam ) ) );
258
259 // Add member size to current size.
260 kids.emplace_back( makeOpStmt( location, "?+=?",
261 derefVar( location, sizeofParam ),
262 new ast::SizeofExpr( location, ast::deepCopy( memberType ) ) ) );
263
264 // Take max of member alignment and global alignment.
265 // (As align is always 2^n, this will always be a multiple of both.)
266 kids.emplace_back( makeAssignMax( location,
267 derefVar( location, alignofParam ),
268 new ast::AlignofExpr( location, ast::deepCopy( memberType ) ) ) );
269 }
270 // Make sure the type is end-padded to a multiple of its alignment.
271 kids.emplace_back( makeAlignTo( location,
272 derefVar( location, sizeofParam ),
273 derefVar( location, alignofParam ) ) );
274
275 declsToAddAfter.emplace_back( layoutDecl );
276}
277
278void LayoutFunctionBuilder::previsit( ast::UnionDecl const * decl ) {
279 visit_children = false;
280 // Do not generate layout function for empty tag unions.
281 if ( decl->members.empty() ) return;
282
283 // Get parameters that can change layout, exiting early if none.
284 ast::vector<ast::TypeDecl> sizedParams =
285 takeSizedParams( decl->params );
286 if ( sizedParams.empty() ) return;
287
288 CodeLocation const & location = decl->location;
289
290 // Build layout function signature.
291 LayoutData layout = buildLayoutFunction(
292 location, decl, sizedParams, isInFunction(), false );
293 ast::FunctionDecl * layoutDecl = layout.function;
294 // Also return these or extract them from the parameter list?
295 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
296 ast::ObjectDecl const * alignofParam = layout.alignofParam;
297 assert( nullptr == layout.offsetofParam );
298
299 // Calculate union layout in function body.
300 // Both are simply the maximum for union (actually align is always the
301 // LCM, but with powers of two that is also the maximum).
302 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
303 kids.emplace_back( makeOpStmt( location,
304 "?=?", derefVar( location, sizeofParam ),
305 ast::ConstantExpr::from_ulong( location, 1 )
306 ) );
307 kids.emplace_back( makeOpStmt( location,
308 "?=?", derefVar( location, alignofParam ),
309 ast::ConstantExpr::from_ulong( location, 1 )
310 ) );
311 // TODO: Polymorphic types will be out of the union declaration scope.
312 // This breaks invariants until it is corrected later.
313 for ( auto const & member : decl->members ) {
314 auto dwt = member.strict_as<ast::DeclWithType>();
315 ast::Type const * memberType = dwt->get_type();
316
317 // Take max member size and global size.
318 kids.emplace_back( makeAssignMax( location,
319 derefVar( location, sizeofParam ),
320 new ast::SizeofExpr( location, ast::deepCopy( memberType ) )
321 ) );
322
323 // Take max of member alignment and global alignment.
324 kids.emplace_back( makeAssignMax( location,
325 derefVar( location, alignofParam ),
326 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
327 ) );
328 }
329 kids.emplace_back( makeAlignTo( location,
330 derefVar( location, sizeofParam ),
331 derefVar( location, alignofParam ) ) );
332
333 declsToAddAfter.emplace_back( layoutDecl );
334}
335
336// --------------------------------------------------------------------------
337/// Application expression transformer.
338/// * Replaces polymorphic return types with out-parameters.
339/// * Replaces call to polymorphic functions with adapter calls which handles
340/// dynamic arguments and return values.
341/// * Adds appropriate type variables to the function calls.
342struct CallAdapter final :
343 public ast::WithConstTypeSubstitution,
344 public ast::WithGuards,
345 public ast::WithShortCircuiting,
346 public ast::WithStmtsToAdd<>,
347 public ast::WithVisitorRef<CallAdapter> {
348 CallAdapter();
349
350 void previsit( ast::Decl const * decl );
351 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
352 void previsit( ast::TypeDecl const * decl );
353 void previsit( ast::CommaExpr const * expr );
354 ast::Expr const * postvisit( ast::ApplicationExpr const * expr );
355 ast::Expr const * postvisit( ast::UntypedExpr const * expr );
356 void previsit( ast::AddressExpr const * expr );
357 ast::Expr const * postvisit( ast::AddressExpr const * expr );
358 ast::ReturnStmt const * previsit( ast::ReturnStmt const * stmt );
359
360 void beginScope();
361 void endScope();
362private:
363 // Many helpers here use a mutable ApplicationExpr as an in/out parameter
364 // instead of using the return value, to save on mutates and free up the
365 // return value.
366
367 /// Passes extra layout arguments for sized polymorphic type parameters.
368 void passTypeVars(
369 ast::ApplicationExpr * expr,
370 ast::vector<ast::Expr> & extraArgs,
371 ast::FunctionType const * funcType );
372 /// Wraps a function application with a new temporary for the
373 /// out-parameter return value.
374 ast::Expr const * addRetParam(
375 ast::ApplicationExpr * expr, ast::Type const * retType );
376 /// Wraps a function application returning a polymorphic type with a new
377 /// temporary for the out-parameter return value.
378 ast::Expr const * addDynRetParam(
379 ast::ApplicationExpr * expr, ast::Type const * polyType );
380 /// Modify a call so it passes the function through the correct adapter.
381 ast::Expr const * applyAdapter(
382 ast::ApplicationExpr * expr,
383 ast::FunctionType const * function );
384 /// Convert a single argument into its boxed form to pass the parameter.
385 void boxParam( ast::ptr<ast::Expr> & arg,
386 ast::Type const * formal, TypeVarMap const & exprTyVars );
387 /// Box every argument from arg forward, matching the functionType
388 /// parameter list. arg should point into expr's argument list.
389 void boxParams(
390 ast::ApplicationExpr * expr,
391 ast::Type const * polyRetType,
392 ast::FunctionType const * function,
393 const TypeVarMap & typeVars );
394 /// Adds the inferred parameters derived from the assertions of the
395 /// expression to the call.
396 void addInferredParams(
397 ast::ApplicationExpr * expr,
398 ast::vector<ast::Expr> & extraArgs,
399 ast::FunctionType const * functionType,
400 const TypeVarMap & typeVars );
401 /// Stores assignment operators from assertion list in
402 /// local map of assignment operations.
403 void passAdapters(
404 ast::ApplicationExpr * expr,
405 ast::FunctionType const * type,
406 const TypeVarMap & typeVars );
407 /// Create an adapter function based on the type of the adaptee and the
408 /// real type with the type substitutions applied.
409 ast::FunctionDecl * makeAdapter(
410 ast::FunctionType const * adaptee,
411 ast::FunctionType const * realType,
412 std::string const & mangleName,
413 TypeVarMap const & typeVars,
414 CodeLocation const & location ) const;
415 /// Replaces intrinsic operator functions with their arithmetic desugaring.
416 ast::Expr const * handleIntrinsics( ast::ApplicationExpr const * );
417 /// Inserts a new temporary variable into the current scope with an
418 /// auto-generated name.
419 ast::ObjectDecl * makeTemporary(
420 CodeLocation const & location, ast::Type const * type );
421
422 TypeVarMap scopeTypeVars;
423 ScopedMap< std::string, ast::DeclWithType const * > adapters;
424 std::map< ast::ApplicationExpr const *, ast::Expr const * > retVals;
425 ast::DeclWithType const * retval;
426 UniqueName tmpNamer;
427};
428
429/// Replaces a polymorphic type with its concrete equivalant under the
430/// current environment (returns itself if concrete).
431/// If `doClone` is set to false, will not clone interior types
432ast::Type const * replaceWithConcrete(
433 ast::Type const * type,
434 ast::TypeSubstitution const & typeSubs,
435 bool doCopy = true );
436
437/// Replaces all the type parameters of a generic type with their
438/// concrete equivalents under the current environment.
439void replaceParametersWithConcrete(
440 ast::vector<ast::Expr> & params,
441 ast::TypeSubstitution const & typeSubs ) {
442 for ( ast::ptr<ast::Expr> & paramExpr : params ) {
443 ast::TypeExpr const * param = paramExpr.as<ast::TypeExpr>();
444 assertf( param, "Aggregate parameters should be type expressions." );
445 paramExpr = ast::mutate_field( param, &ast::TypeExpr::type,
446 replaceWithConcrete( param->type.get(), typeSubs, false ) );
447 }
448}
449
450ast::Type const * replaceWithConcrete(
451 ast::Type const * type,
452 ast::TypeSubstitution const & typeSubs,
453 bool doCopy ) {
454 if ( auto instType = dynamic_cast<ast::TypeInstType const *>( type ) ) {
455 ast::Type const * concrete = typeSubs.lookup( instType );
456 return ( nullptr != concrete ) ? concrete : instType;
457 } else if ( auto structType =
458 dynamic_cast<ast::StructInstType const *>( type ) ) {
459 ast::StructInstType * newType =
460 doCopy ? ast::deepCopy( structType ) : ast::mutate( structType );
461 replaceParametersWithConcrete( newType->params, typeSubs );
462 return newType;
463 } else if ( auto unionType =
464 dynamic_cast<ast::UnionInstType const *>( type ) ) {
465 ast::UnionInstType * newType =
466 doCopy ? ast::deepCopy( unionType ) : ast::mutate( unionType );
467 replaceParametersWithConcrete( newType->params, typeSubs );
468 return newType;
469 } else {
470 return type;
471 }
472}
473
474std::string makePolyMonoSuffix(
475 ast::FunctionType const * function,
476 TypeVarMap const & typeVars ) {
477 // If the return type or a parameter type involved polymorphic types,
478 // then the adapter will need to take those polymorphic types as pointers.
479 // Therefore, there can be two different functions with the same mangled
480 // name, so we need to further mangle the names.
481 std::stringstream name;
482 for ( auto ret : function->returns ) {
483 name << ( isPolyType( ret, typeVars ) ? 'P' : 'M' );
484 }
485 name << '_';
486 for ( auto arg : function->params ) {
487 name << ( isPolyType( arg, typeVars ) ? 'P' : 'M' );
488 }
489 return name.str();
490}
491
492std::string mangleAdapterName(
493 ast::FunctionType const * function,
494 TypeVarMap const & typeVars ) {
495 return Mangle::mangle( function, {} )
496 + makePolyMonoSuffix( function, typeVars );
497}
498
499std::string makeAdapterName( std::string const & mangleName ) {
500 return "_adapter" + mangleName;
501}
502
503void makeRetParam( ast::FunctionType * type ) {
504 ast::ptr<ast::Type> & retParam = type->returns.front();
505
506 // Make a new parameter that is a pointer to the type of the old return value.
507 retParam = new ast::PointerType( retParam.get() );
508 type->params.emplace( type->params.begin(), retParam );
509
510 // We don't need the return value any more.
511 type->returns.clear();
512}
513
514ast::FunctionType * makeAdapterType(
515 ast::FunctionType const * adaptee,
516 TypeVarMap const & typeVars ) {
517 ast::FunctionType * adapter = ast::deepCopy( adaptee );
518 if ( isDynRet( adapter, typeVars ) ) {
519 makeRetParam( adapter );
520 }
521 adapter->params.emplace( adapter->params.begin(),
522 new ast::PointerType( new ast::FunctionType( ast::VariableArgs ) )
523 );
524 return adapter;
525}
526
527CallAdapter::CallAdapter() : tmpNamer( "_temp" ) {}
528
529void CallAdapter::previsit( ast::Decl const * ) {
530 // Prevent type declaration information from leaking out.
531 GuardScope( scopeTypeVars );
532}
533
534ast::FunctionDecl const * CallAdapter::previsit( ast::FunctionDecl const * decl ) {
535 // Prevent type declaration information from leaking out.
536 GuardScope( scopeTypeVars );
537
538 if ( nullptr == decl->stmts ) {
539 return decl;
540 }
541
542 GuardValue( retval );
543
544 // Process polymorphic return value.
545 retval = nullptr;
546 ast::FunctionType const * type = decl->type;
547 if ( isDynRet( type ) && decl->linkage != ast::Linkage::C ) {
548 retval = decl->returns.front();
549
550 // Give names to unnamed return values.
551 if ( "" == retval->name ) {
552 auto mutRet = ast::mutate( retval );
553 mutRet->name = "_retparam";
554 mutRet->linkage = ast::Linkage::C;
555 retval = mutRet;
556 decl = ast::mutate_field_index( decl,
557 &ast::FunctionDecl::returns, 0, mutRet );
558 }
559 }
560
561 // The formal_usage/expr_id values may be off if we get them from the
562 // type, trying the declaration instead.
563 makeTypeVarMap( type, scopeTypeVars );
564
565 // Get all needed adapters from the call. We will forward them.
566 ast::vector<ast::FunctionType> functions;
567 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
568 auto atype = assertion->result.get();
569 findFunction( atype, functions, scopeTypeVars, needsAdapter );
570 }
571
572 for ( ast::ptr<ast::Type> const & arg : type->params ) {
573 findFunction( arg, functions, scopeTypeVars, needsAdapter );
574 }
575
576 for ( auto funcType : functions ) {
577 std::string mangleName = mangleAdapterName( funcType, scopeTypeVars );
578 if ( adapters.contains( mangleName ) ) continue;
579 std::string adapterName = makeAdapterName( mangleName );
580 // NODE: This creates floating nodes, breaking invariants.
581 // This is corrected in the RewireAdapters sub-pass.
582 adapters.insert(
583 mangleName,
584 new ast::ObjectDecl(
585 decl->location,
586 adapterName,
587 new ast::PointerType(
588 makeAdapterType( funcType, scopeTypeVars ) ),
589 nullptr, // init
590 ast::Storage::Classes(),
591 ast::Linkage::C
592 )
593 );
594 }
595
596 return decl;
597}
598
599void CallAdapter::previsit( ast::TypeDecl const * decl ) {
600 addToTypeVarMap( decl, scopeTypeVars );
601}
602
603void CallAdapter::previsit( ast::CommaExpr const * expr ) {
604 // Attempting to find application expressions that were mutated by the
605 // copy constructor passes to use an explicit return variable, so that
606 // the variable can be reused as a parameter to the call rather than
607 // creating a new temporary variable. Previously this step was an
608 // optimization, but with the introduction of tuples and UniqueExprs,
609 // it is necessary to ensure that they use the same variable.
610 // Essentially, looking for pattern:
611 // (x=f(...), x)
612 // To compound the issue, the right side can be *x, etc.
613 // because of lvalue-returning functions
614 if ( auto assign = expr->arg1.as<ast::UntypedExpr>() ) {
615 if ( CodeGen::isAssignment( ast::getFunctionName( assign ) ) ) {
616 assert( 2 == assign->args.size() );
617 if ( auto app = assign->args.back().as<ast::ApplicationExpr>() ) {
618 // First argument is assignable, so it must be an lvalue,
619 // so it should be legal to takes its address.
620 retVals.insert_or_assign( app, assign->args.front() );
621 }
622 }
623 }
624}
625
626ast::Expr const * CallAdapter::postvisit( ast::ApplicationExpr const * expr ) {
627 assert( expr->func->result );
628 ast::FunctionType const * function = getFunctionType( expr->func->result );
629 assertf( function, "ApplicationExpr has non-function type %s",
630 toCString( expr->func->result ) );
631
632 if ( auto newExpr = handleIntrinsics( expr ) ) {
633 return newExpr;
634 }
635
636 ast::ApplicationExpr * mutExpr = ast::mutate( expr );
637 ast::Expr const * ret = expr;
638
639 TypeVarMap exprTypeVars;
640 makeTypeVarMap( function, exprTypeVars );
641 auto dynRetType = isDynRet( function, exprTypeVars );
642
643 // NOTE: addDynRetParam needs to know the actual (generated) return type
644 // so it can make a temporary variable, so pass the result type form the
645 // `expr` `passTypeVars` needs to know the program-text return type ([ex]
646 // the distinction between _conc_T30 and T3(int)) concRetType may not be
647 // a good name in one or both of these places.
648 if ( dynRetType ) {
649 ast::Type const * result = mutExpr->result;
650 ast::Type const * concRetType = result->isVoid() ? nullptr : result;
651 // [Comment from before translation.]
652 // Used to use dynRetType instead of concRetType.
653 ret = addDynRetParam( mutExpr, concRetType );
654 } else if ( needsAdapter( function, scopeTypeVars )
655 && !needsAdapter( function, exprTypeVars ) ) {
656 // Change the application so it calls the adapter rather than the
657 // passed function.
658 ret = applyAdapter( mutExpr, function );
659 }
660
661 ast::vector<ast::Expr> prependArgs;
662 passTypeVars( mutExpr, prependArgs, function );
663 addInferredParams( mutExpr, prependArgs, function, exprTypeVars );
664
665 boxParams( mutExpr, dynRetType, function, exprTypeVars );
666 spliceBegin( mutExpr->args, prependArgs );
667 passAdapters( mutExpr, function, exprTypeVars );
668
669 return ret;
670}
671
672bool isPolyDeref( ast::UntypedExpr const * expr,
673 TypeVarMap const & typeVars,
674 ast::TypeSubstitution const * typeSubs ) {
675 if ( auto name = expr->func.as<ast::NameExpr>() ) {
676 if ( "*?" == name->name ) {
677 // It's a deref.
678 // Must look under the * (and strip its ptr-ty) because expr's
679 // result could be ar/ptr-decayed. If expr.inner:T(*)[n], then
680 // expr is a poly deref, even though expr:T*, which is not poly.
681 auto ptrExpr = expr->args.front();
682 auto ptrTy = ptrExpr->result.as<ast::PointerType>();
683 assert(ptrTy); // thing being deref'd must be pointer
684 auto referentTy = ptrTy->base;
685 assert(referentTy);
686 return isPolyType( referentTy, typeVars, typeSubs );
687 }
688 }
689 return false;
690}
691
692ast::Expr const * CallAdapter::postvisit( ast::UntypedExpr const * expr ) {
693 if ( isPolyDeref( expr, scopeTypeVars, typeSubs ) ) {
694 return expr->args.front();
695 }
696 return expr;
697}
698
699void CallAdapter::previsit( ast::AddressExpr const * ) {
700 visit_children = false;
701}
702
703ast::Expr const * CallAdapter::postvisit( ast::AddressExpr const * expr ) {
704 assert( expr->arg->result );
705 assert( !expr->arg->result->isVoid() );
706
707 bool doesNeedAdapter = false;
708 if ( auto un = expr->arg.as<ast::UntypedExpr>() ) {
709 if ( isPolyDeref( un, scopeTypeVars, typeSubs ) ) {
710 if ( auto app = un->args.front().as<ast::ApplicationExpr>() ) {
711 assert( app->func->result );
712 auto function = getFunctionType( app->func->result );
713 assert( function );
714 doesNeedAdapter = needsAdapter( function, scopeTypeVars );
715 }
716 }
717 }
718 // isPolyType check needs to happen before mutating expr arg,
719 // so pull it forward out of the if condition.
720 expr = ast::mutate_field( expr, &ast::AddressExpr::arg,
721 expr->arg->accept( *visitor ) );
722 // But must happen after mutate, since argument might change
723 // (ex. intrinsic *?, ?[?]) re-evaluate above comment.
724 bool polyType = isPolyType( expr->arg->result, scopeTypeVars, typeSubs );
725 if ( polyType || doesNeedAdapter ) {
726 ast::Expr * ret = ast::mutate( expr->arg.get() );
727 ret->result = ast::deepCopy( expr->result );
728 return ret;
729 } else {
730 return expr;
731 }
732}
733
734ast::ReturnStmt const * CallAdapter::previsit( ast::ReturnStmt const * stmt ) {
735 // Since retval is set when the return type is dynamic, this function
736 // should have been converted to void return & out parameter.
737 if ( retval && stmt->expr ) {
738 assert( stmt->expr->result );
739 assert( !stmt->expr->result->isVoid() );
740 return ast::mutate_field( stmt, &ast::ReturnStmt::expr, nullptr );
741 }
742 return stmt;
743}
744
745void CallAdapter::beginScope() {
746 adapters.beginScope();
747}
748
749void CallAdapter::endScope() {
750 adapters.endScope();
751}
752
753/// Find instances of polymorphic type parameters.
754struct PolyFinder {
755 TypeVarMap const & typeVars;
756 bool result = false;
757 PolyFinder( TypeVarMap const & tvs ) : typeVars( tvs ) {}
758
759 void previsit( ast::TypeInstType const * type ) {
760 if ( isPolyType( type, typeVars ) ) result = true;
761 }
762};
763
764/// True if these is an instance of a polymorphic type parameter in the type.
765bool hasPolymorphism( ast::Type const * type, TypeVarMap const & typeVars ) {
766 return ast::Pass<PolyFinder>::read( type, typeVars );
767}
768
769void CallAdapter::passTypeVars(
770 ast::ApplicationExpr * expr,
771 ast::vector<ast::Expr> & extraArgs,
772 ast::FunctionType const * function ) {
773 assert( typeSubs );
774 // Pass size/align for type variables.
775 for ( ast::ptr<ast::TypeInstType> const & typeVar : function->forall ) {
776 if ( !typeVar->base->isComplete() ) continue;
777 ast::Type const * concrete = typeSubs->lookup( typeVar );
778 if ( !concrete ) {
779 // Should this be an assertion?
780 SemanticError( expr->location, "\nunbound type variable %s in application %s",
781 toString( typeSubs ).c_str(), typeVar->typeString().c_str() );
782 }
783 extraArgs.emplace_back(
784 new ast::SizeofExpr( expr->location, ast::deepCopy( concrete ) ) );
785 extraArgs.emplace_back(
786 new ast::AlignofExpr( expr->location, ast::deepCopy( concrete ) ) );
787 }
788}
789
790ast::Expr const * CallAdapter::addRetParam(
791 ast::ApplicationExpr * expr, ast::Type const * retType ) {
792 // Create temporary to hold return value of polymorphic function and
793 // produce that temporary as a result using a comma expression.
794 assert( retType );
795
796 ast::Expr * paramExpr = nullptr;
797 // Try to use existing return value parameter if it exists,
798 // otherwise create a new temporary.
799 if ( retVals.count( expr ) ) {
800 paramExpr = ast::deepCopy( retVals[ expr ] );
801 } else {
802 auto newObj = makeTemporary( expr->location, ast::deepCopy( retType ) );
803 paramExpr = new ast::VariableExpr( expr->location, newObj );
804 }
805 ast::Expr * retExpr = ast::deepCopy( paramExpr );
806
807 // If the type of the temporary is not polpmorphic, box temporary by
808 // taking its address; otherwise the temporary is already boxed and can
809 // be used directly.
810 if ( !isPolyType( paramExpr->result, scopeTypeVars, typeSubs ) ) {
811 paramExpr = new ast::AddressExpr( paramExpr->location, paramExpr );
812 }
813 // Add argument to function call.
814 expr->args.insert( expr->args.begin(), paramExpr );
815 // Build a comma expression to call the function and return a value.
816 ast::CommaExpr * comma = new ast::CommaExpr(
817 expr->location, expr, retExpr );
818 comma->env = expr->env;
819 expr->env = nullptr;
820 return comma;
821}
822
823ast::Expr const * CallAdapter::addDynRetParam(
824 ast::ApplicationExpr * expr, ast::Type const * polyType ) {
825 assert( typeSubs );
826 ast::Type const * concrete = replaceWithConcrete( polyType, *typeSubs );
827 // Add out-parameter for return value.
828 return addRetParam( expr, concrete );
829}
830
831ast::Expr const * CallAdapter::applyAdapter(
832 ast::ApplicationExpr * expr,
833 ast::FunctionType const * function ) {
834 ast::Expr const * ret = expr;
835 if ( isDynRet( function, scopeTypeVars ) ) {
836 ret = addRetParam( expr, function->returns.front() );
837 }
838 std::string mangleName = mangleAdapterName( function, scopeTypeVars );
839 std::string adapterName = makeAdapterName( mangleName );
840
841 // Cast adaptee to `void (*)()`, since it may have any type inside a
842 // polymorphic function.
843 ast::Type const * adapteeType = new ast::PointerType(
844 new ast::FunctionType( ast::VariableArgs ) );
845 expr->args.insert( expr->args.begin(),
846 new ast::CastExpr( expr->location, expr->func, adapteeType ) );
847 // The result field is never set on NameExpr. / Now it is.
848 auto head = new ast::NameExpr( expr->location, adapterName );
849 head->result = ast::deepCopy( adapteeType );
850 expr->func = head;
851
852 return ret;
853}
854
855/// Cast parameters to polymorphic functions so that types are replaced with
856/// `void *` if they are type parameters in the formal type.
857/// This gets rid of warnings from gcc.
858void addCast(
859 ast::ptr<ast::Expr> & actual,
860 ast::Type const * formal,
861 TypeVarMap const & typeVars ) {
862 // Type contains polymorphism, but isn't exactly a polytype, in which
863 // case it has some real actual type (ex. unsigned int) and casting to
864 // `void *` is wrong.
865 if ( hasPolymorphism( formal, typeVars )
866 && !isPolyType( formal, typeVars ) ) {
867 ast::Type const * newType = ast::deepCopy( formal );
868 newType = scrubTypeVars( newType, typeVars );
869 actual = new ast::CastExpr( actual->location, actual, newType );
870 }
871}
872
873void CallAdapter::boxParam( ast::ptr<ast::Expr> & arg,
874 ast::Type const * param, TypeVarMap const & exprTypeVars ) {
875 assertf( arg->result, "arg does not have result: %s", toCString( arg ) );
876 addCast( arg, param, exprTypeVars );
877 if ( !needsBoxing( param, arg->result, exprTypeVars, typeSubs ) ) {
878 return;
879 }
880 CodeLocation const & location = arg->location;
881
882 if ( arg->get_lvalue() ) {
883 // The argument expression may be CFA lvalue, but not C lvalue,
884 // so apply generalizedLvalue transformations.
885 // if ( auto var = dynamic_cast<ast::VariableExpr const *>( arg ) ) {
886 // if ( dynamic_cast<ast::ArrayType const *>( varExpr->var->get_type() ) ){
887 // // temporary hack - don't box arrays, because &arr is not the same as &arr[0]
888 // return;
889 // }
890 // }
891 arg = generalizedLvalue( new ast::AddressExpr( arg->location, arg ) );
892 if ( !ResolvExpr::typesCompatible( param, arg->result ) ) {
893 // Silence warnings by casting boxed parameters when the actually
894 // type does not match up with the formal type.
895 arg = new ast::CastExpr( location, arg, ast::deepCopy( param ) );
896 }
897 } else {
898 // Use type computed in unification to declare boxed variables.
899 ast::ptr<ast::Type> newType = ast::deepCopy( param );
900 if ( typeSubs ) typeSubs->apply( newType );
901 ast::ObjectDecl * newObj = makeTemporary( location, newType );
902 auto assign = ast::UntypedExpr::createCall( location, "?=?", {
903 new ast::VariableExpr( location, newObj ),
904 arg,
905 } );
906 stmtsToAddBefore.push_back( new ast::ExprStmt( location, assign ) );
907 arg = new ast::AddressExpr(
908 new ast::VariableExpr( location, newObj ) );
909 }
910}
911
912void CallAdapter::boxParams(
913 ast::ApplicationExpr * expr,
914 ast::Type const * polyRetType,
915 ast::FunctionType const * function,
916 const TypeVarMap & typeVars ) {
917 // Start at the beginning, but the return argument may have been added.
918 auto arg = expr->args.begin();
919 if ( polyRetType ) ++arg;
920
921 for ( auto param : function->params ) {
922 assertf( arg != expr->args.end(),
923 "boxParams: missing argument for param %s to %s in %s",
924 toCString( param ), toCString( function ), toCString( expr ) );
925 boxParam( *arg, param, typeVars );
926 ++arg;
927 }
928}
929
930void CallAdapter::addInferredParams(
931 ast::ApplicationExpr * expr,
932 ast::vector<ast::Expr> & extraArgs,
933 ast::FunctionType const * functionType,
934 TypeVarMap const & typeVars ) {
935 for ( auto assertion : functionType->assertions ) {
936 auto inferParam = expr->inferred.inferParams().find(
937 assertion->var->uniqueId );
938 assertf( inferParam != expr->inferred.inferParams().end(),
939 "addInferredParams missing inferred parameter: %s in: %s",
940 toCString( assertion ), toCString( expr ) );
941 ast::ptr<ast::Expr> newExpr = ast::deepCopy( inferParam->second.expr );
942 boxParam( newExpr, assertion->result, typeVars );
943 extraArgs.emplace_back( newExpr.release() );
944 }
945}
946
947/// Modifies the ApplicationExpr to accept adapter functions for its
948/// assertion and parameters, declares the required adapters.
949void CallAdapter::passAdapters(
950 ast::ApplicationExpr * expr,
951 ast::FunctionType const * type,
952 const TypeVarMap & exprTypeVars ) {
953 // Collect a list of function types passed as parameters or implicit
954 // parameters (assertions).
955 ast::vector<ast::Type> const & paramList = type->params;
956 ast::vector<ast::FunctionType> functions;
957
958 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
959 findFunction( assertion->result, functions, exprTypeVars, needsAdapter );
960 }
961 for ( ast::ptr<ast::Type> const & arg : paramList ) {
962 findFunction( arg, functions, exprTypeVars, needsAdapter );
963 }
964
965 // Parameter function types for which an appropriate adapter has been
966 // generated. We cannot use the types after applying substitutions,
967 // since two different parameter types may be unified to the same type.
968 std::set<std::string> adaptersDone;
969
970 CodeLocation const & location = expr->location;
971
972 for ( ast::ptr<ast::FunctionType> const & funcType : functions ) {
973 std::string mangleName = Mangle::mangle( funcType );
974
975 // Only attempt to create an adapter or pass one as a parameter if we
976 // haven't already done so for this pre-substitution parameter
977 // function type.
978 // The second part of the result if is if the element was inserted.
979 if ( !adaptersDone.insert( mangleName ).second ) continue;
980
981 // Apply substitution to type variables to figure out what the
982 // adapter's type should look like. (Copy to make the release safe.)
983 assert( typeSubs );
984 auto result = typeSubs->apply( ast::deepCopy( funcType ) );
985 ast::FunctionType * realType = ast::mutate( result.node.release() );
986 mangleName = Mangle::mangle( realType );
987 mangleName += makePolyMonoSuffix( funcType, exprTypeVars );
988
989 // Check if the adapter has already been created, or has to be.
990 using AdapterIter = decltype(adapters)::iterator;
991 AdapterIter adapter = adapters.find( mangleName );
992 if ( adapter == adapters.end() ) {
993 ast::FunctionDecl * newAdapter = makeAdapter(
994 funcType, realType, mangleName, exprTypeVars, location );
995 std::pair<AdapterIter, bool> answer =
996 adapters.insert( mangleName, newAdapter );
997 adapter = answer.first;
998 stmtsToAddBefore.push_back(
999 new ast::DeclStmt( location, newAdapter ) );
1000 }
1001 assert( adapter != adapters.end() );
1002
1003 // Add the approprate adapter as a parameter.
1004 expr->args.insert( expr->args.begin(),
1005 new ast::VariableExpr( location, adapter->second ) );
1006 }
1007}
1008
1009// Parameter and argument may be used wrong around here.
1010ast::Expr * makeAdapterArg(
1011 ast::DeclWithType const * param,
1012 ast::Type const * arg,
1013 ast::Type const * realParam,
1014 TypeVarMap const & typeVars,
1015 CodeLocation const & location ) {
1016 assert( param );
1017 assert( arg );
1018 assert( realParam );
1019 if ( isPolyType( realParam, typeVars ) && !isPolyType( arg ) ) {
1020 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref(
1021 location,
1022 new ast::CastExpr( location,
1023 new ast::VariableExpr( location, param ),
1024 new ast::PointerType( ast::deepCopy( arg ) )
1025 )
1026 );
1027 deref->result = ast::deepCopy( arg );
1028 return deref;
1029 }
1030 return new ast::VariableExpr( location, param );
1031}
1032
1033// This seems to be one of the problematic functions.
1034void addAdapterParams(
1035 ast::ApplicationExpr * adaptee,
1036 ast::vector<ast::Type>::const_iterator arg,
1037 ast::vector<ast::DeclWithType>::iterator param,
1038 ast::vector<ast::DeclWithType>::iterator paramEnd,
1039 ast::vector<ast::Type>::const_iterator realParam,
1040 TypeVarMap const & typeVars,
1041 CodeLocation const & location ) {
1042 UniqueName paramNamer( "_p" );
1043 for ( ; param != paramEnd ; ++param, ++arg, ++realParam ) {
1044 if ( "" == (*param)->name ) {
1045 auto mutParam = (*param).get_and_mutate();
1046 mutParam->name = paramNamer.newName();
1047 mutParam->linkage = ast::Linkage::C;
1048 }
1049 adaptee->args.push_back(
1050 makeAdapterArg( *param, *arg, *realParam, typeVars, location ) );
1051 }
1052}
1053
1054ast::FunctionDecl * CallAdapter::makeAdapter(
1055 ast::FunctionType const * adaptee,
1056 ast::FunctionType const * realType,
1057 std::string const & mangleName,
1058 TypeVarMap const & typeVars,
1059 CodeLocation const & location ) const {
1060 ast::FunctionType * adapterType = makeAdapterType( adaptee, typeVars );
1061 adapterType = ast::mutate( scrubTypeVars( adapterType, typeVars ) );
1062
1063 // Some of these names will be overwritten, but it gives a default.
1064 UniqueName pNamer( "_param" );
1065 UniqueName rNamer( "_ret" );
1066
1067 bool first = true;
1068
1069 ast::FunctionDecl * adapterDecl = new ast::FunctionDecl( location,
1070 makeAdapterName( mangleName ),
1071 {}, // forall
1072 {}, // assertions
1073 map_range<ast::vector<ast::DeclWithType>>( adapterType->params,
1074 [&pNamer, &location, &first]( ast::ptr<ast::Type> const & param ) {
1075 // [Trying to make the generated code match exactly more often.]
1076 if ( first ) {
1077 first = false;
1078 return new ast::ObjectDecl( location, "_adaptee", param );
1079 }
1080 return new ast::ObjectDecl( location, pNamer.newName(), param );
1081 } ),
1082 map_range<ast::vector<ast::DeclWithType>>( adapterType->returns,
1083 [&rNamer, &location]( ast::ptr<ast::Type> const & retval ) {
1084 return new ast::ObjectDecl( location, rNamer.newName(), retval );
1085 } ),
1086 nullptr, // stmts
1087 {}, // storage
1088 ast::Linkage::C
1089 );
1090
1091 ast::DeclWithType * adapteeDecl =
1092 adapterDecl->params.front().get_and_mutate();
1093 adapteeDecl->name = "_adaptee";
1094
1095 // Do not carry over attributes to real type parameters/return values.
1096 auto mutRealType = ast::mutate( realType );
1097 for ( ast::ptr<ast::Type> & decl : mutRealType->params ) {
1098 if ( decl->attributes.empty() ) continue;
1099 auto mut = ast::mutate( decl.get() );
1100 mut->attributes.clear();
1101 decl = mut;
1102 }
1103 for ( ast::ptr<ast::Type> & decl : mutRealType->returns ) {
1104 if ( decl->attributes.empty() ) continue;
1105 auto mut = ast::mutate( decl.get() );
1106 mut->attributes.clear();
1107 decl = mut;
1108 }
1109 realType = mutRealType;
1110
1111 ast::ApplicationExpr * adapteeApp = new ast::ApplicationExpr( location,
1112 new ast::CastExpr( location,
1113 new ast::VariableExpr( location, adapteeDecl ),
1114 new ast::PointerType( realType )
1115 )
1116 );
1117
1118 for ( auto const & [assertArg, assertParam, assertReal] : group_iterate(
1119 realType->assertions, adapterType->assertions, adaptee->assertions ) ) {
1120 adapteeApp->args.push_back( makeAdapterArg(
1121 assertParam->var, assertArg->var->get_type(),
1122 assertReal->var->get_type(), typeVars, location
1123 ) );
1124 }
1125
1126 ast::vector<ast::Type>::const_iterator
1127 arg = realType->params.begin(),
1128 param = adapterType->params.begin(),
1129 realParam = adaptee->params.begin();
1130 ast::vector<ast::DeclWithType>::iterator
1131 paramDecl = adapterDecl->params.begin();
1132 // Skip adaptee parameter in the adapter type.
1133 ++param;
1134 ++paramDecl;
1135
1136 ast::Stmt * bodyStmt;
1137 // Returns void/nothing.
1138 if ( realType->returns.empty() ) {
1139 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1140 realParam, typeVars, location );
1141 bodyStmt = new ast::ExprStmt( location, adapteeApp );
1142 // Returns a polymorphic type.
1143 } else if ( isDynType( adaptee->returns.front(), typeVars ) ) {
1144 ast::UntypedExpr * assign = new ast::UntypedExpr( location,
1145 new ast::NameExpr( location, "?=?" ) );
1146 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref( location,
1147 new ast::CastExpr( location,
1148 new ast::VariableExpr( location, *paramDecl++ ),
1149 new ast::PointerType(
1150 ast::deepCopy( realType->returns.front() ) ) ) );
1151 assign->args.push_back( deref );
1152 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1153 realParam, typeVars, location );
1154 assign->args.push_back( adapteeApp );
1155 bodyStmt = new ast::ExprStmt( location, assign );
1156 // Adapter for a function that returns a monomorphic value.
1157 } else {
1158 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1159 realParam, typeVars, location );
1160 bodyStmt = new ast::ReturnStmt( location, adapteeApp );
1161 }
1162
1163 adapterDecl->stmts = new ast::CompoundStmt( location, { bodyStmt } );
1164 return adapterDecl;
1165}
1166
1167ast::Expr const * makeIncrDecrExpr(
1168 CodeLocation const & location,
1169 ast::ApplicationExpr const * expr,
1170 ast::Type const * polyType,
1171 bool isIncr ) {
1172 ast::NameExpr * opExpr =
1173 new ast::NameExpr( location, isIncr ? "?+=?" : "?-=?" );
1174 ast::UntypedExpr * addAssign = new ast::UntypedExpr( location, opExpr );
1175 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1176 addAssign->args.push_back( address->arg );
1177 } else {
1178 addAssign->args.push_back( expr->args.front() );
1179 }
1180 addAssign->args.push_back( new ast::NameExpr( location,
1181 sizeofName( Mangle::mangleType( polyType ) ) ) );
1182 addAssign->result = ast::deepCopy( expr->result );
1183 addAssign->env = expr->env ? expr->env : addAssign->env;
1184 return addAssign;
1185}
1186
1187/// Handles intrinsic functions for postvisit ApplicationExpr.
1188ast::Expr const * CallAdapter::handleIntrinsics(
1189 ast::ApplicationExpr const * expr ) {
1190 auto varExpr = expr->func.as<ast::VariableExpr>();
1191 if ( !varExpr || varExpr->var->linkage != ast::Linkage::Intrinsic ) {
1192 return nullptr;
1193 }
1194 std::string const & varName = varExpr->var->name;
1195
1196 // Index Intrinsic:
1197 if ( "?[?]" == varName ) {
1198 assert( expr->result );
1199 assert( 2 == expr->args.size() );
1200
1201 ast::Type const * arg1Ty = expr->args.front()->result;
1202 ast::Type const * arg2Ty = expr->args.back()->result;
1203
1204 // two cases: a[i] with first arg poly ptr, i[a] with second arg poly ptr
1205 bool isPoly1 = isPolyPtr( arg1Ty, scopeTypeVars, typeSubs ) != nullptr;
1206 bool isPoly2 = isPolyPtr( arg2Ty, scopeTypeVars, typeSubs ) != nullptr;
1207
1208 // If neither argument is a polymorphic pointer, do nothing.
1209 if ( !isPoly1 && !isPoly2 ) {
1210 return expr;
1211 }
1212 // The arguments cannot both be polymorphic pointers.
1213 assert( !isPoly1 || !isPoly2 );
1214 // (So exactly one of the arguments is a polymorphic pointer.)
1215
1216 CodeLocation const & location = expr->location;
1217 CodeLocation const & location1 = expr->args.front()->location;
1218 CodeLocation const & location2 = expr->args.back()->location;
1219
1220 ast::UntypedExpr * ret = new ast::UntypedExpr( location,
1221 new ast::NameExpr( location, "?+?" ) );
1222 if ( isPoly1 ) {
1223 assert( arg1Ty );
1224 auto arg1TyPtr = dynamic_cast<ast::PointerType const * >( arg1Ty );
1225 assert( arg1TyPtr );
1226 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1227 expr->args.back(),
1228 new ast::SizeofExpr( location1, deepCopy( arg1TyPtr->base ) ),
1229 } );
1230 ret->args.push_back( expr->args.front() );
1231 ret->args.push_back( multiply );
1232 } else {
1233 assert( isPoly2 );
1234 assert( arg2Ty );
1235 auto arg2TyPtr = dynamic_cast<ast::PointerType const * >( arg2Ty );
1236 assert( arg2TyPtr );
1237 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1238 expr->args.front(),
1239 new ast::SizeofExpr( location2, deepCopy( arg2TyPtr->base ) ),
1240 } );
1241 ret->args.push_back( multiply );
1242 ret->args.push_back( expr->args.back() );
1243 }
1244 ret->result = ast::deepCopy( expr->result );
1245 ret->env = expr->env ? expr->env : ret->env;
1246 return ret;
1247 // Dereference Intrinsic:
1248 } else if ( "*?" == varName ) {
1249 assert( expr->result );
1250 assert( 1 == expr->args.size() );
1251
1252 auto ptrExpr = expr->args.front();
1253 auto ptrTy = ptrExpr->result.as<ast::PointerType>();
1254 assert(ptrTy); // thing being deref'd must be pointer
1255 auto referentTy = ptrTy->base;
1256 assert(referentTy);
1257
1258 // If this isn't for a poly type, then do nothing.
1259 if ( !isPolyType( referentTy, scopeTypeVars, typeSubs ) ) {
1260 return expr;
1261 }
1262
1263 // Remove dereference from polymorphic types since they are boxed.
1264 ast::Expr * ret = ast::deepCopy( expr->args.front() );
1265 // Fix expression type to remove pointer.
1266 ret->result = expr->result;
1267 // apply pointer decay
1268 if (auto retArTy = ret->result.as<ast::ArrayType>()) {
1269 ret->result = new ast::PointerType( retArTy->base );
1270 }
1271 ret->env = expr->env ? expr->env : ret->env;
1272 return ret;
1273 // Post-Increment/Decrement Intrinsics:
1274 } else if ( "?++" == varName || "?--" == varName ) {
1275 assert( expr->result );
1276 assert( 1 == expr->args.size() );
1277
1278 ast::Type const * baseType =
1279 isPolyType( expr->result, scopeTypeVars, typeSubs );
1280 if ( nullptr == baseType ) {
1281 return expr;
1282 }
1283 ast::Type * tempType = ast::deepCopy( expr->result );
1284 if ( typeSubs ) {
1285 auto result = typeSubs->apply( tempType );
1286 tempType = ast::mutate( result.node.release() );
1287 }
1288 CodeLocation const & location = expr->location;
1289 ast::ObjectDecl * newObj = makeTemporary( location, tempType );
1290 ast::VariableExpr * tempExpr =
1291 new ast::VariableExpr( location, newObj );
1292 ast::UntypedExpr * assignExpr = new ast::UntypedExpr( location,
1293 new ast::NameExpr( location, "?=?" ) );
1294 assignExpr->args.push_back( ast::deepCopy( tempExpr ) );
1295 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1296 assignExpr->args.push_back( ast::deepCopy( address->arg ) );
1297 } else {
1298 assignExpr->args.push_back( ast::deepCopy( expr->args.front() ) );
1299 }
1300 return new ast::CommaExpr( location,
1301 new ast::CommaExpr( location,
1302 assignExpr,
1303 makeIncrDecrExpr( location, expr, baseType, "?++" == varName )
1304 ),
1305 tempExpr
1306 );
1307 // Pre-Increment/Decrement Intrinsics:
1308 } else if ( "++?" == varName || "--?" == varName ) {
1309 assert( expr->result );
1310 assert( 1 == expr->args.size() );
1311
1312 ast::Type const * baseType =
1313 isPolyType( expr->result, scopeTypeVars, typeSubs );
1314 if ( nullptr == baseType ) {
1315 return expr;
1316 }
1317 return makeIncrDecrExpr(
1318 expr->location, expr, baseType, "++?" == varName );
1319 // Addition and Subtraction Intrinsics:
1320 } else if ( "?+?" == varName || "?-?" == varName ) {
1321 assert( expr->result );
1322 assert( 2 == expr->args.size() );
1323
1324 ast::Type const * arg1Ty = expr->args.front()->result;
1325 ast::Type const * arg2Ty = expr->args.back()->result;
1326
1327 bool isPoly1 = isPolyPtr( arg1Ty, scopeTypeVars, typeSubs ) != nullptr;
1328 bool isPoly2 = isPolyPtr( arg2Ty, scopeTypeVars, typeSubs ) != nullptr;
1329
1330 CodeLocation const & location = expr->location;
1331 CodeLocation const & location1 = expr->args.front()->location;
1332 CodeLocation const & location2 = expr->args.back()->location;
1333 // LHS minus RHS -> (LHS minus RHS) / sizeof(LHS)
1334 if ( isPoly1 && isPoly2 ) {
1335 assert( "?-?" == varName );
1336 assert( arg1Ty );
1337 auto arg1TyPtr = dynamic_cast<ast::PointerType const * >( arg1Ty );
1338 assert( arg1TyPtr );
1339 auto divide = ast::UntypedExpr::createCall( location, "?/?", {
1340 expr,
1341 new ast::SizeofExpr( location, deepCopy( arg1TyPtr->base ) ),
1342 } );
1343 if ( expr->env ) divide->env = expr->env;
1344 return divide;
1345 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1346 } else if ( isPoly1 ) {
1347 assert( arg1Ty );
1348 auto arg1TyPtr = dynamic_cast<ast::PointerType const * >( arg1Ty );
1349 assert( arg1TyPtr );
1350 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1351 expr->args.back(),
1352 new ast::SizeofExpr( location1, deepCopy( arg1TyPtr->base ) ),
1353 } );
1354 return ast::mutate_field_index(
1355 expr, &ast::ApplicationExpr::args, 1, multiply );
1356 // LHS op RHS -> (LHS * sizeof(RHS)) op RHS
1357 } else if ( isPoly2 ) {
1358 assert( arg2Ty );
1359 auto arg2TyPtr = dynamic_cast<ast::PointerType const * >( arg2Ty );
1360 assert( arg2TyPtr );
1361 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1362 expr->args.front(),
1363 new ast::SizeofExpr( location2, deepCopy( arg2TyPtr->base ) ),
1364 } );
1365 return ast::mutate_field_index(
1366 expr, &ast::ApplicationExpr::args, 0, multiply );
1367 }
1368 // Addition and Subtration Relative Assignment Intrinsics:
1369 } else if ( "?+=?" == varName || "?-=?" == varName ) {
1370 assert( expr->result );
1371 assert( 2 == expr->args.size() );
1372
1373 CodeLocation const & location1 = expr->args.front()->location;
1374 CodeLocation const & location2 = expr->args.back()->location;
1375 auto baseType = isPolyPtr( expr->result, scopeTypeVars, typeSubs );
1376 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1377 if ( baseType ) {
1378 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1379 expr->args.back(),
1380 new ast::SizeofExpr( location1, deepCopy( baseType ) ),
1381 } );
1382 return ast::mutate_field_index(
1383 expr, &ast::ApplicationExpr::args, 1, multiply );
1384 }
1385 }
1386 return expr;
1387}
1388
1389ast::ObjectDecl * CallAdapter::makeTemporary(
1390 CodeLocation const & location, ast::Type const * type ) {
1391 auto newObj = new ast::ObjectDecl( location, tmpNamer.newName(), type );
1392 stmtsToAddBefore.push_back( new ast::DeclStmt( location, newObj ) );
1393 return newObj;
1394}
1395
1396// --------------------------------------------------------------------------
1397/// Modifies declarations to accept implicit parameters.
1398/// * Move polymorphic returns in function types to pointer-type parameters.
1399/// * Adds type size and assertion parameters to parameter lists.
1400struct DeclAdapter final {
1401 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
1402 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
1403private:
1404 void addAdapters( ast::FunctionDecl * decl, TypeVarMap & localTypeVars );
1405};
1406
1407ast::ObjectDecl * makeObj(
1408 CodeLocation const & location, std::string const & name ) {
1409 // The size/align parameters may be unused, so add the unused attribute.
1410 return new ast::ObjectDecl( location, name,
1411 makeLayoutCType(),
1412 nullptr, ast::Storage::Classes(), ast::Linkage::C, nullptr,
1413 { new ast::Attribute( "unused" ) } );
1414}
1415
1416/// A modified and specialized version of ast::add_qualifiers.
1417ast::Type const * addConst( ast::Type const * type ) {
1418 ast::CV::Qualifiers cvq = { ast::CV::Const };
1419 if ( ( type->qualifiers & cvq ) != 0 ) return type;
1420 auto mutType = ast::mutate( type );
1421 mutType->qualifiers |= cvq;
1422 return mutType;
1423}
1424
1425ast::FunctionDecl const * DeclAdapter::previsit( ast::FunctionDecl const * decl ) {
1426 TypeVarMap localTypeVars;
1427 makeTypeVarMap( decl, localTypeVars );
1428
1429 auto mutDecl = mutate( decl );
1430
1431 // Move polymorphic return type to parameter list.
1432 if ( isDynRet( mutDecl->type ) ) {
1433 auto ret = strict_dynamic_cast<ast::ObjectDecl *>(
1434 mutDecl->returns.front().get_and_mutate() );
1435 ret->set_type( new ast::PointerType( ret->type ) );
1436 mutDecl->params.insert( mutDecl->params.begin(), ret );
1437 mutDecl->returns.erase( mutDecl->returns.begin() );
1438 ret->init = nullptr;
1439 }
1440
1441 // Add size/align and assertions for type parameters to parameter list.
1442 ast::vector<ast::DeclWithType> inferredParams;
1443 ast::vector<ast::DeclWithType> layoutParams;
1444 for ( ast::ptr<ast::TypeDecl> & typeParam : mutDecl->type_params ) {
1445 auto mutParam = mutate( typeParam.get() );
1446 // Add all size and alignment parameters to parameter list.
1447 if ( mutParam->isComplete() ) {
1448 ast::TypeInstType paramType( mutParam );
1449 std::string paramName = Mangle::mangleType( &paramType );
1450
1451 auto sizeParam = makeObj( typeParam->location, sizeofName( paramName ) );
1452 layoutParams.emplace_back( sizeParam );
1453
1454 auto alignParam = makeObj( typeParam->location, alignofName( paramName ) );
1455 layoutParams.emplace_back( alignParam );
1456 }
1457 // Assertions should be stored in the main list.
1458 assert( mutParam->assertions.empty() );
1459 typeParam = mutParam;
1460 }
1461 for ( ast::ptr<ast::DeclWithType> & assert : mutDecl->assertions ) {
1462 ast::DeclWithType * mutAssert = ast::mutate( assert.get() );
1463 // Assertion parameters may not be used in body,
1464 // pass along with unused attribute.
1465 mutAssert->attributes.push_back( new ast::Attribute( "unused" ) );
1466 mutAssert->set_type( addConst( mutAssert->get_type() ) );
1467 inferredParams.emplace_back( mutAssert );
1468 }
1469 mutDecl->assertions.clear();
1470
1471 // Prepend each argument group. From last group to first. addAdapters
1472 // does do the same, it just does it itself and see all other parameters.
1473 spliceBegin( mutDecl->params, inferredParams );
1474 spliceBegin( mutDecl->params, layoutParams );
1475 addAdapters( mutDecl, localTypeVars );
1476
1477 // Now have to update the type to match the declaration.
1478 ast::FunctionType * type = new ast::FunctionType(
1479 mutDecl->type->isVarArgs, mutDecl->type->qualifiers );
1480 // The forall clauses don't match until Eraser. The assertions are empty.
1481 for ( auto param : mutDecl->params ) {
1482 type->params.emplace_back( param->get_type() );
1483 }
1484 for ( auto retval : mutDecl->returns ) {
1485 type->returns.emplace_back( retval->get_type() );
1486 }
1487 mutDecl->type = type;
1488
1489 return mutDecl;
1490}
1491
1492ast::FunctionDecl const * DeclAdapter::postvisit(
1493 ast::FunctionDecl const * decl ) {
1494 ast::FunctionDecl * mutDecl = mutate( decl );
1495 if ( !mutDecl->returns.empty() && mutDecl->stmts
1496 // Intrinsic functions won't be using the _retval so no need to
1497 // generate it.
1498 && mutDecl->linkage != ast::Linkage::Intrinsic
1499 // Remove check for prefix once thunks properly use ctor/dtors.
1500 && !isPrefix( mutDecl->name, "_thunk" )
1501 && !isPrefix( mutDecl->name, "_adapter" ) ) {
1502 assert( 1 == mutDecl->returns.size() );
1503 ast::DeclWithType const * retval = mutDecl->returns.front();
1504 if ( "" == retval->name ) {
1505 retval = ast::mutate_field(
1506 retval, &ast::DeclWithType::name, "_retval" );
1507 mutDecl->returns.front() = retval;
1508 }
1509 auto stmts = mutDecl->stmts.get_and_mutate();
1510 stmts->kids.push_front( new ast::DeclStmt( retval->location, retval ) );
1511 ast::DeclWithType * newRet = ast::deepCopy( retval );
1512 mutDecl->returns.front() = newRet;
1513 }
1514 // Errors should have been caught by this point, remove initializers from
1515 // parameters to allow correct codegen of default arguments.
1516 for ( ast::ptr<ast::DeclWithType> & param : mutDecl->params ) {
1517 if ( auto obj = param.as<ast::ObjectDecl>() ) {
1518 param = ast::mutate_field( obj, &ast::ObjectDecl::init, nullptr );
1519 }
1520 }
1521 return mutDecl;
1522}
1523
1524void DeclAdapter::addAdapters(
1525 ast::FunctionDecl * mutDecl, TypeVarMap & localTypeVars ) {
1526 ast::vector<ast::FunctionType> functions;
1527 for ( ast::ptr<ast::DeclWithType> & arg : mutDecl->params ) {
1528 ast::Type const * type = arg->get_type();
1529 type = findAndReplaceFunction( type, functions, localTypeVars, needsAdapter );
1530 arg.get_and_mutate()->set_type( type );
1531 }
1532 std::set<std::string> adaptersDone;
1533 for ( ast::ptr<ast::FunctionType> const & func : functions ) {
1534 std::string mangleName = mangleAdapterName( func, localTypeVars );
1535 if ( adaptersDone.find( mangleName ) != adaptersDone.end() ) {
1536 continue;
1537 }
1538 std::string adapterName = makeAdapterName( mangleName );
1539 // The adapter may not actually be used, so make sure it has unused.
1540 mutDecl->params.insert( mutDecl->params.begin(), new ast::ObjectDecl(
1541 mutDecl->location, adapterName,
1542 new ast::PointerType( makeAdapterType( func, localTypeVars ) ),
1543 nullptr, {}, {}, nullptr,
1544 { new ast::Attribute( "unused" ) } ) );
1545 adaptersDone.insert( adaptersDone.begin(), mangleName );
1546 }
1547}
1548
1549// --------------------------------------------------------------------------
1550/// Corrects the floating nodes created in CallAdapter.
1551struct RewireAdapters final : public ast::WithGuards {
1552 ScopedMap<std::string, ast::ObjectDecl const *> adapters;
1553 void beginScope() { adapters.beginScope(); }
1554 void endScope() { adapters.endScope(); }
1555 void previsit( ast::FunctionDecl const * decl );
1556 ast::VariableExpr const * previsit( ast::VariableExpr const * expr );
1557};
1558
1559void RewireAdapters::previsit( ast::FunctionDecl const * decl ) {
1560 GuardScope( adapters );
1561 for ( ast::ptr<ast::DeclWithType> const & param : decl->params ) {
1562 if ( auto objectParam = param.as<ast::ObjectDecl>() ) {
1563 adapters.insert( objectParam->name, objectParam );
1564 }
1565 }
1566}
1567
1568ast::VariableExpr const * RewireAdapters::previsit(
1569 ast::VariableExpr const * expr ) {
1570 // If the node is not floating, we can skip.
1571 if ( expr->var->isManaged() ) return expr;
1572 auto it = adapters.find( expr->var->name );
1573 assertf( it != adapters.end(), "Could not correct floating node." );
1574 return ast::mutate_field( expr, &ast::VariableExpr::var, it->second );
1575}
1576
1577// --------------------------------------------------------------------------
1578/// Inserts code to access polymorphic layout inforation.
1579/// * Replaces member and size/alignment/offsetof expressions on polymorphic
1580/// generic types with calculated expressions.
1581/// * Replaces member expressions for polymorphic types with calculated
1582/// add-field-offset-and-dereference.
1583/// * Calculates polymorphic offsetof expressions from offset array.
1584/// * Inserts dynamic calculation of polymorphic type layouts where needed.
1585struct PolyGenericCalculator final :
1586 public ast::WithConstTypeSubstitution,
1587 public ast::WithDeclsToAdd<>,
1588 public ast::WithGuards,
1589 public ast::WithStmtsToAdd<>,
1590 public ast::WithVisitorRef<PolyGenericCalculator> {
1591 PolyGenericCalculator();
1592
1593 void previsit( ast::FunctionDecl const * decl );
1594 void previsit( ast::TypedefDecl const * decl );
1595 void previsit( ast::TypeDecl const * decl );
1596 ast::Decl const * postvisit( ast::TypeDecl const * decl );
1597 ast::StructDecl const * previsit( ast::StructDecl const * decl );
1598 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
1599 ast::DeclStmt const * previsit( ast::DeclStmt const * stmt );
1600 ast::Expr const * postvisit( ast::MemberExpr const * expr );
1601 void previsit( ast::AddressExpr const * expr );
1602 ast::Expr const * postvisit( ast::AddressExpr const * expr );
1603 ast::Expr const * postvisit( ast::SizeofExpr const * expr );
1604 ast::Expr const * postvisit( ast::AlignofExpr const * expr );
1605 ast::Expr const * postvisit( ast::OffsetofExpr const * expr );
1606 ast::Expr const * postvisit( ast::OffsetPackExpr const * expr );
1607
1608 void beginScope();
1609 void endScope();
1610private:
1611 /// Makes a new variable in the current scope with the given name,
1612 /// type and optional initializer.
1613 ast::ObjectDecl * makeVar(
1614 CodeLocation const & location, std::string const & name,
1615 ast::Type const * type, ast::Init const * init = nullptr );
1616 /// Returns true if the type has a dynamic layout;
1617 /// such a layout will be stored in appropriately-named local variables
1618 /// when the function returns.
1619 bool findGeneric( CodeLocation const & location, ast::Type const * );
1620 /// Adds type parameters to the layout call; will generate the
1621 /// appropriate parameters if needed.
1622 void addSTypeParamsToLayoutCall(
1623 ast::UntypedExpr * layoutCall,
1624 const ast::vector<ast::Type> & otypeParams );
1625 /// Change the type of generic aggregate members to char[].
1626 void mutateMembers( ast::AggregateDecl * aggr );
1627 /// Returns the calculated sizeof/alignof expressions for type, or
1628 /// nullptr for use C size/alignof().
1629 ast::Expr const * genSizeof( CodeLocation const &, ast::Type const * );
1630 ast::Expr const * genAlignof( CodeLocation const &, ast::Type const * );
1631 /// Enters a new scope for type-variables,
1632 /// adding the type variables from the provided type.
1633 void beginTypeScope( ast::Type const * );
1634
1635 /// The type variables and polymorphic parameters currently in scope.
1636 TypeVarMap scopeTypeVars;
1637 /// Set of generic type layouts known in the current scope,
1638 /// indexed by sizeofName.
1639 ScopedSet<std::string> knownLayouts;
1640 /// Set of non-generic types for which the offset array exists in the
1641 /// current scope, indexed by offsetofName.
1642 ScopedSet<std::string> knownOffsets;
1643 /// Namer for VLA (variable length array) buffers.
1644 UniqueName bufNamer;
1645 /// If the argument of an AddressExpr is MemberExpr, it is stored here.
1646 ast::MemberExpr const * addrMember = nullptr;
1647};
1648
1649PolyGenericCalculator::PolyGenericCalculator() :
1650 knownLayouts(), knownOffsets(), bufNamer( "_buf" )
1651{}
1652
1653static ast::Type * polyToMonoTypeRec( CodeLocation const & loc,
1654 ast::Type const * ty ) {
1655 ast::Type * ret;
1656 if ( auto aTy = dynamic_cast<ast::ArrayType const *>( ty ) ) {
1657 // recursive case
1658 auto monoBase = polyToMonoTypeRec( loc, aTy->base );
1659 ret = new ast::ArrayType( monoBase, aTy->dimension,
1660 aTy->isVarLen, aTy->isStatic, aTy->qualifiers );
1661 } else {
1662 // base case
1663 auto charType = new ast::BasicType( ast::BasicKind::Char );
1664 auto size = new ast::NameExpr( loc,
1665 sizeofName( Mangle::mangleType( ty ) ) );
1666 ret = new ast::ArrayType( charType, size,
1667 ast::VariableLen, ast::DynamicDim, ast::CV::Qualifiers() );
1668 }
1669 return ret;
1670}
1671
1672/// Converts polymorphic type into a suitable monomorphic representation.
1673/// Simple cases: T -> __attribute__(( aligned(8) )) char[sizeof_T];
1674/// Array cases: T[eOut][eIn] -> __attribute__(( aligned(8) )) char[eOut][eIn][sizeof_T];
1675ast::Type * polyToMonoType( CodeLocation const & loc, ast::Type const * ty ) {
1676 auto ret = polyToMonoTypeRec( loc, ty );
1677 ret->attributes.emplace_back( new ast::Attribute( "aligned",
1678 { ast::ConstantExpr::from_int( loc, 8 ) } ) );
1679 return ret;
1680}
1681
1682void PolyGenericCalculator::previsit( ast::FunctionDecl const * decl ) {
1683 GuardScope( *this );
1684 beginTypeScope( decl->type );
1685}
1686
1687void PolyGenericCalculator::previsit( ast::TypedefDecl const * decl ) {
1688 assertf( false, "All typedef declarations should be removed." );
1689 beginTypeScope( decl->base );
1690}
1691
1692void PolyGenericCalculator::previsit( ast::TypeDecl const * decl ) {
1693 addToTypeVarMap( decl, scopeTypeVars );
1694}
1695
1696ast::Decl const * PolyGenericCalculator::postvisit(
1697 ast::TypeDecl const * decl ) {
1698 ast::Type const * base = decl->base;
1699 if ( nullptr == base ) return decl;
1700
1701 // Add size/align variables for opaque type declarations.
1702 ast::TypeInstType inst( decl->name, decl );
1703 std::string typeName = Mangle::mangleType( &inst );
1704
1705 ast::ObjectDecl * sizeDecl = new ast::ObjectDecl( decl->location,
1706 sizeofName( typeName ), makeLayoutCType(),
1707 new ast::SingleInit( decl->location,
1708 new ast::SizeofExpr( decl->location, deepCopy( base ) )
1709 )
1710 );
1711 ast::ObjectDecl * alignDecl = new ast::ObjectDecl( decl->location,
1712 alignofName( typeName ), makeLayoutCType(),
1713 new ast::SingleInit( decl->location,
1714 new ast::AlignofExpr( decl->location, deepCopy( base ) )
1715 )
1716 );
1717
1718 // Ensure that the initializing sizeof/alignof exprs are properly mutated.
1719 sizeDecl->accept( *visitor );
1720 alignDecl->accept( *visitor );
1721
1722 // A little trick to replace this with two declarations.
1723 // Adding after makes sure that there is no conflict with adding stmts.
1724 declsToAddAfter.push_back( alignDecl );
1725 return sizeDecl;
1726}
1727
1728ast::StructDecl const * PolyGenericCalculator::previsit(
1729 ast::StructDecl const * decl ) {
1730 auto mutDecl = mutate( decl );
1731 mutateMembers( mutDecl );
1732 return mutDecl;
1733}
1734
1735ast::UnionDecl const * PolyGenericCalculator::previsit(
1736 ast::UnionDecl const * decl ) {
1737 auto mutDecl = mutate( decl );
1738 mutateMembers( mutDecl );
1739 return mutDecl;
1740}
1741
1742ast::DeclStmt const * PolyGenericCalculator::previsit( ast::DeclStmt const * stmt ) {
1743 ast::ObjectDecl const * decl = stmt->decl.as<ast::ObjectDecl>();
1744 if ( !decl || !findGeneric( decl->location, decl->type ) ) {
1745 return stmt;
1746 }
1747
1748 // Change initialization of a polymorphic value object to allocate via a
1749 // variable-length-array (alloca cannot be safely used in loops).
1750 ast::ObjectDecl * newBuf = new ast::ObjectDecl( decl->location,
1751 bufNamer.newName(),
1752 polyToMonoType( decl->location, decl->type ),
1753 nullptr, {}, ast::Linkage::C
1754 );
1755 stmtsToAddBefore.push_back( new ast::DeclStmt( stmt->location, newBuf ) );
1756
1757 // If the object has a cleanup attribute, the clean-up should be on the
1758 // buffer, not the pointer. [Perhaps this should be lifted?]
1759 auto matchAndMove = [newBuf]( ast::ptr<ast::Attribute> & attr ) {
1760 if ( "cleanup" == attr->name ) {
1761 newBuf->attributes.push_back( attr );
1762 return true;
1763 }
1764 return false;
1765 };
1766
1767 auto mutDecl = mutate( decl );
1768
1769 // Forally, side effects are not safe in this function. But it works.
1770 erase_if( mutDecl->attributes, matchAndMove );
1771
1772 // Change the decl's type.
1773 // Upon finishing the box pass, it shall be void*.
1774 // At this middle-of-box-pass point, that type is T.
1775
1776 // example 1
1777 // before box: T t ;
1778 // before here: char _bufxx [_sizeof_Y1T]; T t = _bufxx;
1779 // after here: char _bufxx [_sizeof_Y1T]; T t = _bufxx; (no change here - non array case)
1780 // after box: char _bufxx [_sizeof_Y1T]; void *t = _bufxx;
1781
1782 // example 2
1783 // before box: T t[42] ;
1784 // before here: char _bufxx[42][_sizeof_Y1T]; T t[42] = _bufxx;
1785 // after here: char _bufxx[42][_sizeof_Y1T]; T t = _bufxx;
1786 // after box: char _bufxx[42][_sizeof_Y1T]; void *t = _bufxx;
1787
1788 // Strip all "array of" wrappers
1789 while ( auto arrayType = dynamic_cast<ast::ArrayType const *>( mutDecl->type.get() ) ) {
1790 mutDecl->type = arrayType->base;
1791 }
1792
1793 mutDecl->init = new ast::SingleInit( decl->location,
1794 new ast::VariableExpr( decl->location, newBuf ) );
1795
1796 return ast::mutate_field( stmt, &ast::DeclStmt::decl, mutDecl );
1797}
1798
1799/// Checks if memberDecl matches the decl from an aggregate.
1800bool isMember( ast::DeclWithType const * memberDecl, ast::Decl const * decl ) {
1801 // No matter the field, if the name is different it is not the same.
1802 if ( memberDecl->name != decl->name ) {
1803 return false;
1804 }
1805
1806 if ( memberDecl->name.empty() ) {
1807 // Plan-9 Field: Match on unique_id.
1808 return ( memberDecl->uniqueId == decl->uniqueId );
1809 }
1810
1811 ast::DeclWithType const * declWithType =
1812 strict_dynamic_cast<ast::DeclWithType const *>( decl );
1813
1814 if ( memberDecl->mangleName.empty() || declWithType->mangleName.empty() ) {
1815 // Tuple-Element Field: Expect neither had mangled name;
1816 // accept match on simple name (like field_2) only.
1817 assert( memberDecl->mangleName.empty() );
1818 assert( declWithType->mangleName.empty() );
1819 return true;
1820 }
1821
1822 // Ordinary Field: Use full name to accommodate overloading.
1823 return ( memberDecl->mangleName == declWithType->mangleName );
1824}
1825
1826/// Finds the member in the base list that matches the given declaration;
1827/// returns its index, or -1 if not present.
1828long findMember( ast::DeclWithType const * memberDecl,
1829 const ast::vector<ast::Decl> & baseDecls ) {
1830 for ( auto const & [index, value] : enumerate( baseDecls ) ) {
1831 if ( isMember( memberDecl, value.get() ) ) {
1832 return index;
1833 }
1834 }
1835 return -1;
1836}
1837
1838/// Returns an index expression into the offset array for a type.
1839ast::Expr * makeOffsetIndex( CodeLocation const & location,
1840 ast::Type const * objectType, long i ) {
1841 std::string name = offsetofName( Mangle::mangleType( objectType ) );
1842 return ast::UntypedExpr::createCall( location, "?[?]", {
1843 new ast::NameExpr( location, name ),
1844 ast::ConstantExpr::from_ulong( location, i ),
1845 } );
1846}
1847
1848ast::Expr const * PolyGenericCalculator::postvisit(
1849 ast::MemberExpr const * expr ) {
1850 // Only mutate member expressions for polymorphic types.
1851 ast::Type const * objectType = hasPolyBase(
1852 expr->aggregate->result, scopeTypeVars
1853 );
1854 if ( !objectType ) return expr;
1855 // Ensure layout for this type is available.
1856 // The boolean result is ignored.
1857 findGeneric( expr->location, objectType );
1858
1859 // Replace member expression with dynamically-computed layout expression.
1860 ast::Expr * newMemberExpr = nullptr;
1861 if ( auto structType = dynamic_cast<ast::StructInstType const *>( objectType ) ) {
1862 long offsetIndex = findMember( expr->member, structType->base->members );
1863 if ( -1 == offsetIndex ) return expr;
1864
1865 // Replace member expression with pointer to struct plus offset.
1866 ast::UntypedExpr * fieldLoc = new ast::UntypedExpr( expr->location,
1867 new ast::NameExpr( expr->location, "?+?" ) );
1868 ast::Expr * aggr = deepCopy( expr->aggregate );
1869 aggr->env = nullptr;
1870 fieldLoc->args.push_back( aggr );
1871 fieldLoc->args.push_back(
1872 makeOffsetIndex( expr->location, objectType, offsetIndex ) );
1873 fieldLoc->result = deepCopy( expr->result );
1874 newMemberExpr = fieldLoc;
1875 // Union members are all at offset zero, so just use the aggregate expr.
1876 } else if ( dynamic_cast<ast::UnionInstType const *>( objectType ) ) {
1877 ast::Expr * aggr = deepCopy( expr->aggregate );
1878 aggr->env = nullptr;
1879 aggr->result = deepCopy( expr->result );
1880 newMemberExpr = aggr;
1881 } else {
1882 return expr;
1883 }
1884 assert( newMemberExpr );
1885
1886 // Must apply the generic substitution to the member type to handle cases
1887 // where the member is a generic parameter subsituted by a known concrete
1888 // type. [ex]
1889 // forall( T ) struct Box { T x; }
1890 // forall( T ) void f() {
1891 // Box( T * ) b; b.x;
1892 // }
1893 // TODO: expr->result should be exactly expr->member->get_type() after
1894 // substitution, so it doesn't seem like it should be necessary to apply
1895 // the substitution manually. For some reason this is not currently the
1896 // case. This requires more investigation.
1897 ast::ptr<ast::Type> memberType = deepCopy( expr->member->get_type() );
1898 ast::TypeSubstitution sub = genericSubstitution( objectType );
1899 sub.apply( memberType );
1900
1901 // Not all members of a polymorphic type are themselves of a polymorphic
1902 // type; in this case the member expression should be wrapped and
1903 // dereferenced to form an lvalue.
1904 if ( !isPolyType( memberType, scopeTypeVars ) ) {
1905 auto ptrCastExpr = new ast::CastExpr( expr->location, newMemberExpr,
1906 new ast::PointerType( memberType ) );
1907 auto derefExpr = ast::UntypedExpr::createDeref( expr->location,
1908 ptrCastExpr );
1909 newMemberExpr = derefExpr;
1910 }
1911
1912 return newMemberExpr;
1913}
1914
1915void PolyGenericCalculator::previsit( ast::AddressExpr const * expr ) {
1916 GuardValue( addrMember ) = expr->arg.as<ast::MemberExpr>();
1917}
1918
1919ast::Expr const * PolyGenericCalculator::postvisit(
1920 ast::AddressExpr const * expr ) {
1921 // arg has to have been a MemberExpr and has been mutated.
1922 if ( nullptr == addrMember || expr->arg == addrMember ) {
1923 return expr;
1924 }
1925 ast::UntypedExpr const * untyped = expr->arg.as<ast::UntypedExpr>();
1926 if ( !untyped || getFunctionName( untyped ) != "?+?" ) {
1927 return expr;
1928 }
1929 // MemberExpr was converted to pointer + offset; and it is not valid C to
1930 // take the address of an addition, so strip away the address-of.
1931 // It also preserves the env value.
1932 return ast::mutate_field( expr->arg.get(), &ast::Expr::env, expr->env );
1933}
1934
1935ast::Expr const * PolyGenericCalculator::postvisit(
1936 ast::SizeofExpr const * expr ) {
1937 ast::Type const * type = expr->type ? expr->type : expr->expr->result;
1938 ast::Expr const * gen = genSizeof( expr->location, type );
1939 return ( gen ) ? gen : expr;
1940}
1941
1942ast::Expr const * PolyGenericCalculator::postvisit(
1943 ast::AlignofExpr const * expr ) {
1944 ast::Type const * type = expr->type ? expr->type : expr->expr->result;
1945 ast::Expr const * gen = genAlignof( expr->location, type );
1946 return ( gen ) ? gen : expr;
1947}
1948
1949ast::Expr const * PolyGenericCalculator::postvisit(
1950 ast::OffsetofExpr const * expr ) {
1951 ast::Type const * type = expr->type;
1952 if ( !findGeneric( expr->location, type ) ) return expr;
1953
1954 // Structures replace offsetof expression with an index into offset array.
1955 if ( auto structType = dynamic_cast<ast::StructInstType const *>( type ) ) {
1956 long offsetIndex = findMember( expr->member, structType->base->members );
1957 if ( -1 == offsetIndex ) return expr;
1958
1959 return makeOffsetIndex( expr->location, type, offsetIndex );
1960 // All union members are at offset zero.
1961 } else if ( dynamic_cast<ast::UnionInstType const *>( type ) ) {
1962 return ast::ConstantExpr::from_ulong( expr->location, 0 );
1963 } else {
1964 return expr;
1965 }
1966}
1967
1968ast::Expr const * PolyGenericCalculator::postvisit(
1969 ast::OffsetPackExpr const * expr ) {
1970 ast::StructInstType const * type = expr->type;
1971
1972 // Pull offset back from generated type information.
1973 if ( findGeneric( expr->location, type ) ) {
1974 return new ast::NameExpr( expr->location,
1975 offsetofName( Mangle::mangleType( type ) ) );
1976 }
1977
1978 std::string offsetName = offsetofName( Mangle::mangleType( type ) );
1979 // Use the already generated offsets for this type.
1980 if ( knownOffsets.contains( offsetName ) ) {
1981 return new ast::NameExpr( expr->location, offsetName );
1982 }
1983
1984 knownOffsets.insert( offsetName );
1985
1986 // Build initializer list for offset array.
1987 ast::vector<ast::Init> inits;
1988 for ( ast::ptr<ast::Decl> const & member : type->base->members ) {
1989 auto memberDecl = member.as<ast::DeclWithType>();
1990 assertf( memberDecl, "Requesting offset of non-DWT member: %s",
1991 toCString( member ) );
1992 inits.push_back( new ast::SingleInit( expr->location,
1993 new ast::OffsetofExpr( expr->location,
1994 deepCopy( type ),
1995 memberDecl
1996 )
1997 ) );
1998 }
1999
2000 auto offsetArray = makeVar( expr->location, offsetName,
2001 new ast::ArrayType(
2002 makeLayoutType(),
2003 ast::ConstantExpr::from_ulong( expr->location, inits.size() ),
2004 ast::FixedLen,
2005 ast::DynamicDim
2006 ),
2007 new ast::ListInit( expr->location, std::move( inits ) )
2008 );
2009
2010 return new ast::VariableExpr( expr->location, offsetArray );
2011}
2012
2013void PolyGenericCalculator::beginScope() {
2014 knownLayouts.beginScope();
2015 knownOffsets.beginScope();
2016}
2017
2018void PolyGenericCalculator::endScope() {
2019 knownOffsets.endScope();
2020 knownLayouts.endScope();
2021}
2022
2023ast::ObjectDecl * PolyGenericCalculator::makeVar(
2024 CodeLocation const & location, std::string const & name,
2025 ast::Type const * type, ast::Init const * init ) {
2026 ast::ObjectDecl * ret = new ast::ObjectDecl( location, name, type, init );
2027 stmtsToAddBefore.push_back( new ast::DeclStmt( location, ret ) );
2028 return ret;
2029}
2030
2031/// Returns true if any of the otype parameters have a dynamic layout; and
2032/// puts all otype parameters in the output list.
2033bool findGenericParams(
2034 ast::vector<ast::Type> & out,
2035 ast::vector<ast::TypeDecl> const & baseParams,
2036 ast::vector<ast::Expr> const & typeParams ) {
2037 bool hasDynamicLayout = false;
2038
2039 for ( auto const & [baseParam, typeParam] : group_iterate(
2040 baseParams, typeParams ) ) {
2041 if ( !baseParam->isComplete() ) continue;
2042 ast::TypeExpr const * typeExpr = typeParam.as<ast::TypeExpr>();
2043 assertf( typeExpr, "All type parameters should be type expressions." );
2044
2045 ast::Type const * type = typeExpr->type.get();
2046 out.push_back( type );
2047 if ( isPolyType( type ) ) hasDynamicLayout = true;
2048 }
2049
2050 return hasDynamicLayout;
2051}
2052
2053bool PolyGenericCalculator::findGeneric(
2054 CodeLocation const & location, ast::Type const * type ) {
2055 type = replaceTypeInst( type, typeSubs );
2056
2057 if ( auto inst = dynamic_cast<ast::TypeInstType const *>( type ) ) {
2058 // Assumes that getting put in the scopeTypeVars includes having the
2059 // layout variables set.
2060 if ( scopeTypeVars.contains( *inst ) ) {
2061 return true;
2062 }
2063 } else if ( auto inst = dynamic_cast<ast::StructInstType const *>( type ) ) {
2064 // Check if this type already has a layout generated for it.
2065 std::string typeName = Mangle::mangleType( type );
2066 if ( knownLayouts.contains( typeName ) ) return true;
2067
2068 // Check if any type parameters have dynamic layout;
2069 // If none do, this type is (or will be) monomorphized.
2070 ast::vector<ast::Type> sizedParams;
2071 if ( !findGenericParams( sizedParams,
2072 inst->base->params, inst->params ) ) {
2073 return false;
2074 }
2075
2076 // Insert local variables for layout and generate call to layout
2077 // function.
2078 // Done early so as not to interfere with the later addition of
2079 // parameters to the layout call.
2080 knownLayouts.insert( typeName );
2081
2082 int memberCount = inst->base->members.size();
2083 if ( 0 == memberCount ) {
2084 // All empty structures have the same layout (size 1, align 1).
2085 makeVar( location,
2086 sizeofName( typeName ), makeLayoutType(),
2087 new ast::SingleInit( location,
2088 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2089 makeVar( location,
2090 alignofName( typeName ), makeLayoutType(),
2091 new ast::SingleInit( location,
2092 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2093 // Since 0-length arrays are forbidden in C, skip the offset array.
2094 } else {
2095 ast::ObjectDecl const * sizeofVar = makeVar( location,
2096 sizeofName( typeName ), makeLayoutType(), nullptr );
2097 ast::ObjectDecl const * alignofVar = makeVar( location,
2098 alignofName( typeName ), makeLayoutType(), nullptr );
2099 ast::ObjectDecl const * offsetofVar = makeVar( location,
2100 offsetofName( typeName ),
2101 new ast::ArrayType(
2102 makeLayoutType(),
2103 ast::ConstantExpr::from_int( location, memberCount ),
2104 ast::FixedLen,
2105 ast::DynamicDim
2106 ),
2107 nullptr
2108 );
2109
2110 // Generate call to layout function.
2111 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2112 new ast::NameExpr( location, layoutofName( inst->base ) ),
2113 {
2114 new ast::AddressExpr(
2115 new ast::VariableExpr( location, sizeofVar ) ),
2116 new ast::AddressExpr(
2117 new ast::VariableExpr( location, alignofVar ) ),
2118 new ast::VariableExpr( location, offsetofVar ),
2119 } );
2120
2121 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2122
2123 stmtsToAddBefore.emplace_back(
2124 new ast::ExprStmt( location, layoutCall ) );
2125 }
2126
2127 return true;
2128 } else if ( auto inst = dynamic_cast<ast::UnionInstType const *>( type ) ) {
2129 // Check if this type already has a layout generated for it.
2130 std::string typeName = Mangle::mangleType( type );
2131 if ( knownLayouts.contains( typeName ) ) return true;
2132
2133 // Check if any type parameters have dynamic layout;
2134 // If none do, this type is (or will be) monomorphized.
2135 ast::vector<ast::Type> sizedParams;
2136 if ( !findGenericParams( sizedParams,
2137 inst->base->params, inst->params ) ) {
2138 return false;
2139 }
2140
2141 // Insert local variables for layout and generate call to layout
2142 // function.
2143 // Done early so as not to interfere with the later addition of
2144 // parameters to the layout call.
2145 knownLayouts.insert( typeName );
2146
2147 ast::ObjectDecl * sizeofVar = makeVar( location,
2148 sizeofName( typeName ), makeLayoutType() );
2149 ast::ObjectDecl * alignofVar = makeVar( location,
2150 alignofName( typeName ), makeLayoutType() );
2151
2152 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2153 new ast::NameExpr( location, layoutofName( inst->base ) ),
2154 {
2155 new ast::AddressExpr(
2156 new ast::VariableExpr( location, sizeofVar ) ),
2157 new ast::AddressExpr(
2158 new ast::VariableExpr( location, alignofVar ) ),
2159 } );
2160
2161 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2162
2163 stmtsToAddBefore.emplace_back(
2164 new ast::ExprStmt( location, layoutCall ) );
2165
2166 return true;
2167
2168 } else if ( auto inst = dynamic_cast<ast::ArrayType const *>( type ) ) {
2169 return findGeneric( location, inst->base );
2170 }
2171 return false;
2172}
2173
2174void PolyGenericCalculator::addSTypeParamsToLayoutCall(
2175 ast::UntypedExpr * layoutCall,
2176 const ast::vector<ast::Type> & otypeParams ) {
2177 CodeLocation const & location = layoutCall->location;
2178 ast::vector<ast::Expr> & args = layoutCall->args;
2179 for ( ast::ptr<ast::Type> const & param : otypeParams ) {
2180 if ( findGeneric( location, param ) ) {
2181 // Push size/align vars for a generic parameter back.
2182 std::string paramName = Mangle::mangleType( param );
2183 args.emplace_back(
2184 new ast::NameExpr( location, sizeofName( paramName ) ) );
2185 args.emplace_back(
2186 new ast::NameExpr( location, alignofName( paramName ) ) );
2187 } else {
2188 args.emplace_back(
2189 new ast::SizeofExpr( location, ast::deepCopy( param ) ) );
2190 args.emplace_back(
2191 new ast::AlignofExpr( location, ast::deepCopy( param ) ) );
2192 }
2193 }
2194}
2195
2196void PolyGenericCalculator::mutateMembers( ast::AggregateDecl * aggr ) {
2197 std::set<std::string> genericParams;
2198 for ( ast::ptr<ast::TypeDecl> const & decl : aggr->params ) {
2199 genericParams.insert( decl->name );
2200 }
2201 for ( ast::ptr<ast::Decl> & decl : aggr->members ) {
2202 auto field = decl.as<ast::ObjectDecl>();
2203 if ( nullptr == field ) continue;
2204
2205 ast::Type const * type = replaceTypeInst( field->type, typeSubs );
2206 auto typeInst = dynamic_cast<ast::TypeInstType const *>( type );
2207 if ( nullptr == typeInst ) continue;
2208
2209 // Do not try to monoporphize generic parameters.
2210 if ( scopeTypeVars.contains( ast::TypeEnvKey( *typeInst ) ) &&
2211 !genericParams.count( typeInst->name ) ) {
2212 // Polymorphic aggregate members should be converted into
2213 // monomorphic members. Using char[size_T] here respects
2214 // the expected sizing rules of an aggregate type.
2215 decl = ast::mutate_field( field, &ast::ObjectDecl::type,
2216 polyToMonoType( field->location, field->type ) );
2217 }
2218 }
2219}
2220
2221ast::Expr const * PolyGenericCalculator::genSizeof(
2222 CodeLocation const & location, ast::Type const * type ) {
2223 if ( auto * array = dynamic_cast<ast::ArrayType const *>( type ) ) {
2224 // Generate calculated size for possibly generic array.
2225 ast::Expr const * sizeofBase = genSizeof( location, array->base );
2226 if ( nullptr == sizeofBase ) return nullptr;
2227 ast::Expr const * dim = array->dimension;
2228 return makeOp( location, "?*?", sizeofBase, dim );
2229 } else if ( findGeneric( location, type ) ) {
2230 // Generate reference to _sizeof parameter
2231 return new ast::NameExpr( location, sizeofName(
2232 Mangle::mangleType( type ) ) );
2233 } else {
2234 return nullptr;
2235 }
2236}
2237
2238ast::Expr const * PolyGenericCalculator::genAlignof(
2239 CodeLocation const & location, ast::Type const * type ) {
2240 if ( auto * array = dynamic_cast<ast::ArrayType const *>( type ) ) {
2241 // alignof array is alignof element
2242 return genAlignof( location, array->base );
2243 } else if ( findGeneric( location, type ) ) {
2244 // Generate reference to _alignof parameter
2245 return new ast::NameExpr( location, alignofName(
2246 Mangle::mangleType( type ) ) );
2247 } else {
2248 return nullptr;
2249 }
2250}
2251
2252void PolyGenericCalculator::beginTypeScope( ast::Type const * type ) {
2253 GuardScope( scopeTypeVars );
2254 makeTypeVarMap( type, scopeTypeVars );
2255}
2256
2257// --------------------------------------------------------------------------
2258/// Removes unneeded or incorrect type information.
2259/// * Replaces initialization of polymorphic values with alloca.
2260/// * Replaces declaration of dtype/ftype with appropriate void expression.
2261/// * Replaces sizeof expressions of polymorphic types with a variable.
2262/// * Strips fields from generic structure declarations.
2263struct Eraser final :
2264 public ast::WithGuards {
2265 void guardTypeVarMap( ast::Type const * type ) {
2266 GuardScope( scopeTypeVars );
2267 makeTypeVarMap( type, scopeTypeVars );
2268 }
2269
2270 ast::ObjectDecl const * previsit( ast::ObjectDecl const * decl );
2271 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
2272 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
2273 ast::TypedefDecl const * previsit( ast::TypedefDecl const * decl );
2274 ast::StructDecl const * previsit( ast::StructDecl const * decl );
2275 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
2276 void previsit( ast::TypeDecl const * decl );
2277 void previsit( ast::PointerType const * type );
2278 void previsit( ast::FunctionType const * type );
2279public:
2280 TypeVarMap scopeTypeVars;
2281};
2282
2283ast::ObjectDecl const * Eraser::previsit( ast::ObjectDecl const * decl ) {
2284 guardTypeVarMap( decl->type );
2285 return scrubAllTypeVars( decl );
2286}
2287
2288ast::FunctionDecl const * Eraser::previsit( ast::FunctionDecl const * decl ) {
2289 guardTypeVarMap( decl->type );
2290 return scrubAllTypeVars( decl );
2291}
2292
2293ast::FunctionDecl const * Eraser::postvisit( ast::FunctionDecl const * decl ) {
2294 if ( decl->type_params.empty() ) return decl;
2295 auto mutDecl = mutate( decl );
2296 mutDecl->type_params.clear();
2297 return mutDecl;
2298}
2299
2300ast::TypedefDecl const * Eraser::previsit( ast::TypedefDecl const * decl ) {
2301 guardTypeVarMap( decl->base );
2302 return scrubAllTypeVars( decl );
2303}
2304
2305/// Strips the members from a generic aggregate.
2306template<typename node_t>
2307node_t const * stripGenericMembers( node_t const * decl ) {
2308 if ( decl->params.empty() ) return decl;
2309 auto mutDecl = ast::mutate( decl );
2310 mutDecl->members.clear();
2311 return mutDecl;
2312}
2313
2314ast::StructDecl const * Eraser::previsit( ast::StructDecl const * decl ) {
2315 return stripGenericMembers( decl );
2316}
2317
2318ast::UnionDecl const * Eraser::previsit( ast::UnionDecl const * decl ) {
2319 return stripGenericMembers( decl );
2320}
2321
2322void Eraser::previsit( ast::TypeDecl const * decl ) {
2323 addToTypeVarMap( decl, scopeTypeVars );
2324}
2325
2326void Eraser::previsit( ast::PointerType const * type ) {
2327 guardTypeVarMap( type );
2328}
2329
2330void Eraser::previsit( ast::FunctionType const * type ) {
2331 guardTypeVarMap( type );
2332}
2333
2334} // namespace
2335
2336// --------------------------------------------------------------------------
2337void box( ast::TranslationUnit & translationUnit ) {
2338 ast::Pass<LayoutFunctionBuilder>::run( translationUnit );
2339 ast::Pass<CallAdapter>::run( translationUnit );
2340 ast::Pass<DeclAdapter>::run( translationUnit );
2341 ast::Pass<RewireAdapters>::run( translationUnit );
2342 ast::Pass<PolyGenericCalculator>::run( translationUnit );
2343 ast::Pass<Eraser>::run( translationUnit );
2344}
2345
2346} // namespace GenPoly
2347
2348// Local Variables: //
2349// tab-width: 4 //
2350// mode: c++ //
2351// compile-command: "make install" //
2352// End: //
Note: See TracBrowser for help on using the repository browser.