source: src/GenPoly/Box.cpp@ 8893ad4

Last change on this file since 8893ad4 was 35cc6d4, checked in by Michael Brooks <mlbrooks@…>, 9 months ago

Mitigate several unused-declaration warnings in generated code.

See tests/nowarn/unused for the specific cases.

  • Property mode set to 100644
File size: 84.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cpp -- Implement polymorphic function calls and types.
8//
9// Author : Andrew Beach
10// Created On : Thr Oct 6 13:39:00 2022
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Dec 14 17:42:17 2023
13// Update Count : 7
14//
15
16#include "Box.hpp"
17
18#include "AST/Decl.hpp" // for Decl, FunctionDecl, ...
19#include "AST/Expr.hpp" // for AlignofExpr, ConstantExpr, ...
20#include "AST/Init.hpp" // for Init, SingleInit
21#include "AST/Inspect.hpp" // for getFunctionName
22#include "AST/Pass.hpp" // for Pass, WithDeclsToAdd, ...
23#include "AST/Stmt.hpp" // for CompoundStmt, ExprStmt, ...
24#include "AST/Vector.hpp" // for vector
25#include "AST/GenericSubstitution.hpp" // for genericSubstitution
26#include "CodeGen/OperatorTable.hpp" // for isAssignment
27#include "Common/Iterate.hpp" // for group_iterate
28#include "Common/ScopedMap.hpp" // for ScopedMap
29#include "Common/ToString.hpp" // for toCString
30#include "Common/UniqueName.hpp" // for UniqueName
31#include "GenPoly/FindFunction.hpp" // for findFunction
32#include "GenPoly/GenPoly.hpp" // for getFunctionType, isPolyType, ...
33#include "GenPoly/Lvalue.hpp" // for generalizedLvalue
34#include "GenPoly/ScopedSet.hpp" // for ScopedSet
35#include "GenPoly/ScrubTypeVars.hpp" // for scrubTypeVars, scrubAllTypeVars
36#include "ResolvExpr/Unify.hpp" // for typesCompatible
37#include "SymTab/Mangler.hpp" // for mangle, mangleType
38
39namespace GenPoly {
40
41namespace {
42
43/// The layout type is used to represent sizes, alignments and offsets.
44ast::BasicType * makeLayoutType() {
45 return new ast::BasicType( ast::BasicKind::LongUnsignedInt );
46}
47
48/// Fixed version of layout type (just adding a 'C' in C++ style).
49ast::BasicType * makeLayoutCType() {
50 return new ast::BasicType( ast::BasicKind::LongUnsignedInt,
51 ast::CV::Qualifiers( ast::CV::Const ) );
52}
53
54// --------------------------------------------------------------------------
55/// Adds layout-generation functions to polymorphic types.
56struct LayoutFunctionBuilder final :
57 public ast::WithDeclsToAdd,
58 public ast::WithShortCircuiting,
59 public ast::WithVisitorRef<LayoutFunctionBuilder> {
60 void previsit( ast::StructDecl const * decl );
61 void previsit( ast::UnionDecl const * decl );
62};
63
64/// Get all sized type declarations; those that affect a layout function.
65ast::vector<ast::TypeDecl> takeSizedParams(
66 ast::vector<ast::TypeDecl> const & decls ) {
67 ast::vector<ast::TypeDecl> sizedParams;
68 for ( ast::ptr<ast::TypeDecl> const & decl : decls ) {
69 if ( decl->isComplete() ) {
70 sizedParams.emplace_back( decl );
71 }
72 }
73 return sizedParams;
74}
75
76/// Adds parameters for otype size and alignment to a function type.
77void addSTypeParams(
78 ast::vector<ast::DeclWithType> & params,
79 ast::vector<ast::TypeDecl> const & sizedParams ) {
80 for ( ast::ptr<ast::TypeDecl> const & sizedParam : sizedParams ) {
81 ast::TypeInstType inst( sizedParam );
82 std::string paramName = Mangle::mangleType( &inst );
83 params.emplace_back( new ast::ObjectDecl(
84 sizedParam->location,
85 sizeofName( paramName ),
86 makeLayoutCType()
87 ) );
88 auto alignParam = new ast::ObjectDecl(
89 sizedParam->location,
90 alignofName( paramName ),
91 makeLayoutCType()
92 );
93 alignParam->attributes.push_back( new ast::Attribute( "unused" ) );
94 params.emplace_back( alignParam );
95 }
96}
97
98ast::Type * makeLayoutOutType() {
99 return new ast::PointerType( makeLayoutType() );
100}
101
102struct LayoutData {
103 ast::FunctionDecl * function;
104 ast::ObjectDecl * sizeofParam;
105 ast::ObjectDecl * alignofParam;
106 ast::ObjectDecl * offsetofParam;
107};
108
109LayoutData buildLayoutFunction(
110 CodeLocation const & location, ast::AggregateDecl const * aggr,
111 ast::vector<ast::TypeDecl> const & sizedParams,
112 bool isInFunction, bool isStruct ) {
113 ast::ObjectDecl * sizeParam = new ast::ObjectDecl(
114 location,
115 sizeofName( aggr->name ),
116 makeLayoutOutType()
117 );
118 ast::ObjectDecl * alignParam = new ast::ObjectDecl(
119 location,
120 alignofName( aggr->name ),
121 makeLayoutOutType()
122 );
123 ast::ObjectDecl * offsetParam = nullptr;
124 ast::vector<ast::DeclWithType> params = { sizeParam, alignParam };
125 if ( isStruct ) {
126 offsetParam = new ast::ObjectDecl(
127 location,
128 offsetofName( aggr->name ),
129 makeLayoutOutType()
130 );
131 params.push_back( offsetParam );
132 }
133 addSTypeParams( params, sizedParams );
134
135 // Routines at global scope marked "static" to prevent multiple
136 // definitions is separate translation units because each unit generates
137 // copies of the default routines for each aggregate.
138 ast::FunctionDecl * layoutDecl = new ast::FunctionDecl(
139 location,
140 layoutofName( aggr ),
141 {}, // forall
142 {}, // assertions
143 std::move( params ),
144 {}, // returns
145 new ast::CompoundStmt( location ),
146 isInFunction ? ast::Storage::Classes() : ast::Storage::Static,
147 ast::Linkage::AutoGen,
148 {}, // attrs
149 ast::Function::Inline,
150 ast::FixedArgs
151 );
152 layoutDecl->fixUniqueId();
153 return LayoutData{ layoutDecl, sizeParam, alignParam, offsetParam };
154}
155
156/// Makes a binary operation.
157ast::Expr * makeOp( CodeLocation const & location, std::string const & name,
158 ast::Expr const * lhs, ast::Expr const * rhs ) {
159 return new ast::UntypedExpr( location,
160 new ast::NameExpr( location, name ), { lhs, rhs } );
161}
162
163/// Make a binary operation and wrap it in a statement.
164ast::Stmt * makeOpStmt( CodeLocation const & location, std::string const & name,
165 ast::Expr const * lhs, ast::Expr const * rhs ) {
166 return new ast::ExprStmt( location, makeOp( location, name, lhs, rhs ) );
167}
168
169/// Returns the dereference of a local pointer variable.
170ast::Expr * derefVar(
171 CodeLocation const & location, ast::ObjectDecl const * var ) {
172 return ast::UntypedExpr::createDeref( location,
173 new ast::VariableExpr( location, var ) );
174}
175
176/// Makes an if-statement with a single-expression then and no else.
177ast::Stmt * makeCond( CodeLocation const & location,
178 ast::Expr const * cond, ast::Expr const * thenPart ) {
179 return new ast::IfStmt( location,
180 cond, new ast::ExprStmt( location, thenPart ), nullptr );
181}
182
183/// Makes a statement that aligns lhs to rhs (rhs should be an integer
184/// power of two).
185ast::Stmt * makeAlignTo( CodeLocation const & location,
186 ast::Expr const * lhs, ast::Expr const * rhs ) {
187 // Check that the lhs is zeroed out to the level of rhs.
188 ast::Expr * ifCond = makeOp( location, "?&?", lhs,
189 makeOp( location, "?-?", rhs,
190 ast::ConstantExpr::from_ulong( location, 1 ) ) );
191 // If not aligned, increment to alignment.
192 ast::Expr * ifExpr = makeOp( location, "?+=?", ast::deepCopy( lhs ),
193 makeOp( location, "?-?", ast::deepCopy( rhs ),
194 ast::deepCopy( ifCond ) ) );
195 return makeCond( location, ifCond, ifExpr );
196}
197
198/// Makes a statement that assigns rhs to lhs if lhs < rhs.
199ast::Stmt * makeAssignMax( CodeLocation const & location,
200 ast::Expr const * lhs, ast::Expr const * rhs ) {
201 return makeCond( location,
202 makeOp( location, "?<?", ast::deepCopy( lhs ), ast::deepCopy( rhs ) ),
203 makeOp( location, "?=?", lhs, rhs ) );
204}
205
206void LayoutFunctionBuilder::previsit( ast::StructDecl const * decl ) {
207 // Do not generate layout function for empty tag structures.
208 visit_children = false;
209 if ( decl->members.empty() ) return;
210
211 // Get parameters that can change layout, exiting early if none.
212 ast::vector<ast::TypeDecl> sizedParams =
213 takeSizedParams( decl->params );
214 if ( sizedParams.empty() ) return;
215
216 CodeLocation const & location = decl->location;
217
218 // Build layout function signature.
219 LayoutData layout = buildLayoutFunction(
220 location, decl, sizedParams, isInFunction(), true );
221 ast::FunctionDecl * layoutDecl = layout.function;
222 // Also return these or extract them from the parameter list?
223 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
224 ast::ObjectDecl const * alignofParam = layout.alignofParam;
225 ast::ObjectDecl const * offsetofParam = layout.offsetofParam;
226 assert( nullptr != layout.offsetofParam );
227
228 // Calculate structure layout in function body.
229 // Initialize size and alignment to 0 and 1
230 // (Will have at least one member to update size).
231 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
232 kids.emplace_back( makeOpStmt( location, "?=?",
233 derefVar( location, sizeofParam ),
234 ast::ConstantExpr::from_ulong( location, 0 )
235 ) );
236 kids.emplace_back( makeOpStmt( location, "?=?",
237 derefVar( location, alignofParam ),
238 ast::ConstantExpr::from_ulong( location, 1 )
239 ) );
240 // TODO: Polymorphic types will be out of the struct declaration scope.
241 // This breaks invariants until it is corrected later.
242 for ( auto const & member : enumerate( decl->members ) ) {
243 auto dwt = member.val.strict_as<ast::DeclWithType>();
244 ast::Type const * memberType = dwt->get_type();
245
246 if ( 0 < member.idx ) {
247 // Make sure all later members have padding to align them.
248 kids.emplace_back( makeAlignTo( location,
249 derefVar( location, sizeofParam ),
250 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
251 ) );
252 }
253
254 // Place current size in the current offset index.
255 kids.emplace_back( makeOpStmt( location, "?=?",
256 makeOp( location, "?[?]",
257 new ast::VariableExpr( location, offsetofParam ),
258 ast::ConstantExpr::from_ulong( location, member.idx ) ),
259 derefVar( location, sizeofParam ) ) );
260
261 // Add member size to current size.
262 kids.emplace_back( makeOpStmt( location, "?+=?",
263 derefVar( location, sizeofParam ),
264 new ast::SizeofExpr( location, ast::deepCopy( memberType ) ) ) );
265
266 // Take max of member alignment and global alignment.
267 // (As align is always 2^n, this will always be a multiple of both.)
268 kids.emplace_back( makeAssignMax( location,
269 derefVar( location, alignofParam ),
270 new ast::AlignofExpr( location, ast::deepCopy( memberType ) ) ) );
271 }
272 // Make sure the type is end-padded to a multiple of its alignment.
273 kids.emplace_back( makeAlignTo( location,
274 derefVar( location, sizeofParam ),
275 derefVar( location, alignofParam ) ) );
276
277 declsToAddAfter.emplace_back( layoutDecl );
278}
279
280void LayoutFunctionBuilder::previsit( ast::UnionDecl const * decl ) {
281 visit_children = false;
282 // Do not generate layout function for empty tag unions.
283 if ( decl->members.empty() ) return;
284
285 // Get parameters that can change layout, exiting early if none.
286 ast::vector<ast::TypeDecl> sizedParams =
287 takeSizedParams( decl->params );
288 if ( sizedParams.empty() ) return;
289
290 CodeLocation const & location = decl->location;
291
292 // Build layout function signature.
293 LayoutData layout = buildLayoutFunction(
294 location, decl, sizedParams, isInFunction(), false );
295 ast::FunctionDecl * layoutDecl = layout.function;
296 // Also return these or extract them from the parameter list?
297 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
298 ast::ObjectDecl const * alignofParam = layout.alignofParam;
299 assert( nullptr == layout.offsetofParam );
300
301 // Calculate union layout in function body.
302 // Both are simply the maximum for union (actually align is always the
303 // LCM, but with powers of two that is also the maximum).
304 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
305 kids.emplace_back( makeOpStmt( location,
306 "?=?", derefVar( location, sizeofParam ),
307 ast::ConstantExpr::from_ulong( location, 1 )
308 ) );
309 kids.emplace_back( makeOpStmt( location,
310 "?=?", derefVar( location, alignofParam ),
311 ast::ConstantExpr::from_ulong( location, 1 )
312 ) );
313 // TODO: Polymorphic types will be out of the union declaration scope.
314 // This breaks invariants until it is corrected later.
315 for ( auto const & member : decl->members ) {
316 auto dwt = member.strict_as<ast::DeclWithType>();
317 ast::Type const * memberType = dwt->get_type();
318
319 // Take max member size and global size.
320 kids.emplace_back( makeAssignMax( location,
321 derefVar( location, sizeofParam ),
322 new ast::SizeofExpr( location, ast::deepCopy( memberType ) )
323 ) );
324
325 // Take max of member alignment and global alignment.
326 kids.emplace_back( makeAssignMax( location,
327 derefVar( location, alignofParam ),
328 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
329 ) );
330 }
331 kids.emplace_back( makeAlignTo( location,
332 derefVar( location, sizeofParam ),
333 derefVar( location, alignofParam ) ) );
334
335 declsToAddAfter.emplace_back( layoutDecl );
336}
337
338// --------------------------------------------------------------------------
339/// Application expression transformer.
340/// * Replaces polymorphic return types with out-parameters.
341/// * Replaces call to polymorphic functions with adapter calls which handles
342/// dynamic arguments and return values.
343/// * Adds appropriate type variables to the function calls.
344struct CallAdapter final :
345 public ast::WithConstTypeSubstitution,
346 public ast::WithGuards,
347 public ast::WithShortCircuiting,
348 public ast::WithStmtsToAdd,
349 public ast::WithVisitorRef<CallAdapter> {
350 CallAdapter();
351
352 void previsit( ast::Decl const * decl );
353 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
354 void previsit( ast::TypeDecl const * decl );
355 void previsit( ast::CommaExpr const * expr );
356 ast::Expr const * postvisit( ast::ApplicationExpr const * expr );
357 ast::Expr const * postvisit( ast::UntypedExpr const * expr );
358 void previsit( ast::AddressExpr const * expr );
359 ast::Expr const * postvisit( ast::AddressExpr const * expr );
360 ast::ReturnStmt const * previsit( ast::ReturnStmt const * stmt );
361
362 void beginScope();
363 void endScope();
364private:
365 // Many helpers here use a mutable ApplicationExpr as an in/out parameter
366 // instead of using the return value, to save on mutates and free up the
367 // return value.
368
369 /// Passes extra layout arguments for sized polymorphic type parameters.
370 void passTypeVars(
371 ast::ApplicationExpr * expr,
372 ast::vector<ast::Expr> & extraArgs,
373 ast::FunctionType const * funcType );
374 /// Wraps a function application with a new temporary for the
375 /// out-parameter return value.
376 ast::Expr const * addRetParam(
377 ast::ApplicationExpr * expr, ast::Type const * retType );
378 /// Wraps a function application returning a polymorphic type with a new
379 /// temporary for the out-parameter return value.
380 ast::Expr const * addDynRetParam(
381 ast::ApplicationExpr * expr, ast::Type const * polyType );
382 /// Modify a call so it passes the function through the correct adapter.
383 ast::Expr const * applyAdapter(
384 ast::ApplicationExpr * expr,
385 ast::FunctionType const * function );
386 /// Convert a single argument into its boxed form to pass the parameter.
387 void boxParam( ast::ptr<ast::Expr> & arg,
388 ast::Type const * formal, TypeVarMap const & exprTyVars );
389 /// Box every argument from arg forward, matching the functionType
390 /// parameter list. arg should point into expr's argument list.
391 void boxParams(
392 ast::ApplicationExpr * expr,
393 ast::Type const * polyRetType,
394 ast::FunctionType const * function,
395 const TypeVarMap & typeVars );
396 /// Adds the inferred parameters derived from the assertions of the
397 /// expression to the call.
398 void addInferredParams(
399 ast::ApplicationExpr * expr,
400 ast::vector<ast::Expr> & extraArgs,
401 ast::FunctionType const * functionType,
402 const TypeVarMap & typeVars );
403 /// Stores assignment operators from assertion list in
404 /// local map of assignment operations.
405 void passAdapters(
406 ast::ApplicationExpr * expr,
407 ast::FunctionType const * type,
408 const TypeVarMap & typeVars );
409 /// Create an adapter function based on the type of the adaptee and the
410 /// real type with the type substitutions applied.
411 ast::FunctionDecl * makeAdapter(
412 ast::FunctionType const * adaptee,
413 ast::FunctionType const * realType,
414 std::string const & mangleName,
415 TypeVarMap const & typeVars,
416 CodeLocation const & location ) const;
417 /// Replaces intrinsic operator functions with their arithmetic desugaring.
418 ast::Expr const * handleIntrinsics( ast::ApplicationExpr const * );
419 /// Inserts a new temporary variable into the current scope with an
420 /// auto-generated name.
421 ast::ObjectDecl * makeTemporary(
422 CodeLocation const & location, ast::Type const * type );
423
424 TypeVarMap scopeTypeVars;
425 ScopedMap< std::string, ast::DeclWithType const * > adapters;
426 std::map< ast::ApplicationExpr const *, ast::Expr const * > retVals;
427 ast::DeclWithType const * retval;
428 UniqueName tmpNamer;
429};
430
431/// Replaces a polymorphic type with its concrete equivalant under the
432/// current environment (returns itself if concrete).
433/// If `doClone` is set to false, will not clone interior types
434ast::Type const * replaceWithConcrete(
435 ast::Type const * type,
436 ast::TypeSubstitution const & typeSubs,
437 bool doCopy = true );
438
439/// Replaces all the type parameters of a generic type with their
440/// concrete equivalents under the current environment.
441void replaceParametersWithConcrete(
442 ast::vector<ast::Expr> & params,
443 ast::TypeSubstitution const & typeSubs ) {
444 for ( ast::ptr<ast::Expr> & paramExpr : params ) {
445 ast::TypeExpr const * param = paramExpr.as<ast::TypeExpr>();
446 assertf( param, "Aggregate parameters should be type expressions." );
447 paramExpr = ast::mutate_field( param, &ast::TypeExpr::type,
448 replaceWithConcrete( param->type.get(), typeSubs, false ) );
449 }
450}
451
452ast::Type const * replaceWithConcrete(
453 ast::Type const * type,
454 ast::TypeSubstitution const & typeSubs,
455 bool doCopy ) {
456 if ( auto instType = dynamic_cast<ast::TypeInstType const *>( type ) ) {
457 ast::Type const * concrete = typeSubs.lookup( instType );
458 return ( nullptr != concrete ) ? concrete : instType;
459 } else if ( auto structType =
460 dynamic_cast<ast::StructInstType const *>( type ) ) {
461 ast::StructInstType * newType =
462 doCopy ? ast::deepCopy( structType ) : ast::mutate( structType );
463 replaceParametersWithConcrete( newType->params, typeSubs );
464 return newType;
465 } else if ( auto unionType =
466 dynamic_cast<ast::UnionInstType const *>( type ) ) {
467 ast::UnionInstType * newType =
468 doCopy ? ast::deepCopy( unionType ) : ast::mutate( unionType );
469 replaceParametersWithConcrete( newType->params, typeSubs );
470 return newType;
471 } else {
472 return type;
473 }
474}
475
476std::string makePolyMonoSuffix(
477 ast::FunctionType const * function,
478 TypeVarMap const & typeVars ) {
479 // If the return type or a parameter type involved polymorphic types,
480 // then the adapter will need to take those polymorphic types as pointers.
481 // Therefore, there can be two different functions with the same mangled
482 // name, so we need to further mangle the names.
483 std::stringstream name;
484 for ( auto ret : function->returns ) {
485 name << ( isPolyType( ret, typeVars ) ? 'P' : 'M' );
486 }
487 name << '_';
488 for ( auto arg : function->params ) {
489 name << ( isPolyType( arg, typeVars ) ? 'P' : 'M' );
490 }
491 return name.str();
492}
493
494std::string mangleAdapterName(
495 ast::FunctionType const * function,
496 TypeVarMap const & typeVars ) {
497 return Mangle::mangle( function, {} )
498 + makePolyMonoSuffix( function, typeVars );
499}
500
501std::string makeAdapterName( std::string const & mangleName ) {
502 return "_adapter" + mangleName;
503}
504
505void makeRetParam( ast::FunctionType * type ) {
506 ast::ptr<ast::Type> & retParam = type->returns.front();
507
508 // Make a new parameter that is a pointer to the type of the old return value.
509 retParam = new ast::PointerType( retParam.get() );
510 type->params.emplace( type->params.begin(), retParam );
511
512 // We don't need the return value any more.
513 type->returns.clear();
514}
515
516ast::FunctionType * makeAdapterType(
517 ast::FunctionType const * adaptee,
518 TypeVarMap const & typeVars ) {
519 assertf( ast::FixedArgs == adaptee->isVarArgs,
520 "Cannot adapt a varadic function, should have been checked." );
521 ast::FunctionType * adapter = ast::deepCopy( adaptee );
522 if ( isDynRet( adapter, typeVars ) ) {
523 makeRetParam( adapter );
524 }
525 adapter->params.emplace( adapter->params.begin(),
526 new ast::PointerType( new ast::FunctionType( ast::VariableArgs ) )
527 );
528 return adapter;
529}
530
531CallAdapter::CallAdapter() : tmpNamer( "_temp" ) {}
532
533void CallAdapter::previsit( ast::Decl const * ) {
534 // Prevent type declaration information from leaking out.
535 GuardScope( scopeTypeVars );
536}
537
538ast::FunctionDecl const * CallAdapter::previsit( ast::FunctionDecl const * decl ) {
539 // Prevent type declaration information from leaking out.
540 GuardScope( scopeTypeVars );
541
542 if ( nullptr == decl->stmts ) {
543 return decl;
544 }
545
546 GuardValue( retval );
547
548 // Process polymorphic return value.
549 retval = nullptr;
550 ast::FunctionType const * type = decl->type;
551 if ( isDynRet( type ) && decl->linkage != ast::Linkage::C ) {
552 retval = decl->returns.front();
553
554 // Give names to unnamed return values.
555 if ( "" == retval->name ) {
556 auto mutRet = ast::mutate( retval );
557 mutRet->name = "_retparam";
558 mutRet->linkage = ast::Linkage::C;
559 retval = mutRet;
560 decl = ast::mutate_field_index( decl,
561 &ast::FunctionDecl::returns, 0, mutRet );
562 }
563 }
564
565 // The formal_usage/expr_id values may be off if we get them from the
566 // type, trying the declaration instead.
567 makeTypeVarMap( type, scopeTypeVars );
568
569 // Get all needed adapters from the call. We will forward them.
570 ast::vector<ast::FunctionType> functions;
571 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
572 auto atype = assertion->result.get();
573 findFunction( atype, functions, scopeTypeVars, needsAdapter );
574 }
575
576 for ( ast::ptr<ast::Type> const & arg : type->params ) {
577 findFunction( arg, functions, scopeTypeVars, needsAdapter );
578 }
579
580 for ( auto funcType : functions ) {
581 std::string mangleName = mangleAdapterName( funcType, scopeTypeVars );
582 if ( adapters.contains( mangleName ) ) continue;
583 std::string adapterName = makeAdapterName( mangleName );
584 // NODE: This creates floating nodes, breaking invariants.
585 // This is corrected in the RewireAdapters sub-pass.
586 adapters.insert(
587 mangleName,
588 new ast::ObjectDecl(
589 decl->location,
590 adapterName,
591 new ast::PointerType(
592 makeAdapterType( funcType, scopeTypeVars ) ),
593 nullptr, // init
594 ast::Storage::Classes(),
595 ast::Linkage::C
596 )
597 );
598 }
599
600 return decl;
601}
602
603void CallAdapter::previsit( ast::TypeDecl const * decl ) {
604 addToTypeVarMap( decl, scopeTypeVars );
605}
606
607void CallAdapter::previsit( ast::CommaExpr const * expr ) {
608 // Attempting to find application expressions that were mutated by the
609 // copy constructor passes to use an explicit return variable, so that
610 // the variable can be reused as a parameter to the call rather than
611 // creating a new temporary variable. Previously this step was an
612 // optimization, but with the introduction of tuples and UniqueExprs,
613 // it is necessary to ensure that they use the same variable.
614 // Essentially, looking for pattern:
615 // (x=f(...), x)
616 // To compound the issue, the right side can be *x, etc.
617 // because of lvalue-returning functions
618 if ( auto assign = expr->arg1.as<ast::UntypedExpr>() ) {
619 if ( CodeGen::isAssignment( ast::getFunctionName( assign ) ) ) {
620 assert( 2 == assign->args.size() );
621 if ( auto app = assign->args.back().as<ast::ApplicationExpr>() ) {
622 // First argument is assignable, so it must be an lvalue,
623 // so it should be legal to takes its address.
624 retVals.insert_or_assign( app, assign->args.front() );
625 }
626 }
627 }
628}
629
630ast::Expr const * CallAdapter::postvisit( ast::ApplicationExpr const * expr ) {
631 assert( expr->func->result );
632 ast::FunctionType const * function = getFunctionType( expr->func->result );
633 assertf( function, "ApplicationExpr has non-function type %s",
634 toCString( expr->func->result ) );
635
636 if ( auto newExpr = handleIntrinsics( expr ) ) {
637 return newExpr;
638 }
639
640 ast::ApplicationExpr * mutExpr = ast::mutate( expr );
641 ast::Expr const * ret = expr;
642
643 TypeVarMap exprTypeVars;
644 makeTypeVarMap( function, exprTypeVars );
645 auto dynRetType = isDynRet( function, exprTypeVars );
646
647 // NOTE: addDynRetParam needs to know the actual (generated) return type
648 // so it can make a temporary variable, so pass the result type form the
649 // `expr` `passTypeVars` needs to know the program-text return type ([ex]
650 // the distinction between _conc_T30 and T3(int)) concRetType may not be
651 // a good name in one or both of these places.
652 if ( dynRetType ) {
653 ast::Type const * result = mutExpr->result;
654 ast::Type const * concRetType = result->isVoid() ? nullptr : result;
655 // [Comment from before translation.]
656 // Used to use dynRetType instead of concRetType.
657 ret = addDynRetParam( mutExpr, concRetType );
658 } else if ( needsAdapter( function, scopeTypeVars )
659 && !needsAdapter( function, exprTypeVars ) ) {
660 // Change the application so it calls the adapter rather than the
661 // passed function.
662 ret = applyAdapter( mutExpr, function );
663 }
664
665 ast::vector<ast::Expr> prependArgs;
666 passTypeVars( mutExpr, prependArgs, function );
667 addInferredParams( mutExpr, prependArgs, function, exprTypeVars );
668
669 boxParams( mutExpr, dynRetType, function, exprTypeVars );
670 spliceBegin( mutExpr->args, prependArgs );
671 passAdapters( mutExpr, function, exprTypeVars );
672
673 return ret;
674}
675
676// Get the referent (base type of pointer). Must succeed.
677ast::Type const * getReferentType( ast::ptr<ast::Type> const & type ) {
678 auto pointerType = type.strict_as<ast::PointerType>();
679 assertf( pointerType->base, "getReferentType: pointer base is nullptr." );
680 return pointerType->base.get();
681}
682
683bool isPolyDeref( ast::UntypedExpr const * expr,
684 TypeVarMap const & typeVars,
685 ast::TypeSubstitution const * typeSubs ) {
686 auto name = expr->func.as<ast::NameExpr>();
687 if ( name && "*?" == name->name ) {
688 // It's a deref.
689 // Must look under the * (and strip its ptr-ty) because expr's
690 // result could be ar/ptr-decayed. If expr.inner:T(*)[n], then
691 // expr is a poly deref, even though expr:T*, which is not poly.
692 auto referentType = getReferentType( expr->args.front()->result );
693 return isPolyType( referentType, typeVars, typeSubs );
694 }
695 return false;
696}
697
698ast::Expr const * CallAdapter::postvisit( ast::UntypedExpr const * expr ) {
699 if ( isPolyDeref( expr, scopeTypeVars, typeSubs ) ) {
700 return expr->args.front();
701 }
702 return expr;
703}
704
705void CallAdapter::previsit( ast::AddressExpr const * ) {
706 visit_children = false;
707}
708
709ast::Expr const * CallAdapter::postvisit( ast::AddressExpr const * expr ) {
710 assert( expr->arg->result );
711 assert( !expr->arg->result->isVoid() );
712
713 bool doesNeedAdapter = false;
714 if ( auto un = expr->arg.as<ast::UntypedExpr>() ) {
715 if ( isPolyDeref( un, scopeTypeVars, typeSubs ) ) {
716 if ( auto app = un->args.front().as<ast::ApplicationExpr>() ) {
717 assert( app->func->result );
718 auto function = getFunctionType( app->func->result );
719 assert( function );
720 doesNeedAdapter = needsAdapter( function, scopeTypeVars );
721 }
722 }
723 }
724 // isPolyType check needs to happen before mutating expr arg,
725 // so pull it forward out of the if condition.
726 expr = ast::mutate_field( expr, &ast::AddressExpr::arg,
727 expr->arg->accept( *visitor ) );
728 // But must happen after mutate, since argument might change
729 // (ex. intrinsic *?, ?[?]) re-evaluate above comment.
730 bool polyType = isPolyType( expr->arg->result, scopeTypeVars, typeSubs );
731 if ( polyType || doesNeedAdapter ) {
732 ast::Expr * ret = ast::mutate( expr->arg.get() );
733 ret->result = ast::deepCopy( expr->result );
734 return ret;
735 } else {
736 return expr;
737 }
738}
739
740ast::ReturnStmt const * CallAdapter::previsit( ast::ReturnStmt const * stmt ) {
741 // Since retval is set when the return type is dynamic, this function
742 // should have been converted to void return & out parameter.
743 if ( retval && stmt->expr ) {
744 assert( stmt->expr->result );
745 assert( !stmt->expr->result->isVoid() );
746 return ast::mutate_field( stmt, &ast::ReturnStmt::expr, nullptr );
747 }
748 return stmt;
749}
750
751void CallAdapter::beginScope() {
752 adapters.beginScope();
753}
754
755void CallAdapter::endScope() {
756 adapters.endScope();
757}
758
759/// Find instances of polymorphic type parameters.
760struct PolyFinder {
761 TypeVarMap const & typeVars;
762 bool result = false;
763 PolyFinder( TypeVarMap const & tvs ) : typeVars( tvs ) {}
764
765 void previsit( ast::TypeInstType const * type ) {
766 if ( isPolyType( type, typeVars ) ) result = true;
767 }
768};
769
770/// True if these is an instance of a polymorphic type parameter in the type.
771bool hasPolymorphism( ast::Type const * type, TypeVarMap const & typeVars ) {
772 return ast::Pass<PolyFinder>::read( type, typeVars );
773}
774
775void CallAdapter::passTypeVars(
776 ast::ApplicationExpr * expr,
777 ast::vector<ast::Expr> & extraArgs,
778 ast::FunctionType const * function ) {
779 assert( typeSubs );
780 // Pass size/align for type variables.
781 for ( ast::ptr<ast::TypeInstType> const & typeVar : function->forall ) {
782 if ( !typeVar->base->isComplete() ) continue;
783 ast::Type const * concrete = typeSubs->lookup( typeVar );
784 if ( !concrete ) {
785 // Should this be an assertion?
786 SemanticError( expr->location, "\nunbound type variable %s in application %s",
787 toString( typeSubs ).c_str(), typeVar->typeString().c_str() );
788 }
789 extraArgs.emplace_back(
790 new ast::SizeofExpr( expr->location, ast::deepCopy( concrete ) ) );
791 extraArgs.emplace_back(
792 new ast::AlignofExpr( expr->location, ast::deepCopy( concrete ) ) );
793 }
794}
795
796ast::Expr const * CallAdapter::addRetParam(
797 ast::ApplicationExpr * expr, ast::Type const * retType ) {
798 // Create temporary to hold return value of polymorphic function and
799 // produce that temporary as a result using a comma expression.
800 assert( retType );
801
802 ast::Expr * paramExpr = nullptr;
803 // Try to use existing return value parameter if it exists,
804 // otherwise create a new temporary.
805 if ( retVals.count( expr ) ) {
806 paramExpr = ast::deepCopy( retVals[ expr ] );
807 } else {
808 auto newObj = makeTemporary( expr->location, ast::deepCopy( retType ) );
809 paramExpr = new ast::VariableExpr( expr->location, newObj );
810 }
811 ast::Expr * retExpr = ast::deepCopy( paramExpr );
812
813 // If the type of the temporary is not polpmorphic, box temporary by
814 // taking its address; otherwise the temporary is already boxed and can
815 // be used directly.
816 if ( !isPolyType( paramExpr->result, scopeTypeVars, typeSubs ) ) {
817 paramExpr = new ast::AddressExpr( paramExpr->location, paramExpr );
818 }
819 // Add argument to function call.
820 expr->args.insert( expr->args.begin(), paramExpr );
821 // Build a comma expression to call the function and return a value.
822 ast::CommaExpr * comma = new ast::CommaExpr(
823 expr->location, expr, retExpr );
824 comma->env = expr->env;
825 expr->env = nullptr;
826 return comma;
827}
828
829ast::Expr const * CallAdapter::addDynRetParam(
830 ast::ApplicationExpr * expr, ast::Type const * polyType ) {
831 assert( typeSubs );
832 ast::Type const * concrete = replaceWithConcrete( polyType, *typeSubs );
833 // Add out-parameter for return value.
834 return addRetParam( expr, concrete );
835}
836
837ast::Expr const * CallAdapter::applyAdapter(
838 ast::ApplicationExpr * expr,
839 ast::FunctionType const * function ) {
840 ast::Expr const * ret = expr;
841 if ( isDynRet( function, scopeTypeVars ) ) {
842 ret = addRetParam( expr, function->returns.front() );
843 }
844 std::string mangleName = mangleAdapterName( function, scopeTypeVars );
845 std::string adapterName = makeAdapterName( mangleName );
846
847 // Cast adaptee to `void (*)()`, since it may have any type inside a
848 // polymorphic function.
849 ast::Type const * adapteeType = new ast::PointerType(
850 new ast::FunctionType( ast::VariableArgs ) );
851 expr->args.insert( expr->args.begin(),
852 new ast::CastExpr( expr->location, expr->func, adapteeType ) );
853 // The result field is never set on NameExpr. / Now it is.
854 auto head = new ast::NameExpr( expr->location, adapterName );
855 head->result = ast::deepCopy( adapteeType );
856 expr->func = head;
857
858 return ret;
859}
860
861/// Cast parameters to polymorphic functions so that types are replaced with
862/// `void *` if they are type parameters in the formal type.
863/// This gets rid of warnings from gcc.
864void addCast(
865 ast::ptr<ast::Expr> & actual,
866 ast::Type const * formal,
867 TypeVarMap const & typeVars ) {
868 // Type contains polymorphism, but isn't exactly a polytype, in which
869 // case it has some real actual type (ex. unsigned int) and casting to
870 // `void *` is wrong.
871 if ( hasPolymorphism( formal, typeVars )
872 && !isPolyType( formal, typeVars ) ) {
873 ast::Type const * newType = ast::deepCopy( formal );
874 newType = scrubTypeVars( newType, typeVars );
875 actual = new ast::CastExpr( actual->location, actual, newType );
876 }
877}
878
879void CallAdapter::boxParam( ast::ptr<ast::Expr> & arg,
880 ast::Type const * param, TypeVarMap const & exprTypeVars ) {
881 assertf( arg->result, "arg does not have result: %s", toCString( arg ) );
882 addCast( arg, param, exprTypeVars );
883 if ( !needsBoxing( param, arg->result, exprTypeVars, typeSubs ) ) {
884 return;
885 }
886 CodeLocation const & location = arg->location;
887
888 if ( arg->get_lvalue() ) {
889 // The argument expression may be CFA lvalue, but not C lvalue,
890 // so apply generalizedLvalue transformations.
891 // if ( auto var = dynamic_cast<ast::VariableExpr const *>( arg ) ) {
892 // if ( dynamic_cast<ast::ArrayType const *>( varExpr->var->get_type() ) ){
893 // // temporary hack - don't box arrays, because &arr is not the same as &arr[0]
894 // return;
895 // }
896 // }
897 arg = generalizedLvalue( new ast::AddressExpr( arg->location, arg ) );
898 if ( !ResolvExpr::typesCompatible( param, arg->result ) ) {
899 // Silence warnings by casting boxed parameters when the actually
900 // type does not match up with the formal type.
901 arg = new ast::CastExpr( location, arg, ast::deepCopy( param ) );
902 }
903 } else {
904 // Use type computed in unification to declare boxed variables.
905 ast::ptr<ast::Type> newType = ast::deepCopy( param );
906 if ( typeSubs ) typeSubs->apply( newType );
907 ast::ObjectDecl * newObj = makeTemporary( location, newType );
908 auto assign = ast::UntypedExpr::createCall( location, "?=?", {
909 new ast::VariableExpr( location, newObj ),
910 arg,
911 } );
912 stmtsToAddBefore.push_back( new ast::ExprStmt( location, assign ) );
913 arg = new ast::AddressExpr(
914 new ast::VariableExpr( location, newObj ) );
915 }
916}
917
918void CallAdapter::boxParams(
919 ast::ApplicationExpr * expr,
920 ast::Type const * polyRetType,
921 ast::FunctionType const * function,
922 const TypeVarMap & typeVars ) {
923 // Start at the beginning, but the return argument may have been added.
924 auto arg = expr->args.begin();
925 if ( polyRetType ) ++arg;
926
927 for ( auto param : function->params ) {
928 assertf( arg != expr->args.end(),
929 "boxParams: missing argument for param %s to %s in %s",
930 toCString( param ), toCString( function ), toCString( expr ) );
931 boxParam( *arg, param, typeVars );
932 ++arg;
933 }
934}
935
936void CallAdapter::addInferredParams(
937 ast::ApplicationExpr * expr,
938 ast::vector<ast::Expr> & extraArgs,
939 ast::FunctionType const * functionType,
940 TypeVarMap const & typeVars ) {
941 for ( auto assertion : functionType->assertions ) {
942 auto inferParam = expr->inferred.inferParams().find(
943 assertion->var->uniqueId );
944 assertf( inferParam != expr->inferred.inferParams().end(),
945 "addInferredParams missing inferred parameter: %s in: %s",
946 toCString( assertion ), toCString( expr ) );
947 ast::ptr<ast::Expr> newExpr = ast::deepCopy( inferParam->second.expr );
948 boxParam( newExpr, assertion->result, typeVars );
949 extraArgs.emplace_back( newExpr.release() );
950 }
951}
952
953/// Modifies the ApplicationExpr to accept adapter functions for its
954/// assertion and parameters, declares the required adapters.
955void CallAdapter::passAdapters(
956 ast::ApplicationExpr * expr,
957 ast::FunctionType const * type,
958 const TypeVarMap & exprTypeVars ) {
959 // Collect a list of function types passed as parameters or implicit
960 // parameters (assertions).
961 ast::vector<ast::Type> const & paramList = type->params;
962 ast::vector<ast::FunctionType> functions;
963
964 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
965 findFunction( assertion->result, functions, exprTypeVars, needsAdapter );
966 }
967 for ( ast::ptr<ast::Type> const & arg : paramList ) {
968 findFunction( arg, functions, exprTypeVars, needsAdapter );
969 }
970
971 // Parameter function types for which an appropriate adapter has been
972 // generated. We cannot use the types after applying substitutions,
973 // since two different parameter types may be unified to the same type.
974 std::set<std::string> adaptersDone;
975
976 CodeLocation const & location = expr->location;
977
978 for ( ast::ptr<ast::FunctionType> const & funcType : functions ) {
979 std::string mangleName = Mangle::mangle( funcType );
980
981 // Only attempt to create an adapter or pass one as a parameter if we
982 // haven't already done so for this pre-substitution parameter
983 // function type.
984 // The second part of the result if is if the element was inserted.
985 if ( !adaptersDone.insert( mangleName ).second ) continue;
986
987 // Apply substitution to type variables to figure out what the
988 // adapter's type should look like. (Copy to make the release safe.)
989 assert( typeSubs );
990 auto result = typeSubs->apply( ast::deepCopy( funcType ) );
991 ast::FunctionType * realType = ast::mutate( result.node.release() );
992 mangleName = Mangle::mangle( realType );
993 mangleName += makePolyMonoSuffix( funcType, exprTypeVars );
994
995 // Check if the adapter has already been created, or has to be.
996 using AdapterIter = decltype(adapters)::iterator;
997 AdapterIter adapter = adapters.find( mangleName );
998 if ( adapter == adapters.end() ) {
999 ast::FunctionDecl * newAdapter = makeAdapter(
1000 funcType, realType, mangleName, exprTypeVars, location );
1001 std::pair<AdapterIter, bool> answer =
1002 adapters.insert( mangleName, newAdapter );
1003 adapter = answer.first;
1004 stmtsToAddBefore.push_back(
1005 new ast::DeclStmt( location, newAdapter ) );
1006 }
1007 assert( adapter != adapters.end() );
1008
1009 // Add the approprate adapter as a parameter.
1010 expr->args.insert( expr->args.begin(),
1011 new ast::VariableExpr( location, adapter->second ) );
1012 }
1013}
1014
1015// Parameter and argument may be used wrong around here.
1016ast::Expr * makeAdapterArg(
1017 ast::DeclWithType const * param,
1018 ast::Type const * arg,
1019 ast::Type const * realParam,
1020 TypeVarMap const & typeVars,
1021 CodeLocation const & location ) {
1022 assert( param );
1023 assert( arg );
1024 assert( realParam );
1025 if ( isPolyType( realParam, typeVars ) && !isPolyType( arg ) ) {
1026 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref(
1027 location,
1028 new ast::CastExpr( location,
1029 new ast::VariableExpr( location, param ),
1030 new ast::PointerType( ast::deepCopy( arg ) )
1031 )
1032 );
1033 deref->result = ast::deepCopy( arg );
1034 return deref;
1035 }
1036 return new ast::VariableExpr( location, param );
1037}
1038
1039// This seems to be one of the problematic functions.
1040void addAdapterParams(
1041 ast::ApplicationExpr * adaptee,
1042 ast::vector<ast::Type>::const_iterator arg,
1043 ast::vector<ast::DeclWithType>::iterator param,
1044 ast::vector<ast::DeclWithType>::iterator paramEnd,
1045 ast::vector<ast::Type>::const_iterator realParam,
1046 TypeVarMap const & typeVars,
1047 CodeLocation const & location ) {
1048 UniqueName paramNamer( "_p" );
1049 for ( ; param != paramEnd ; ++param, ++arg, ++realParam ) {
1050 if ( "" == (*param)->name ) {
1051 auto mutParam = (*param).get_and_mutate();
1052 mutParam->name = paramNamer.newName();
1053 mutParam->linkage = ast::Linkage::C;
1054 }
1055 adaptee->args.push_back(
1056 makeAdapterArg( *param, *arg, *realParam, typeVars, location ) );
1057 }
1058}
1059
1060ast::FunctionDecl * CallAdapter::makeAdapter(
1061 ast::FunctionType const * adaptee,
1062 ast::FunctionType const * realType,
1063 std::string const & mangleName,
1064 TypeVarMap const & typeVars,
1065 CodeLocation const & location ) const {
1066 ast::FunctionType * adapterType = makeAdapterType( adaptee, typeVars );
1067 adapterType = ast::mutate( scrubTypeVars( adapterType, typeVars ) );
1068
1069 // Some of these names will be overwritten, but it gives a default.
1070 UniqueName pNamer( "_param" );
1071 UniqueName rNamer( "_ret" );
1072
1073 bool first = true;
1074
1075 ast::FunctionDecl * adapterDecl = new ast::FunctionDecl( location,
1076 makeAdapterName( mangleName ),
1077 {}, // forall
1078 {}, // assertions
1079 map_range<ast::vector<ast::DeclWithType>>( adapterType->params,
1080 [&pNamer, &location, &first]( ast::ptr<ast::Type> const & param ) {
1081 // [Trying to make the generated code match exactly more often.]
1082 if ( first ) {
1083 first = false;
1084 return new ast::ObjectDecl( location, "_adaptee", param );
1085 }
1086 return new ast::ObjectDecl( location, pNamer.newName(), param );
1087 } ),
1088 map_range<ast::vector<ast::DeclWithType>>( adapterType->returns,
1089 [&rNamer, &location]( ast::ptr<ast::Type> const & retval ) {
1090 return new ast::ObjectDecl( location, rNamer.newName(), retval );
1091 } ),
1092 nullptr, // stmts
1093 {}, // storage
1094 ast::Linkage::C
1095 );
1096
1097 ast::DeclWithType * adapteeDecl =
1098 adapterDecl->params.front().get_and_mutate();
1099 adapteeDecl->name = "_adaptee";
1100
1101 // Do not carry over attributes to real type parameters/return values.
1102 auto mutRealType = ast::mutate( realType );
1103 for ( ast::ptr<ast::Type> & decl : mutRealType->params ) {
1104 if ( decl->attributes.empty() ) continue;
1105 auto mut = ast::mutate( decl.get() );
1106 mut->attributes.clear();
1107 decl = mut;
1108 }
1109 for ( ast::ptr<ast::Type> & decl : mutRealType->returns ) {
1110 if ( decl->attributes.empty() ) continue;
1111 auto mut = ast::mutate( decl.get() );
1112 mut->attributes.clear();
1113 decl = mut;
1114 }
1115 realType = mutRealType;
1116
1117 ast::ApplicationExpr * adapteeApp = new ast::ApplicationExpr( location,
1118 new ast::CastExpr( location,
1119 new ast::VariableExpr( location, adapteeDecl ),
1120 new ast::PointerType( realType )
1121 )
1122 );
1123
1124 for ( auto const & [assertArg, assertParam, assertReal] : group_iterate(
1125 realType->assertions, adapterType->assertions, adaptee->assertions ) ) {
1126 adapteeApp->args.push_back( makeAdapterArg(
1127 assertParam->var, assertArg->var->get_type(),
1128 assertReal->var->get_type(), typeVars, location
1129 ) );
1130 }
1131
1132 ast::vector<ast::Type>::const_iterator
1133 arg = realType->params.begin(),
1134 param = adapterType->params.begin(),
1135 realParam = adaptee->params.begin();
1136 ast::vector<ast::DeclWithType>::iterator
1137 paramDecl = adapterDecl->params.begin();
1138 // Skip adaptee parameter in the adapter type.
1139 ++param;
1140 ++paramDecl;
1141
1142 ast::Stmt * bodyStmt;
1143 // Returns void/nothing.
1144 if ( realType->returns.empty() ) {
1145 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1146 realParam, typeVars, location );
1147 bodyStmt = new ast::ExprStmt( location, adapteeApp );
1148 // Returns a polymorphic type.
1149 } else if ( isDynType( adaptee->returns.front(), typeVars ) ) {
1150 ast::UntypedExpr * assign = new ast::UntypedExpr( location,
1151 new ast::NameExpr( location, "?=?" ) );
1152 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref( location,
1153 new ast::CastExpr( location,
1154 new ast::VariableExpr( location, *paramDecl++ ),
1155 new ast::PointerType(
1156 ast::deepCopy( realType->returns.front() ) ) ) );
1157 assign->args.push_back( deref );
1158 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1159 realParam, typeVars, location );
1160 assign->args.push_back( adapteeApp );
1161 bodyStmt = new ast::ExprStmt( location, assign );
1162 // Adapter for a function that returns a monomorphic value.
1163 } else {
1164 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1165 realParam, typeVars, location );
1166 bodyStmt = new ast::ReturnStmt( location, adapteeApp );
1167 }
1168
1169 adapterDecl->stmts = new ast::CompoundStmt( location, { bodyStmt } );
1170 return adapterDecl;
1171}
1172
1173ast::Expr const * makeIncrDecrExpr(
1174 CodeLocation const & location,
1175 ast::ApplicationExpr const * expr,
1176 ast::Type const * polyType,
1177 bool isIncr ) {
1178 ast::NameExpr * opExpr =
1179 new ast::NameExpr( location, isIncr ? "?+=?" : "?-=?" );
1180 ast::UntypedExpr * addAssign = new ast::UntypedExpr( location, opExpr );
1181 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1182 addAssign->args.push_back( address->arg );
1183 } else {
1184 addAssign->args.push_back( expr->args.front() );
1185 }
1186 addAssign->args.push_back( new ast::NameExpr( location,
1187 sizeofName( Mangle::mangleType( polyType ) ) ) );
1188 addAssign->result = ast::deepCopy( expr->result );
1189 addAssign->env = expr->env ? expr->env : addAssign->env;
1190 return addAssign;
1191}
1192
1193/// Handles intrinsic functions for postvisit ApplicationExpr.
1194ast::Expr const * CallAdapter::handleIntrinsics(
1195 ast::ApplicationExpr const * expr ) {
1196 auto varExpr = expr->func.as<ast::VariableExpr>();
1197 if ( !varExpr || varExpr->var->linkage != ast::Linkage::Intrinsic ) {
1198 return nullptr;
1199 }
1200 std::string const & varName = varExpr->var->name;
1201
1202 // Index Intrinsic:
1203 if ( "?[?]" == varName ) {
1204 assert( expr->result );
1205 assert( 2 == expr->args.size() );
1206
1207 ast::ptr<ast::Type> const & argType1 = expr->args.front()->result;
1208 ast::ptr<ast::Type> const & argType2 = expr->args.back()->result;
1209
1210 // Two Cases: a[i] with first arg poly ptr, i[a] with second arg poly ptr
1211 bool isPoly1 = isPolyPtr( argType1, scopeTypeVars, typeSubs ) != nullptr;
1212 bool isPoly2 = isPolyPtr( argType2, scopeTypeVars, typeSubs ) != nullptr;
1213
1214 // If neither argument is a polymorphic pointer, do nothing.
1215 if ( !isPoly1 && !isPoly2 ) {
1216 return expr;
1217 }
1218 // The arguments cannot both be polymorphic pointers.
1219 assert( !isPoly1 || !isPoly2 );
1220 // (So exactly one of the arguments is a polymorphic pointer.)
1221
1222 CodeLocation const & location = expr->location;
1223 CodeLocation const & location1 = expr->args.front()->location;
1224 CodeLocation const & location2 = expr->args.back()->location;
1225
1226 ast::UntypedExpr * ret = new ast::UntypedExpr( location,
1227 new ast::NameExpr( location, "?+?" ) );
1228 if ( isPoly1 ) {
1229 auto referentType = getReferentType( argType1 );
1230 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1231 expr->args.back(),
1232 new ast::SizeofExpr( location1, deepCopy( referentType ) ),
1233 } );
1234 ret->args.push_back( expr->args.front() );
1235 ret->args.push_back( multiply );
1236 } else {
1237 assert( isPoly2 );
1238 auto referentType = getReferentType( argType2 );
1239 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1240 expr->args.front(),
1241 new ast::SizeofExpr( location2, deepCopy( referentType ) ),
1242 } );
1243 ret->args.push_back( multiply );
1244 ret->args.push_back( expr->args.back() );
1245 }
1246 ret->result = ast::deepCopy( expr->result );
1247 ret->env = expr->env ? expr->env : ret->env;
1248 return ret;
1249 // Dereference Intrinsic:
1250 } else if ( "*?" == varName ) {
1251 assert( expr->result );
1252 assert( 1 == expr->args.size() );
1253
1254 // If this isn't for a poly type, then do nothing.
1255 auto referentType = getReferentType( expr->args.front()->result );
1256 if ( !isPolyType( referentType, scopeTypeVars, typeSubs ) ) {
1257 return expr;
1258 }
1259
1260 // Remove dereference from polymorphic types since they are boxed.
1261 ast::Expr * ret = ast::deepCopy( expr->args.front() );
1262 // Fix expression type to remove pointer.
1263 ret->result = expr->result;
1264 // apply pointer decay
1265 if (auto retArTy = ret->result.as<ast::ArrayType>()) {
1266 ret->result = new ast::PointerType( retArTy->base );
1267 }
1268 ret->env = expr->env ? expr->env : ret->env;
1269 return ret;
1270 // Post-Increment/Decrement Intrinsics:
1271 } else if ( "?++" == varName || "?--" == varName ) {
1272 assert( expr->result );
1273 assert( 1 == expr->args.size() );
1274
1275 ast::Type const * baseType =
1276 isPolyType( expr->result, scopeTypeVars, typeSubs );
1277 if ( nullptr == baseType ) {
1278 return expr;
1279 }
1280 ast::Type * tempType = ast::deepCopy( expr->result );
1281 if ( typeSubs ) {
1282 auto result = typeSubs->apply( tempType );
1283 tempType = ast::mutate( result.node.release() );
1284 }
1285 CodeLocation const & location = expr->location;
1286 ast::ObjectDecl * newObj = makeTemporary( location, tempType );
1287 ast::VariableExpr * tempExpr =
1288 new ast::VariableExpr( location, newObj );
1289 ast::UntypedExpr * assignExpr = new ast::UntypedExpr( location,
1290 new ast::NameExpr( location, "?=?" ) );
1291 assignExpr->args.push_back( ast::deepCopy( tempExpr ) );
1292 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1293 assignExpr->args.push_back( ast::deepCopy( address->arg ) );
1294 } else {
1295 assignExpr->args.push_back( ast::deepCopy( expr->args.front() ) );
1296 }
1297 return new ast::CommaExpr( location,
1298 new ast::CommaExpr( location,
1299 assignExpr,
1300 makeIncrDecrExpr( location, expr, baseType, "?++" == varName )
1301 ),
1302 tempExpr
1303 );
1304 // Pre-Increment/Decrement Intrinsics:
1305 } else if ( "++?" == varName || "--?" == varName ) {
1306 assert( expr->result );
1307 assert( 1 == expr->args.size() );
1308
1309 ast::Type const * baseType =
1310 isPolyType( expr->result, scopeTypeVars, typeSubs );
1311 if ( nullptr == baseType ) {
1312 return expr;
1313 }
1314 return makeIncrDecrExpr(
1315 expr->location, expr, baseType, "++?" == varName );
1316 // Addition and Subtraction Intrinsics:
1317 } else if ( "?+?" == varName || "?-?" == varName ) {
1318 assert( expr->result );
1319 assert( 2 == expr->args.size() );
1320
1321 ast::ptr<ast::Type> const & argType1 = expr->args.front()->result;
1322 ast::ptr<ast::Type> const & argType2 = expr->args.back()->result;
1323
1324 bool isPoly1 = isPolyPtr( argType1, scopeTypeVars, typeSubs ) != nullptr;
1325 bool isPoly2 = isPolyPtr( argType2, scopeTypeVars, typeSubs ) != nullptr;
1326
1327 CodeLocation const & location = expr->location;
1328 CodeLocation const & location1 = expr->args.front()->location;
1329 CodeLocation const & location2 = expr->args.back()->location;
1330 // LHS - RHS -> (LHS - RHS) / sizeof(LHS)
1331 if ( isPoly1 && isPoly2 ) {
1332 // There are only subtraction intrinsics for this pattern.
1333 assert( "?-?" == varName );
1334 auto referentType = getReferentType( argType1 );
1335 auto divide = ast::UntypedExpr::createCall( location, "?/?", {
1336 expr,
1337 new ast::SizeofExpr( location, deepCopy( referentType ) ),
1338 } );
1339 if ( expr->env ) divide->env = expr->env;
1340 return divide;
1341 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1342 } else if ( isPoly1 ) {
1343 auto referentType = getReferentType( argType1 );
1344 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1345 expr->args.back(),
1346 new ast::SizeofExpr( location1, deepCopy( referentType ) ),
1347 } );
1348 return ast::mutate_field_index(
1349 expr, &ast::ApplicationExpr::args, 1, multiply );
1350 // LHS op RHS -> (LHS * sizeof(RHS)) op RHS
1351 } else if ( isPoly2 ) {
1352 auto referentType = getReferentType( argType2 );
1353 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1354 expr->args.front(),
1355 new ast::SizeofExpr( location2, deepCopy( referentType ) ),
1356 } );
1357 return ast::mutate_field_index(
1358 expr, &ast::ApplicationExpr::args, 0, multiply );
1359 }
1360 // Addition and Subtraction Relative Assignment Intrinsics:
1361 } else if ( "?+=?" == varName || "?-=?" == varName ) {
1362 assert( expr->result );
1363 assert( 2 == expr->args.size() );
1364
1365 CodeLocation const & location1 = expr->args.front()->location;
1366 CodeLocation const & location2 = expr->args.back()->location;
1367 auto baseType = isPolyPtr( expr->result, scopeTypeVars, typeSubs );
1368 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1369 if ( baseType ) {
1370 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1371 expr->args.back(),
1372 new ast::SizeofExpr( location1, deepCopy( baseType ) ),
1373 } );
1374 return ast::mutate_field_index(
1375 expr, &ast::ApplicationExpr::args, 1, multiply );
1376 }
1377 }
1378 return expr;
1379}
1380
1381ast::ObjectDecl * CallAdapter::makeTemporary(
1382 CodeLocation const & location, ast::Type const * type ) {
1383 auto newObj = new ast::ObjectDecl( location, tmpNamer.newName(), type );
1384 stmtsToAddBefore.push_back( new ast::DeclStmt( location, newObj ) );
1385 return newObj;
1386}
1387
1388// --------------------------------------------------------------------------
1389/// Modifies declarations to accept implicit parameters.
1390/// * Move polymorphic returns in function types to pointer-type parameters.
1391/// * Adds type size and assertion parameters to parameter lists.
1392struct DeclAdapter final {
1393 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
1394 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
1395private:
1396 void addAdapters( ast::FunctionDecl * decl, TypeVarMap & localTypeVars );
1397};
1398
1399ast::ObjectDecl * makeObj(
1400 CodeLocation const & location, std::string const & name ) {
1401 // The size/align parameters may be unused, so add the unused attribute.
1402 return new ast::ObjectDecl( location, name,
1403 makeLayoutCType(),
1404 nullptr, ast::Storage::Classes(), ast::Linkage::C, nullptr,
1405 { new ast::Attribute( "unused" ) } );
1406}
1407
1408/// A modified and specialized version of ast::add_qualifiers.
1409ast::Type const * addConst( ast::Type const * type ) {
1410 ast::CV::Qualifiers cvq = { ast::CV::Const };
1411 if ( ( type->qualifiers & cvq ) != 0 ) return type;
1412 auto mutType = ast::mutate( type );
1413 mutType->qualifiers |= cvq;
1414 return mutType;
1415}
1416
1417ast::FunctionDecl const * DeclAdapter::previsit( ast::FunctionDecl const * decl ) {
1418 TypeVarMap localTypeVars;
1419 makeTypeVarMap( decl, localTypeVars );
1420
1421 auto mutDecl = mutate( decl );
1422
1423 // Move polymorphic return type to parameter list.
1424 if ( isDynRet( mutDecl->type ) ) {
1425 auto ret = strict_dynamic_cast<ast::ObjectDecl *>(
1426 mutDecl->returns.front().get_and_mutate() );
1427 ret->set_type( new ast::PointerType( ret->type ) );
1428 mutDecl->params.insert( mutDecl->params.begin(), ret );
1429 mutDecl->returns.erase( mutDecl->returns.begin() );
1430 ret->init = nullptr;
1431 }
1432
1433 // Add size/align and assertions for type parameters to parameter list.
1434 ast::vector<ast::DeclWithType> inferredParams;
1435 ast::vector<ast::DeclWithType> layoutParams;
1436 for ( ast::ptr<ast::TypeDecl> & typeParam : mutDecl->type_params ) {
1437 auto mutParam = mutate( typeParam.get() );
1438 // Add all size and alignment parameters to parameter list.
1439 if ( mutParam->isComplete() ) {
1440 ast::TypeInstType paramType( mutParam );
1441 std::string paramName = Mangle::mangleType( &paramType );
1442
1443 auto sizeParam = makeObj( typeParam->location, sizeofName( paramName ) );
1444 layoutParams.emplace_back( sizeParam );
1445
1446 auto alignParam = makeObj( typeParam->location, alignofName( paramName ) );
1447 layoutParams.emplace_back( alignParam );
1448 }
1449 // Assertions should be stored in the main list.
1450 assert( mutParam->assertions.empty() );
1451 typeParam = mutParam;
1452 }
1453 for ( ast::ptr<ast::DeclWithType> & assert : mutDecl->assertions ) {
1454 ast::DeclWithType * mutAssert = ast::mutate( assert.get() );
1455 // Assertion parameters may not be used in body,
1456 // pass along with unused attribute.
1457 mutAssert->attributes.push_back( new ast::Attribute( "unused" ) );
1458 mutAssert->set_type( addConst( mutAssert->get_type() ) );
1459 inferredParams.emplace_back( mutAssert );
1460 }
1461 mutDecl->assertions.clear();
1462
1463 // Prepend each argument group. From last group to first. addAdapters
1464 // does do the same, it just does it itself and see all other parameters.
1465 spliceBegin( mutDecl->params, inferredParams );
1466 spliceBegin( mutDecl->params, layoutParams );
1467 addAdapters( mutDecl, localTypeVars );
1468
1469 // Now have to update the type to match the declaration.
1470 ast::FunctionType * type = new ast::FunctionType(
1471 mutDecl->type->isVarArgs, mutDecl->type->qualifiers );
1472 // The forall clauses don't match until Eraser. The assertions are empty.
1473 for ( auto param : mutDecl->params ) {
1474 type->params.emplace_back( param->get_type() );
1475 }
1476 for ( auto retval : mutDecl->returns ) {
1477 type->returns.emplace_back( retval->get_type() );
1478 }
1479 mutDecl->type = type;
1480
1481 return mutDecl;
1482}
1483
1484ast::FunctionDecl const * DeclAdapter::postvisit(
1485 ast::FunctionDecl const * decl ) {
1486 ast::FunctionDecl * mutDecl = mutate( decl );
1487 if ( !mutDecl->returns.empty() && mutDecl->stmts
1488 // Intrinsic functions won't be using the _retval so no need to
1489 // generate it.
1490 && mutDecl->linkage != ast::Linkage::Intrinsic
1491 // Remove check for prefix once thunks properly use ctor/dtors.
1492 && !isPrefix( mutDecl->name, "_thunk" )
1493 && !isPrefix( mutDecl->name, "_adapter" ) ) {
1494 assert( 1 == mutDecl->returns.size() );
1495 ast::DeclWithType const * retval = mutDecl->returns.front();
1496 if ( "" == retval->name ) {
1497 retval = ast::mutate_field(
1498 retval, &ast::DeclWithType::name, "_retval" );
1499 mutDecl->returns.front() = retval;
1500 }
1501 auto stmts = mutDecl->stmts.get_and_mutate();
1502 stmts->kids.push_front( new ast::DeclStmt( retval->location, retval ) );
1503 ast::DeclWithType * newRet = ast::deepCopy( retval );
1504 mutDecl->returns.front() = newRet;
1505 }
1506 // Errors should have been caught by this point, remove initializers from
1507 // parameters to allow correct codegen of default arguments.
1508 for ( ast::ptr<ast::DeclWithType> & param : mutDecl->params ) {
1509 if ( auto obj = param.as<ast::ObjectDecl>() ) {
1510 param = ast::mutate_field( obj, &ast::ObjectDecl::init, nullptr );
1511 }
1512 }
1513 return mutDecl;
1514}
1515
1516void DeclAdapter::addAdapters(
1517 ast::FunctionDecl * mutDecl, TypeVarMap & localTypeVars ) {
1518 ast::vector<ast::FunctionType> functions;
1519 for ( ast::ptr<ast::DeclWithType> & arg : mutDecl->params ) {
1520 ast::Type const * type = arg->get_type();
1521 type = findAndReplaceFunction( type, functions, localTypeVars, needsAdapter );
1522 arg.get_and_mutate()->set_type( type );
1523 }
1524 std::set<std::string> adaptersDone;
1525 for ( ast::ptr<ast::FunctionType> const & func : functions ) {
1526 std::string mangleName = mangleAdapterName( func, localTypeVars );
1527 if ( adaptersDone.find( mangleName ) != adaptersDone.end() ) {
1528 continue;
1529 }
1530 std::string adapterName = makeAdapterName( mangleName );
1531 // The adapter may not actually be used, so make sure it has unused.
1532 mutDecl->params.insert( mutDecl->params.begin(), new ast::ObjectDecl(
1533 mutDecl->location, adapterName,
1534 new ast::PointerType( makeAdapterType( func, localTypeVars ) ),
1535 nullptr, {}, {}, nullptr,
1536 { new ast::Attribute( "unused" ) } ) );
1537 adaptersDone.insert( adaptersDone.begin(), mangleName );
1538 }
1539}
1540
1541// --------------------------------------------------------------------------
1542/// Corrects the floating nodes created in CallAdapter.
1543struct RewireAdapters final : public ast::WithGuards {
1544 ScopedMap<std::string, ast::ObjectDecl const *> adapters;
1545 void beginScope() { adapters.beginScope(); }
1546 void endScope() { adapters.endScope(); }
1547 void previsit( ast::FunctionDecl const * decl );
1548 ast::VariableExpr const * previsit( ast::VariableExpr const * expr );
1549};
1550
1551void RewireAdapters::previsit( ast::FunctionDecl const * decl ) {
1552 GuardScope( adapters );
1553 for ( ast::ptr<ast::DeclWithType> const & param : decl->params ) {
1554 if ( auto objectParam = param.as<ast::ObjectDecl>() ) {
1555 adapters.insert( objectParam->name, objectParam );
1556 }
1557 }
1558}
1559
1560ast::VariableExpr const * RewireAdapters::previsit(
1561 ast::VariableExpr const * expr ) {
1562 // If the node is not floating, we can skip.
1563 if ( expr->var->isManaged() ) return expr;
1564 auto it = adapters.find( expr->var->name );
1565 assertf( it != adapters.end(), "Could not correct floating node." );
1566 return ast::mutate_field( expr, &ast::VariableExpr::var, it->second );
1567}
1568
1569// --------------------------------------------------------------------------
1570/// Inserts code to access polymorphic layout inforation.
1571/// * Replaces member and size/alignment/offsetof expressions on polymorphic
1572/// generic types with calculated expressions.
1573/// * Replaces member expressions for polymorphic types with calculated
1574/// add-field-offset-and-dereference.
1575/// * Calculates polymorphic offsetof expressions from offset array.
1576/// * Inserts dynamic calculation of polymorphic type layouts where needed.
1577struct PolyGenericCalculator final :
1578 public ast::WithConstTypeSubstitution,
1579 public ast::WithDeclsToAdd,
1580 public ast::WithGuards,
1581 public ast::WithStmtsToAdd,
1582 public ast::WithVisitorRef<PolyGenericCalculator> {
1583 PolyGenericCalculator();
1584
1585 void previsit( ast::FunctionDecl const * decl );
1586 void previsit( ast::TypedefDecl const * decl );
1587 void previsit( ast::TypeDecl const * decl );
1588 ast::Decl const * postvisit( ast::TypeDecl const * decl );
1589 ast::StructDecl const * previsit( ast::StructDecl const * decl );
1590 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
1591 ast::DeclStmt const * previsit( ast::DeclStmt const * stmt );
1592 ast::Expr const * postvisit( ast::MemberExpr const * expr );
1593 void previsit( ast::AddressExpr const * expr );
1594 ast::Expr const * postvisit( ast::AddressExpr const * expr );
1595 ast::Expr const * postvisit( ast::SizeofExpr const * expr );
1596 ast::Expr const * postvisit( ast::AlignofExpr const * expr );
1597 ast::Expr const * postvisit( ast::OffsetofExpr const * expr );
1598 ast::Expr const * postvisit( ast::OffsetPackExpr const * expr );
1599
1600 void beginScope();
1601 void endScope();
1602private:
1603 /// Makes a new variable in the current scope with the given name,
1604 /// type and optional initializer.
1605 ast::ObjectDecl * makeVar(
1606 CodeLocation const & location, std::string const & name,
1607 ast::Type const * type, ast::Init const * init = nullptr );
1608 /// Returns true if the type has a dynamic layout;
1609 /// such a layout will be stored in appropriately-named local variables
1610 /// when the function returns.
1611 bool findGeneric( CodeLocation const & location, ast::Type const * );
1612 /// Adds type parameters to the layout call; will generate the
1613 /// appropriate parameters if needed.
1614 void addSTypeParamsToLayoutCall(
1615 ast::UntypedExpr * layoutCall,
1616 const ast::vector<ast::Type> & otypeParams );
1617 /// Change the type of generic aggregate members to char[].
1618 void mutateMembers( ast::AggregateDecl * aggr );
1619 /// Returns the calculated sizeof/alignof expressions for type, or
1620 /// nullptr for use C size/alignof().
1621 ast::Expr const * genSizeof( CodeLocation const &, ast::Type const * );
1622 ast::Expr const * genAlignof( CodeLocation const &, ast::Type const * );
1623 /// Enters a new scope for type-variables,
1624 /// adding the type variables from the provided type.
1625 void beginTypeScope( ast::Type const * );
1626
1627 /// The type variables and polymorphic parameters currently in scope.
1628 TypeVarMap scopeTypeVars;
1629 /// Set of generic type layouts known in the current scope,
1630 /// indexed by sizeofName.
1631 ScopedSet<std::string> knownLayouts;
1632 /// Set of non-generic types for which the offset array exists in the
1633 /// current scope, indexed by offsetofName.
1634 ScopedSet<std::string> knownOffsets;
1635 /// Namer for VLA (variable length array) buffers.
1636 UniqueName bufNamer;
1637 /// If the argument of an AddressExpr is MemberExpr, it is stored here.
1638 ast::MemberExpr const * addrMember = nullptr;
1639};
1640
1641PolyGenericCalculator::PolyGenericCalculator() :
1642 knownLayouts(), knownOffsets(), bufNamer( "_buf" )
1643{}
1644
1645/// Recursive section of polyToMonoType.
1646ast::Type * polyToMonoTypeRec( CodeLocation const & loc,
1647 ast::Type const * ty ) {
1648 if ( auto aTy = dynamic_cast<ast::ArrayType const *>( ty ) ) {
1649 auto monoBase = polyToMonoTypeRec( loc, aTy->base );
1650 return new ast::ArrayType( monoBase, aTy->dimension,
1651 aTy->isVarLen, aTy->isStatic, aTy->qualifiers );
1652 } else {
1653 auto charType = new ast::BasicType( ast::BasicKind::Char );
1654 auto size = new ast::NameExpr( loc,
1655 sizeofName( Mangle::mangleType( ty ) ) );
1656 return new ast::ArrayType( charType, size,
1657 ast::VariableLen, ast::DynamicDim, ast::CV::Qualifiers() );
1658 }
1659}
1660
1661/// Converts polymorphic type into a suitable monomorphic representation.
1662/// Simple cases: T -> __attribute__(( aligned(8) )) char[sizeof_T];
1663/// Array cases: T[eOut][eIn] -> __attribute__(( aligned(8) )) char[eOut][eIn][sizeof_T];
1664ast::Type * polyToMonoType( CodeLocation const & loc, ast::Type const * ty ) {
1665 auto ret = polyToMonoTypeRec( loc, ty );
1666 ret->attributes.emplace_back( new ast::Attribute( "aligned",
1667 { ast::ConstantExpr::from_int( loc, 8 ) } ) );
1668 return ret;
1669}
1670
1671void PolyGenericCalculator::previsit( ast::FunctionDecl const * decl ) {
1672 GuardScope( *this );
1673 beginTypeScope( decl->type );
1674}
1675
1676void PolyGenericCalculator::previsit( ast::TypedefDecl const * decl ) {
1677 assertf( false, "All typedef declarations should be removed." );
1678 beginTypeScope( decl->base );
1679}
1680
1681void PolyGenericCalculator::previsit( ast::TypeDecl const * decl ) {
1682 addToTypeVarMap( decl, scopeTypeVars );
1683}
1684
1685ast::Decl const * PolyGenericCalculator::postvisit(
1686 ast::TypeDecl const * decl ) {
1687 ast::Type const * base = decl->base;
1688 if ( nullptr == base ) return decl;
1689
1690 // Add size/align variables for opaque type declarations.
1691 ast::TypeInstType inst( decl->name, decl );
1692 std::string typeName = Mangle::mangleType( &inst );
1693
1694 ast::ObjectDecl * sizeDecl = new ast::ObjectDecl( decl->location,
1695 sizeofName( typeName ), makeLayoutCType(),
1696 new ast::SingleInit( decl->location,
1697 new ast::SizeofExpr( decl->location, deepCopy( base ) )
1698 )
1699 );
1700 ast::ObjectDecl * alignDecl = new ast::ObjectDecl( decl->location,
1701 alignofName( typeName ), makeLayoutCType(),
1702 new ast::SingleInit( decl->location,
1703 new ast::AlignofExpr( decl->location, deepCopy( base ) )
1704 )
1705 );
1706
1707 // Ensure that the initializing sizeof/alignof exprs are properly mutated.
1708 sizeDecl->accept( *visitor );
1709 alignDecl->accept( *visitor );
1710
1711 // A little trick to replace this with two declarations.
1712 // Adding after makes sure that there is no conflict with adding stmts.
1713 declsToAddAfter.push_back( alignDecl );
1714 return sizeDecl;
1715}
1716
1717ast::StructDecl const * PolyGenericCalculator::previsit(
1718 ast::StructDecl const * decl ) {
1719 auto mutDecl = mutate( decl );
1720 mutateMembers( mutDecl );
1721 return mutDecl;
1722}
1723
1724ast::UnionDecl const * PolyGenericCalculator::previsit(
1725 ast::UnionDecl const * decl ) {
1726 auto mutDecl = mutate( decl );
1727 mutateMembers( mutDecl );
1728 return mutDecl;
1729}
1730
1731ast::DeclStmt const * PolyGenericCalculator::previsit( ast::DeclStmt const * stmt ) {
1732 ast::ObjectDecl const * decl = stmt->decl.as<ast::ObjectDecl>();
1733 if ( !decl || !findGeneric( decl->location, decl->type ) ) {
1734 return stmt;
1735 }
1736
1737 // Change initialization of a polymorphic value object to allocate via a
1738 // variable-length-array (alloca cannot be safely used in loops).
1739 ast::ObjectDecl * newBuf = new ast::ObjectDecl( decl->location,
1740 bufNamer.newName(),
1741 polyToMonoType( decl->location, decl->type ),
1742 nullptr, {}, ast::Linkage::C
1743 );
1744 stmtsToAddBefore.push_back( new ast::DeclStmt( stmt->location, newBuf ) );
1745
1746 // If the object has a cleanup attribute, the clean-up should be on the
1747 // buffer, not the pointer. [Perhaps this should be lifted?]
1748 auto matchAndMove = [newBuf]( ast::ptr<ast::Attribute> & attr ) {
1749 if ( "cleanup" == attr->name ) {
1750 newBuf->attributes.push_back( attr );
1751 return true;
1752 }
1753 return false;
1754 };
1755
1756 auto mutDecl = mutate( decl );
1757
1758 // Forally, side effects are not safe in this function. But it works.
1759 erase_if( mutDecl->attributes, matchAndMove );
1760
1761 // Change the decl's type.
1762 // Upon finishing the box pass, it shall be void*.
1763 // At this middle-of-box-pass point, that type is T.
1764
1765 // example 1
1766 // before box: T t ;
1767 // before here: char _bufxx [_sizeof_Y1T]; T t = _bufxx;
1768 // after here: char _bufxx [_sizeof_Y1T]; T t = _bufxx; (no change here - non array case)
1769 // after box: char _bufxx [_sizeof_Y1T]; void *t = _bufxx;
1770
1771 // example 2
1772 // before box: T t[42] ;
1773 // before here: char _bufxx[42][_sizeof_Y1T]; T t[42] = _bufxx;
1774 // after here: char _bufxx[42][_sizeof_Y1T]; T t = _bufxx;
1775 // after box: char _bufxx[42][_sizeof_Y1T]; void *t = _bufxx;
1776
1777 // Strip all "array of" wrappers
1778 while ( auto arrayType = dynamic_cast<ast::ArrayType const *>( mutDecl->type.get() ) ) {
1779 mutDecl->type = arrayType->base;
1780 }
1781
1782 mutDecl->init = new ast::SingleInit( decl->location,
1783 new ast::VariableExpr( decl->location, newBuf ) );
1784
1785 return ast::mutate_field( stmt, &ast::DeclStmt::decl, mutDecl );
1786}
1787
1788/// Checks if memberDecl matches the decl from an aggregate.
1789bool isMember( ast::DeclWithType const * memberDecl, ast::Decl const * decl ) {
1790 // No matter the field, if the name is different it is not the same.
1791 if ( memberDecl->name != decl->name ) {
1792 return false;
1793 }
1794
1795 if ( memberDecl->name.empty() ) {
1796 // Plan-9 Field: Match on unique_id.
1797 return ( memberDecl->uniqueId == decl->uniqueId );
1798 }
1799
1800 ast::DeclWithType const * declWithType =
1801 strict_dynamic_cast<ast::DeclWithType const *>( decl );
1802
1803 if ( memberDecl->mangleName.empty() || declWithType->mangleName.empty() ) {
1804 // Tuple-Element Field: Expect neither had mangled name;
1805 // accept match on simple name (like field_2) only.
1806 assert( memberDecl->mangleName.empty() );
1807 assert( declWithType->mangleName.empty() );
1808 return true;
1809 }
1810
1811 // Ordinary Field: Use full name to accommodate overloading.
1812 return ( memberDecl->mangleName == declWithType->mangleName );
1813}
1814
1815/// Finds the member in the base list that matches the given declaration;
1816/// returns its index, or -1 if not present.
1817long findMember( ast::DeclWithType const * memberDecl,
1818 const ast::vector<ast::Decl> & baseDecls ) {
1819 for ( auto const & [index, value] : enumerate( baseDecls ) ) {
1820 if ( isMember( memberDecl, value.get() ) ) {
1821 return index;
1822 }
1823 }
1824 return -1;
1825}
1826
1827/// Returns an index expression into the offset array for a type.
1828ast::Expr * makeOffsetIndex( CodeLocation const & location,
1829 ast::Type const * objectType, long i ) {
1830 std::string name = offsetofName( Mangle::mangleType( objectType ) );
1831 return ast::UntypedExpr::createCall( location, "?[?]", {
1832 new ast::NameExpr( location, name ),
1833 ast::ConstantExpr::from_ulong( location, i ),
1834 } );
1835}
1836
1837ast::Expr const * PolyGenericCalculator::postvisit(
1838 ast::MemberExpr const * expr ) {
1839 // Only mutate member expressions for polymorphic types.
1840 ast::Type const * objectType = hasPolyBase(
1841 expr->aggregate->result, scopeTypeVars
1842 );
1843 if ( !objectType ) return expr;
1844 // Ensure layout for this type is available.
1845 // The boolean result is ignored.
1846 findGeneric( expr->location, objectType );
1847
1848 // Replace member expression with dynamically-computed layout expression.
1849 ast::Expr * newMemberExpr = nullptr;
1850 if ( auto structType = dynamic_cast<ast::StructInstType const *>( objectType ) ) {
1851 long offsetIndex = findMember( expr->member, structType->base->members );
1852 if ( -1 == offsetIndex ) return expr;
1853
1854 // Replace member expression with pointer to struct plus offset.
1855 ast::UntypedExpr * fieldLoc = new ast::UntypedExpr( expr->location,
1856 new ast::NameExpr( expr->location, "?+?" ) );
1857 ast::Expr * aggr = deepCopy( expr->aggregate );
1858 aggr->env = nullptr;
1859 fieldLoc->args.push_back( aggr );
1860 fieldLoc->args.push_back(
1861 makeOffsetIndex( expr->location, objectType, offsetIndex ) );
1862 fieldLoc->result = deepCopy( expr->result );
1863 newMemberExpr = fieldLoc;
1864 // Union members are all at offset zero, so just use the aggregate expr.
1865 } else if ( dynamic_cast<ast::UnionInstType const *>( objectType ) ) {
1866 ast::Expr * aggr = deepCopy( expr->aggregate );
1867 aggr->env = nullptr;
1868 aggr->result = deepCopy( expr->result );
1869 newMemberExpr = aggr;
1870 } else {
1871 return expr;
1872 }
1873 assert( newMemberExpr );
1874
1875 // Must apply the generic substitution to the member type to handle cases
1876 // where the member is a generic parameter subsituted by a known concrete
1877 // type. [ex]
1878 // forall( T ) struct Box { T x; }
1879 // forall( T ) void f() {
1880 // Box( T * ) b; b.x;
1881 // }
1882 // TODO: expr->result should be exactly expr->member->get_type() after
1883 // substitution, so it doesn't seem like it should be necessary to apply
1884 // the substitution manually. For some reason this is not currently the
1885 // case. This requires more investigation.
1886 ast::ptr<ast::Type> memberType = deepCopy( expr->member->get_type() );
1887 ast::TypeSubstitution sub = genericSubstitution( objectType );
1888 sub.apply( memberType );
1889
1890 // Not all members of a polymorphic type are themselves of a polymorphic
1891 // type; in this case the member expression should be wrapped and
1892 // dereferenced to form an lvalue.
1893 if ( !isPolyType( memberType, scopeTypeVars ) ) {
1894 auto ptrCastExpr = new ast::CastExpr( expr->location, newMemberExpr,
1895 new ast::PointerType( memberType ) );
1896 auto derefExpr = ast::UntypedExpr::createDeref( expr->location,
1897 ptrCastExpr );
1898 newMemberExpr = derefExpr;
1899 }
1900
1901 return newMemberExpr;
1902}
1903
1904void PolyGenericCalculator::previsit( ast::AddressExpr const * expr ) {
1905 GuardValue( addrMember ) = expr->arg.as<ast::MemberExpr>();
1906}
1907
1908ast::Expr const * PolyGenericCalculator::postvisit(
1909 ast::AddressExpr const * expr ) {
1910 // arg has to have been a MemberExpr and has been mutated.
1911 if ( nullptr == addrMember || expr->arg == addrMember ) {
1912 return expr;
1913 }
1914 ast::UntypedExpr const * untyped = expr->arg.as<ast::UntypedExpr>();
1915 if ( !untyped || getFunctionName( untyped ) != "?+?" ) {
1916 return expr;
1917 }
1918 // MemberExpr was converted to pointer + offset; and it is not valid C to
1919 // take the address of an addition, so strip away the address-of.
1920 // It also preserves the env value.
1921 return ast::mutate_field( expr->arg.get(), &ast::Expr::env, expr->env );
1922}
1923
1924ast::Expr const * PolyGenericCalculator::postvisit(
1925 ast::SizeofExpr const * expr ) {
1926 ast::Expr const * gen = genSizeof( expr->location, expr->type );
1927 return ( gen ) ? gen : expr;
1928}
1929
1930ast::Expr const * PolyGenericCalculator::postvisit(
1931 ast::AlignofExpr const * expr ) {
1932 ast::Expr const * gen = genAlignof( expr->location, expr->type );
1933 return ( gen ) ? gen : expr;
1934}
1935
1936ast::Expr const * PolyGenericCalculator::postvisit(
1937 ast::OffsetofExpr const * expr ) {
1938 ast::Type const * type = expr->type;
1939 if ( !findGeneric( expr->location, type ) ) return expr;
1940
1941 // Structures replace offsetof expression with an index into offset array.
1942 if ( auto structType = dynamic_cast<ast::StructInstType const *>( type ) ) {
1943 long offsetIndex = findMember( expr->member, structType->base->members );
1944 if ( -1 == offsetIndex ) return expr;
1945
1946 return makeOffsetIndex( expr->location, type, offsetIndex );
1947 // All union members are at offset zero.
1948 } else if ( dynamic_cast<ast::UnionInstType const *>( type ) ) {
1949 return ast::ConstantExpr::from_ulong( expr->location, 0 );
1950 } else {
1951 return expr;
1952 }
1953}
1954
1955ast::Expr const * PolyGenericCalculator::postvisit(
1956 ast::OffsetPackExpr const * expr ) {
1957 ast::StructInstType const * type = expr->type;
1958
1959 // Pull offset back from generated type information.
1960 if ( findGeneric( expr->location, type ) ) {
1961 return new ast::NameExpr( expr->location,
1962 offsetofName( Mangle::mangleType( type ) ) );
1963 }
1964
1965 std::string offsetName = offsetofName( Mangle::mangleType( type ) );
1966 // Use the already generated offsets for this type.
1967 if ( knownOffsets.contains( offsetName ) ) {
1968 return new ast::NameExpr( expr->location, offsetName );
1969 }
1970
1971 knownOffsets.insert( offsetName );
1972
1973 // Build initializer list for offset array.
1974 ast::vector<ast::Init> inits;
1975 for ( ast::ptr<ast::Decl> const & member : type->base->members ) {
1976 auto memberDecl = member.as<ast::DeclWithType>();
1977 assertf( memberDecl, "Requesting offset of non-DWT member: %s",
1978 toCString( member ) );
1979 inits.push_back( new ast::SingleInit( expr->location,
1980 new ast::OffsetofExpr( expr->location,
1981 deepCopy( type ),
1982 memberDecl
1983 )
1984 ) );
1985 }
1986
1987 auto offsetArray = makeVar( expr->location, offsetName,
1988 new ast::ArrayType(
1989 makeLayoutType(),
1990 ast::ConstantExpr::from_ulong( expr->location, inits.size() ),
1991 ast::FixedLen,
1992 ast::DynamicDim
1993 ),
1994 new ast::ListInit( expr->location, std::move( inits ) )
1995 );
1996
1997 return new ast::VariableExpr( expr->location, offsetArray );
1998}
1999
2000void PolyGenericCalculator::beginScope() {
2001 knownLayouts.beginScope();
2002 knownOffsets.beginScope();
2003}
2004
2005void PolyGenericCalculator::endScope() {
2006 knownOffsets.endScope();
2007 knownLayouts.endScope();
2008}
2009
2010ast::ObjectDecl * PolyGenericCalculator::makeVar(
2011 CodeLocation const & location, std::string const & name,
2012 ast::Type const * type, ast::Init const * init ) {
2013 ast::ObjectDecl * ret = new ast::ObjectDecl( location, name, type, init );
2014 stmtsToAddBefore.push_back( new ast::DeclStmt( location, ret ) );
2015 return ret;
2016}
2017
2018/// Returns true if any of the otype parameters have a dynamic layout; and
2019/// puts all otype parameters in the output list.
2020bool findGenericParams(
2021 ast::vector<ast::Type> & out,
2022 ast::vector<ast::TypeDecl> const & baseParams,
2023 ast::vector<ast::Expr> const & typeParams ) {
2024 bool hasDynamicLayout = false;
2025
2026 for ( auto const & [baseParam, typeParam] : group_iterate(
2027 baseParams, typeParams ) ) {
2028 if ( !baseParam->isComplete() ) continue;
2029 ast::TypeExpr const * typeExpr = typeParam.as<ast::TypeExpr>();
2030 assertf( typeExpr, "All type parameters should be type expressions." );
2031
2032 ast::Type const * type = typeExpr->type.get();
2033 out.push_back( type );
2034 if ( isPolyType( type ) ) hasDynamicLayout = true;
2035 }
2036
2037 return hasDynamicLayout;
2038}
2039
2040bool PolyGenericCalculator::findGeneric(
2041 CodeLocation const & location, ast::Type const * type ) {
2042 type = replaceTypeInst( type, typeSubs );
2043
2044 if ( auto inst = dynamic_cast<ast::TypeInstType const *>( type ) ) {
2045 // Assumes that getting put in the scopeTypeVars includes having the
2046 // layout variables set.
2047 if ( scopeTypeVars.contains( *inst ) ) {
2048 return true;
2049 }
2050 } else if ( auto inst = dynamic_cast<ast::StructInstType const *>( type ) ) {
2051 // Check if this type already has a layout generated for it.
2052 std::string typeName = Mangle::mangleType( type );
2053 if ( knownLayouts.contains( typeName ) ) return true;
2054
2055 // Check if any type parameters have dynamic layout;
2056 // If none do, this type is (or will be) monomorphized.
2057 ast::vector<ast::Type> sizedParams;
2058 if ( !findGenericParams( sizedParams,
2059 inst->base->params, inst->params ) ) {
2060 return false;
2061 }
2062
2063 // Insert local variables for layout and generate call to layout
2064 // function.
2065 // Done early so as not to interfere with the later addition of
2066 // parameters to the layout call.
2067 knownLayouts.insert( typeName );
2068
2069 int memberCount = inst->base->members.size();
2070 if ( 0 == memberCount ) {
2071 // All empty structures have the same layout (size 1, align 1).
2072 makeVar( location,
2073 sizeofName( typeName ), makeLayoutType(),
2074 new ast::SingleInit( location,
2075 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2076 makeVar( location,
2077 alignofName( typeName ), makeLayoutType(),
2078 new ast::SingleInit( location,
2079 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2080 // Since 0-length arrays are forbidden in C, skip the offset array.
2081 } else {
2082 ast::ObjectDecl const * sizeofVar = makeVar( location,
2083 sizeofName( typeName ), makeLayoutType(), nullptr );
2084 ast::ObjectDecl const * alignofVar = makeVar( location,
2085 alignofName( typeName ), makeLayoutType(), nullptr );
2086 ast::ObjectDecl const * offsetofVar = makeVar( location,
2087 offsetofName( typeName ),
2088 new ast::ArrayType(
2089 makeLayoutType(),
2090 ast::ConstantExpr::from_int( location, memberCount ),
2091 ast::FixedLen,
2092 ast::DynamicDim
2093 ),
2094 nullptr
2095 );
2096
2097 // Generate call to layout function.
2098 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2099 new ast::NameExpr( location, layoutofName( inst->base ) ),
2100 {
2101 new ast::AddressExpr(
2102 new ast::VariableExpr( location, sizeofVar ) ),
2103 new ast::AddressExpr(
2104 new ast::VariableExpr( location, alignofVar ) ),
2105 new ast::VariableExpr( location, offsetofVar ),
2106 } );
2107
2108 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2109
2110 stmtsToAddBefore.emplace_back(
2111 new ast::ExprStmt( location, layoutCall ) );
2112 }
2113
2114 return true;
2115 } else if ( auto inst = dynamic_cast<ast::UnionInstType const *>( type ) ) {
2116 // Check if this type already has a layout generated for it.
2117 std::string typeName = Mangle::mangleType( type );
2118 if ( knownLayouts.contains( typeName ) ) return true;
2119
2120 // Check if any type parameters have dynamic layout;
2121 // If none do, this type is (or will be) monomorphized.
2122 ast::vector<ast::Type> sizedParams;
2123 if ( !findGenericParams( sizedParams,
2124 inst->base->params, inst->params ) ) {
2125 return false;
2126 }
2127
2128 // Insert local variables for layout and generate call to layout
2129 // function.
2130 // Done early so as not to interfere with the later addition of
2131 // parameters to the layout call.
2132 knownLayouts.insert( typeName );
2133
2134 ast::ObjectDecl * sizeofVar = makeVar( location,
2135 sizeofName( typeName ), makeLayoutType() );
2136 ast::ObjectDecl * alignofVar = makeVar( location,
2137 alignofName( typeName ), makeLayoutType() );
2138
2139 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2140 new ast::NameExpr( location, layoutofName( inst->base ) ),
2141 {
2142 new ast::AddressExpr(
2143 new ast::VariableExpr( location, sizeofVar ) ),
2144 new ast::AddressExpr(
2145 new ast::VariableExpr( location, alignofVar ) ),
2146 } );
2147
2148 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2149
2150 stmtsToAddBefore.emplace_back(
2151 new ast::ExprStmt( location, layoutCall ) );
2152
2153 return true;
2154
2155 } else if ( auto inst = dynamic_cast<ast::ArrayType const *>( type ) ) {
2156 return findGeneric( location, inst->base );
2157 }
2158 return false;
2159}
2160
2161void PolyGenericCalculator::addSTypeParamsToLayoutCall(
2162 ast::UntypedExpr * layoutCall,
2163 const ast::vector<ast::Type> & otypeParams ) {
2164 CodeLocation const & location = layoutCall->location;
2165 ast::vector<ast::Expr> & args = layoutCall->args;
2166 for ( ast::ptr<ast::Type> const & param : otypeParams ) {
2167 if ( findGeneric( location, param ) ) {
2168 // Push size/align vars for a generic parameter back.
2169 std::string paramName = Mangle::mangleType( param );
2170 args.emplace_back(
2171 new ast::NameExpr( location, sizeofName( paramName ) ) );
2172 args.emplace_back(
2173 new ast::NameExpr( location, alignofName( paramName ) ) );
2174 } else {
2175 args.emplace_back(
2176 new ast::SizeofExpr( location, ast::deepCopy( param ) ) );
2177 args.emplace_back(
2178 new ast::AlignofExpr( location, ast::deepCopy( param ) ) );
2179 }
2180 }
2181}
2182
2183void PolyGenericCalculator::mutateMembers( ast::AggregateDecl * aggr ) {
2184 std::set<std::string> genericParams;
2185 for ( ast::ptr<ast::TypeDecl> const & decl : aggr->params ) {
2186 genericParams.insert( decl->name );
2187 }
2188 for ( ast::ptr<ast::Decl> & decl : aggr->members ) {
2189 auto field = decl.as<ast::ObjectDecl>();
2190 if ( nullptr == field ) continue;
2191
2192 ast::Type const * type = replaceTypeInst( field->type, typeSubs );
2193 auto typeInst = dynamic_cast<ast::TypeInstType const *>( type );
2194 if ( nullptr == typeInst ) continue;
2195
2196 // Do not try to monoporphize generic parameters.
2197 if ( scopeTypeVars.contains( ast::TypeEnvKey( *typeInst ) ) &&
2198 !genericParams.count( typeInst->name ) ) {
2199 // Polymorphic aggregate members should be converted into
2200 // monomorphic members. Using char[size_T] here respects
2201 // the expected sizing rules of an aggregate type.
2202 decl = ast::mutate_field( field, &ast::ObjectDecl::type,
2203 polyToMonoType( field->location, field->type ) );
2204 }
2205 }
2206}
2207
2208ast::Expr const * PolyGenericCalculator::genSizeof(
2209 CodeLocation const & location, ast::Type const * type ) {
2210 if ( auto * array = dynamic_cast<ast::ArrayType const *>( type ) ) {
2211 // Generate calculated size for possibly generic array.
2212 ast::Expr const * sizeofBase = genSizeof( location, array->base );
2213 if ( nullptr == sizeofBase ) return nullptr;
2214 ast::Expr const * dim = array->dimension;
2215 return makeOp( location, "?*?", sizeofBase, dim );
2216 } else if ( findGeneric( location, type ) ) {
2217 // Generate reference to _sizeof parameter
2218 return new ast::NameExpr( location, sizeofName(
2219 Mangle::mangleType( type ) ) );
2220 } else {
2221 return nullptr;
2222 }
2223}
2224
2225ast::Expr const * PolyGenericCalculator::genAlignof(
2226 CodeLocation const & location, ast::Type const * type ) {
2227 if ( auto * array = dynamic_cast<ast::ArrayType const *>( type ) ) {
2228 // alignof array is alignof element
2229 return genAlignof( location, array->base );
2230 } else if ( findGeneric( location, type ) ) {
2231 // Generate reference to _alignof parameter
2232 return new ast::NameExpr( location, alignofName(
2233 Mangle::mangleType( type ) ) );
2234 } else {
2235 return nullptr;
2236 }
2237}
2238
2239void PolyGenericCalculator::beginTypeScope( ast::Type const * type ) {
2240 GuardScope( scopeTypeVars );
2241 makeTypeVarMap( type, scopeTypeVars );
2242}
2243
2244// --------------------------------------------------------------------------
2245/// Removes unneeded or incorrect type information.
2246/// * Replaces initialization of polymorphic values with alloca.
2247/// * Replaces declaration of dtype/ftype with appropriate void expression.
2248/// * Replaces sizeof expressions of polymorphic types with a variable.
2249/// * Strips fields from generic structure declarations.
2250struct Eraser final :
2251 public ast::WithGuards {
2252 void guardTypeVarMap( ast::Type const * type ) {
2253 GuardScope( scopeTypeVars );
2254 makeTypeVarMap( type, scopeTypeVars );
2255 }
2256
2257 ast::ObjectDecl const * previsit( ast::ObjectDecl const * decl );
2258 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
2259 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
2260 ast::TypedefDecl const * previsit( ast::TypedefDecl const * decl );
2261 ast::StructDecl const * previsit( ast::StructDecl const * decl );
2262 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
2263 void previsit( ast::TypeDecl const * decl );
2264 void previsit( ast::PointerType const * type );
2265 void previsit( ast::FunctionType const * type );
2266public:
2267 TypeVarMap scopeTypeVars;
2268};
2269
2270ast::ObjectDecl const * Eraser::previsit( ast::ObjectDecl const * decl ) {
2271 guardTypeVarMap( decl->type );
2272 return scrubAllTypeVars( decl );
2273}
2274
2275ast::FunctionDecl const * Eraser::previsit( ast::FunctionDecl const * decl ) {
2276 guardTypeVarMap( decl->type );
2277 return scrubAllTypeVars( decl );
2278}
2279
2280ast::FunctionDecl const * Eraser::postvisit( ast::FunctionDecl const * decl ) {
2281 if ( decl->type_params.empty() ) return decl;
2282 auto mutDecl = mutate( decl );
2283 mutDecl->type_params.clear();
2284 return mutDecl;
2285}
2286
2287ast::TypedefDecl const * Eraser::previsit( ast::TypedefDecl const * decl ) {
2288 guardTypeVarMap( decl->base );
2289 return scrubAllTypeVars( decl );
2290}
2291
2292/// Strips the members from a generic aggregate.
2293template<typename node_t>
2294node_t const * stripGenericMembers( node_t const * decl ) {
2295 if ( decl->params.empty() ) return decl;
2296 auto mutDecl = ast::mutate( decl );
2297 mutDecl->members.clear();
2298 return mutDecl;
2299}
2300
2301ast::StructDecl const * Eraser::previsit( ast::StructDecl const * decl ) {
2302 return stripGenericMembers( decl );
2303}
2304
2305ast::UnionDecl const * Eraser::previsit( ast::UnionDecl const * decl ) {
2306 return stripGenericMembers( decl );
2307}
2308
2309void Eraser::previsit( ast::TypeDecl const * decl ) {
2310 addToTypeVarMap( decl, scopeTypeVars );
2311}
2312
2313void Eraser::previsit( ast::PointerType const * type ) {
2314 guardTypeVarMap( type );
2315}
2316
2317void Eraser::previsit( ast::FunctionType const * type ) {
2318 guardTypeVarMap( type );
2319}
2320
2321} // namespace
2322
2323// --------------------------------------------------------------------------
2324void box( ast::TranslationUnit & translationUnit ) {
2325 ast::Pass<LayoutFunctionBuilder>::run( translationUnit );
2326 ast::Pass<CallAdapter>::run( translationUnit );
2327 ast::Pass<DeclAdapter>::run( translationUnit );
2328 ast::Pass<RewireAdapters>::run( translationUnit );
2329 ast::Pass<PolyGenericCalculator>::run( translationUnit );
2330 ast::Pass<Eraser>::run( translationUnit );
2331}
2332
2333} // namespace GenPoly
2334
2335// Local Variables: //
2336// tab-width: 4 //
2337// mode: c++ //
2338// compile-command: "make install" //
2339// End: //
Note: See TracBrowser for help on using the repository browser.