source: src/GenPoly/Box.cpp@ 77bc259

Last change on this file since 77bc259 was 23a0e576, checked in by Andrew Beach <ajbeach@…>, 20 months ago

Remove mid-array assertion from the Box pass.

  • Property mode set to 100644
File size: 81.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cpp -- Implement polymorphic function calls and types.
8//
9// Author : Andrew Beach
10// Created On : Thr Oct 6 13:39:00 2022
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Dec 14 17:42:17 2023
13// Update Count : 7
14//
15
16#include "Box.h"
17
18#include "AST/Decl.hpp" // for Decl, FunctionDecl, ...
19#include "AST/Expr.hpp" // for AlignofExpr, ConstantExpr, ...
20#include "AST/Init.hpp" // for Init, SingleInit
21#include "AST/Inspect.hpp" // for getFunctionName
22#include "AST/Pass.hpp" // for Pass, WithDeclsToAdd, ...
23#include "AST/Stmt.hpp" // for CompoundStmt, ExprStmt, ...
24#include "AST/Vector.hpp" // for vector
25#include "AST/GenericSubstitution.hpp" // for genericSubstitution
26#include "CodeGen/OperatorTable.h" // for isAssignment
27#include "Common/Iterate.hpp" // for group_iterate
28#include "Common/ScopedMap.h" // for ScopedMap
29#include "Common/ToString.hpp" // for toCString
30#include "Common/UniqueName.h" // for UniqueName
31#include "GenPoly/FindFunction.h" // for findFunction
32#include "GenPoly/GenPoly.h" // for getFunctionType, ...
33#include "GenPoly/Lvalue.h" // for generalizedLvalue
34#include "GenPoly/ScopedSet.h" // for ScopedSet
35#include "GenPoly/ScrubTypeVars.hpp" // for scrubTypeVars, scrubAllTypeVars
36#include "ResolvExpr/Unify.h" // for typesCompatible
37#include "SymTab/Mangler.h" // for mangle, mangleType
38
39namespace GenPoly {
40
41namespace {
42
43/// The layout type is used to represent sizes, alignments and offsets.
44ast::BasicType * makeLayoutType() {
45 return new ast::BasicType( ast::BasicType::LongUnsignedInt );
46}
47
48/// Fixed version of layout type (just adding a 'C' in C++ style).
49ast::BasicType * makeLayoutCType() {
50 return new ast::BasicType( ast::BasicType::LongUnsignedInt,
51 ast::CV::Qualifiers( ast::CV::Const ) );
52}
53
54// --------------------------------------------------------------------------
55/// Adds layout-generation functions to polymorphic types.
56struct LayoutFunctionBuilder final :
57 public ast::WithDeclsToAdd<>,
58 public ast::WithShortCircuiting,
59 public ast::WithVisitorRef<LayoutFunctionBuilder> {
60 void previsit( ast::StructDecl const * decl );
61 void previsit( ast::UnionDecl const * decl );
62};
63
64/// Get all sized type declarations; those that affect a layout function.
65ast::vector<ast::TypeDecl> takeSizedParams(
66 ast::vector<ast::TypeDecl> const & decls ) {
67 ast::vector<ast::TypeDecl> sizedParams;
68 for ( ast::ptr<ast::TypeDecl> const & decl : decls ) {
69 if ( decl->isComplete() ) {
70 sizedParams.emplace_back( decl );
71 }
72 }
73 return sizedParams;
74}
75
76/// Adds parameters for otype size and alignment to a function type.
77void addSTypeParams(
78 ast::vector<ast::DeclWithType> & params,
79 ast::vector<ast::TypeDecl> const & sizedParams ) {
80 for ( ast::ptr<ast::TypeDecl> const & sizedParam : sizedParams ) {
81 ast::TypeInstType inst( sizedParam );
82 std::string paramName = Mangle::mangleType( &inst );
83 params.emplace_back( new ast::ObjectDecl(
84 sizedParam->location,
85 sizeofName( paramName ),
86 makeLayoutCType()
87 ) );
88 params.emplace_back( new ast::ObjectDecl(
89 sizedParam->location,
90 alignofName( paramName ),
91 makeLayoutCType()
92 ) );
93 }
94}
95
96ast::Type * makeLayoutOutType() {
97 return new ast::PointerType( makeLayoutType() );
98}
99
100struct LayoutData {
101 ast::FunctionDecl * function;
102 ast::ObjectDecl * sizeofParam;
103 ast::ObjectDecl * alignofParam;
104 ast::ObjectDecl * offsetofParam;
105};
106
107LayoutData buildLayoutFunction(
108 CodeLocation const & location, ast::AggregateDecl const * aggr,
109 ast::vector<ast::TypeDecl> const & sizedParams,
110 bool isInFunction, bool isStruct ) {
111 ast::ObjectDecl * sizeParam = new ast::ObjectDecl(
112 location,
113 sizeofName( aggr->name ),
114 makeLayoutOutType()
115 );
116 ast::ObjectDecl * alignParam = new ast::ObjectDecl(
117 location,
118 alignofName( aggr->name ),
119 makeLayoutOutType()
120 );
121 ast::ObjectDecl * offsetParam = nullptr;
122 ast::vector<ast::DeclWithType> params = { sizeParam, alignParam };
123 if ( isStruct ) {
124 offsetParam = new ast::ObjectDecl(
125 location,
126 offsetofName( aggr->name ),
127 makeLayoutOutType()
128 );
129 params.push_back( offsetParam );
130 }
131 addSTypeParams( params, sizedParams );
132
133 // Routines at global scope marked "static" to prevent multiple
134 // definitions is separate translation units because each unit generates
135 // copies of the default routines for each aggregate.
136 ast::FunctionDecl * layoutDecl = new ast::FunctionDecl(
137 location,
138 layoutofName( aggr ),
139 {}, // forall
140 {}, // assertions
141 std::move( params ),
142 {}, // returns
143 new ast::CompoundStmt( location ),
144 isInFunction ? ast::Storage::Classes() : ast::Storage::Static,
145 ast::Linkage::AutoGen,
146 {}, // attrs
147 ast::Function::Inline,
148 ast::FixedArgs
149 );
150 layoutDecl->fixUniqueId();
151 return LayoutData{ layoutDecl, sizeParam, alignParam, offsetParam };
152}
153
154/// Makes a binary operation.
155ast::Expr * makeOp( CodeLocation const & location, std::string const & name,
156 ast::Expr const * lhs, ast::Expr const * rhs ) {
157 return new ast::UntypedExpr( location,
158 new ast::NameExpr( location, name ), { lhs, rhs } );
159}
160
161/// Make a binary operation and wrap it in a statement.
162ast::Stmt * makeOpStmt( CodeLocation const & location, std::string const & name,
163 ast::Expr const * lhs, ast::Expr const * rhs ) {
164 return new ast::ExprStmt( location, makeOp( location, name, lhs, rhs ) );
165}
166
167/// Returns the dereference of a local pointer variable.
168ast::Expr * derefVar(
169 CodeLocation const & location, ast::ObjectDecl const * var ) {
170 return ast::UntypedExpr::createDeref( location,
171 new ast::VariableExpr( location, var ) );
172}
173
174/// Makes an if-statement with a single-expression then and no else.
175ast::Stmt * makeCond( CodeLocation const & location,
176 ast::Expr const * cond, ast::Expr const * thenPart ) {
177 return new ast::IfStmt( location,
178 cond, new ast::ExprStmt( location, thenPart ), nullptr );
179}
180
181/// Makes a statement that aligns lhs to rhs (rhs should be an integer
182/// power of two).
183ast::Stmt * makeAlignTo( CodeLocation const & location,
184 ast::Expr const * lhs, ast::Expr const * rhs ) {
185 // Check that the lhs is zeroed out to the level of rhs.
186 ast::Expr * ifCond = makeOp( location, "?&?", lhs,
187 makeOp( location, "?-?", rhs,
188 ast::ConstantExpr::from_ulong( location, 1 ) ) );
189 // If not aligned, increment to alignment.
190 ast::Expr * ifExpr = makeOp( location, "?+=?", ast::deepCopy( lhs ),
191 makeOp( location, "?-?", ast::deepCopy( rhs ),
192 ast::deepCopy( ifCond ) ) );
193 return makeCond( location, ifCond, ifExpr );
194}
195
196/// Makes a statement that assigns rhs to lhs if lhs < rhs.
197ast::Stmt * makeAssignMax( CodeLocation const & location,
198 ast::Expr const * lhs, ast::Expr const * rhs ) {
199 return makeCond( location,
200 makeOp( location, "?<?", ast::deepCopy( lhs ), ast::deepCopy( rhs ) ),
201 makeOp( location, "?=?", lhs, rhs ) );
202}
203
204void LayoutFunctionBuilder::previsit( ast::StructDecl const * decl ) {
205 // Do not generate layout function for empty tag structures.
206 visit_children = false;
207 if ( decl->members.empty() ) return;
208
209 // Get parameters that can change layout, exiting early if none.
210 ast::vector<ast::TypeDecl> sizedParams =
211 takeSizedParams( decl->params );
212 if ( sizedParams.empty() ) return;
213
214 CodeLocation const & location = decl->location;
215
216 // Build layout function signature.
217 LayoutData layout = buildLayoutFunction(
218 location, decl, sizedParams, isInFunction(), true );
219 ast::FunctionDecl * layoutDecl = layout.function;
220 // Also return these or extract them from the parameter list?
221 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
222 ast::ObjectDecl const * alignofParam = layout.alignofParam;
223 ast::ObjectDecl const * offsetofParam = layout.offsetofParam;
224 assert( nullptr != layout.offsetofParam );
225
226 // Calculate structure layout in function body.
227 // Initialize size and alignment to 0 and 1
228 // (Will have at least one member to update size).
229 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
230 kids.emplace_back( makeOpStmt( location, "?=?",
231 derefVar( location, sizeofParam ),
232 ast::ConstantExpr::from_ulong( location, 0 )
233 ) );
234 kids.emplace_back( makeOpStmt( location, "?=?",
235 derefVar( location, alignofParam ),
236 ast::ConstantExpr::from_ulong( location, 1 )
237 ) );
238 // TODO: Polymorphic types will be out of the struct declaration scope.
239 // This breaks invariants until it is corrected later.
240 for ( auto const & member : enumerate( decl->members ) ) {
241 auto dwt = member.val.strict_as<ast::DeclWithType>();
242 ast::Type const * memberType = dwt->get_type();
243
244 if ( 0 < member.idx ) {
245 // Make sure all later members have padding to align them.
246 kids.emplace_back( makeAlignTo( location,
247 derefVar( location, sizeofParam ),
248 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
249 ) );
250 }
251
252 // Place current size in the current offset index.
253 kids.emplace_back( makeOpStmt( location, "?=?",
254 makeOp( location, "?[?]",
255 new ast::VariableExpr( location, offsetofParam ),
256 ast::ConstantExpr::from_ulong( location, member.idx ) ),
257 derefVar( location, sizeofParam ) ) );
258
259 // Add member size to current size.
260 kids.emplace_back( makeOpStmt( location, "?+=?",
261 derefVar( location, sizeofParam ),
262 new ast::SizeofExpr( location, ast::deepCopy( memberType ) ) ) );
263
264 // Take max of member alignment and global alignment.
265 // (As align is always 2^n, this will always be a multiple of both.)
266 kids.emplace_back( makeAssignMax( location,
267 derefVar( location, alignofParam ),
268 new ast::AlignofExpr( location, ast::deepCopy( memberType ) ) ) );
269 }
270 // Make sure the type is end-padded to a multiple of its alignment.
271 kids.emplace_back( makeAlignTo( location,
272 derefVar( location, sizeofParam ),
273 derefVar( location, alignofParam ) ) );
274
275 declsToAddAfter.emplace_back( layoutDecl );
276}
277
278void LayoutFunctionBuilder::previsit( ast::UnionDecl const * decl ) {
279 visit_children = false;
280 // Do not generate layout function for empty tag unions.
281 if ( decl->members.empty() ) return;
282
283 // Get parameters that can change layout, exiting early if none.
284 ast::vector<ast::TypeDecl> sizedParams =
285 takeSizedParams( decl->params );
286 if ( sizedParams.empty() ) return;
287
288 CodeLocation const & location = decl->location;
289
290 // Build layout function signature.
291 LayoutData layout = buildLayoutFunction(
292 location, decl, sizedParams, isInFunction(), false );
293 ast::FunctionDecl * layoutDecl = layout.function;
294 // Also return these or extract them from the parameter list?
295 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
296 ast::ObjectDecl const * alignofParam = layout.alignofParam;
297 assert( nullptr == layout.offsetofParam );
298
299 // Calculate union layout in function body.
300 // Both are simply the maximum for union (actually align is always the
301 // LCM, but with powers of two that is also the maximum).
302 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
303 kids.emplace_back( makeOpStmt( location,
304 "?=?", derefVar( location, sizeofParam ),
305 ast::ConstantExpr::from_ulong( location, 1 )
306 ) );
307 kids.emplace_back( makeOpStmt( location,
308 "?=?", derefVar( location, alignofParam ),
309 ast::ConstantExpr::from_ulong( location, 1 )
310 ) );
311 // TODO: Polymorphic types will be out of the union declaration scope.
312 // This breaks invariants until it is corrected later.
313 for ( auto const & member : decl->members ) {
314 auto dwt = member.strict_as<ast::DeclWithType>();
315 ast::Type const * memberType = dwt->get_type();
316
317 // Take max member size and global size.
318 kids.emplace_back( makeAssignMax( location,
319 derefVar( location, sizeofParam ),
320 new ast::SizeofExpr( location, ast::deepCopy( memberType ) )
321 ) );
322
323 // Take max of member alignment and global alignment.
324 kids.emplace_back( makeAssignMax( location,
325 derefVar( location, alignofParam ),
326 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
327 ) );
328 }
329 kids.emplace_back( makeAlignTo( location,
330 derefVar( location, sizeofParam ),
331 derefVar( location, alignofParam ) ) );
332
333 declsToAddAfter.emplace_back( layoutDecl );
334}
335
336// --------------------------------------------------------------------------
337/// Application expression transformer.
338/// * Replaces polymorphic return types with out-parameters.
339/// * Replaces call to polymorphic functions with adapter calls which handles
340/// dynamic arguments and return values.
341/// * Adds appropriate type variables to the function calls.
342struct CallAdapter final :
343 public ast::WithConstTypeSubstitution,
344 public ast::WithGuards,
345 public ast::WithShortCircuiting,
346 public ast::WithStmtsToAdd<>,
347 public ast::WithVisitorRef<CallAdapter> {
348 CallAdapter();
349
350 void previsit( ast::Decl const * decl );
351 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
352 void previsit( ast::TypeDecl const * decl );
353 void previsit( ast::CommaExpr const * expr );
354 ast::Expr const * postvisit( ast::ApplicationExpr const * expr );
355 ast::Expr const * postvisit( ast::UntypedExpr const * expr );
356 void previsit( ast::AddressExpr const * expr );
357 ast::Expr const * postvisit( ast::AddressExpr const * expr );
358 ast::ReturnStmt const * previsit( ast::ReturnStmt const * stmt );
359
360 void beginScope();
361 void endScope();
362private:
363 // Many helpers here use a mutable ApplicationExpr as an in/out parameter
364 // instead of using the return value, to save on mutates and free up the
365 // return value.
366
367 /// Passes extra layout arguments for sized polymorphic type parameters.
368 void passTypeVars(
369 ast::ApplicationExpr * expr,
370 ast::vector<ast::Expr> & extraArgs,
371 ast::FunctionType const * funcType );
372 /// Wraps a function application with a new temporary for the
373 /// out-parameter return value.
374 ast::Expr const * addRetParam(
375 ast::ApplicationExpr * expr, ast::Type const * retType );
376 /// Wraps a function application returning a polymorphic type with a new
377 /// temporary for the out-parameter return value.
378 ast::Expr const * addDynRetParam(
379 ast::ApplicationExpr * expr, ast::Type const * polyType );
380 /// Modify a call so it passes the function through the correct adapter.
381 ast::Expr const * applyAdapter(
382 ast::ApplicationExpr * expr,
383 ast::FunctionType const * function );
384 /// Convert a single argument into its boxed form to pass the parameter.
385 void boxParam( ast::ptr<ast::Expr> & arg,
386 ast::Type const * formal, TypeVarMap const & exprTyVars );
387 /// Box every argument from arg forward, matching the functionType
388 /// parameter list. arg should point into expr's argument list.
389 void boxParams(
390 ast::ApplicationExpr * expr,
391 ast::Type const * polyRetType,
392 ast::FunctionType const * function,
393 const TypeVarMap & typeVars );
394 /// Adds the inferred parameters derived from the assertions of the
395 /// expression to the call.
396 void addInferredParams(
397 ast::ApplicationExpr * expr,
398 ast::vector<ast::Expr> & extraArgs,
399 ast::FunctionType const * functionType,
400 const TypeVarMap & typeVars );
401 /// Stores assignment operators from assertion list in
402 /// local map of assignment operations.
403 void passAdapters(
404 ast::ApplicationExpr * expr,
405 ast::FunctionType const * type,
406 const TypeVarMap & typeVars );
407 /// Create an adapter function based on the type of the adaptee and the
408 /// real type with the type substitutions applied.
409 ast::FunctionDecl * makeAdapter(
410 ast::FunctionType const * adaptee,
411 ast::FunctionType const * realType,
412 std::string const & mangleName,
413 TypeVarMap const & typeVars,
414 CodeLocation const & location ) const;
415 /// Replaces intrinsic operator functions with their arithmetic desugaring.
416 ast::Expr const * handleIntrinsics( ast::ApplicationExpr const * );
417 /// Inserts a new temporary variable into the current scope with an
418 /// auto-generated name.
419 ast::ObjectDecl * makeTemporary(
420 CodeLocation const & location, ast::Type const * type );
421
422 TypeVarMap scopeTypeVars;
423 ScopedMap< std::string, ast::DeclWithType const * > adapters;
424 std::map< ast::ApplicationExpr const *, ast::Expr const * > retVals;
425 ast::DeclWithType const * retval;
426 UniqueName tmpNamer;
427};
428
429/// Replaces a polymorphic type with its concrete equivalant under the
430/// current environment (returns itself if concrete).
431/// If `doClone` is set to false, will not clone interior types
432ast::Type const * replaceWithConcrete(
433 ast::Type const * type,
434 ast::TypeSubstitution const & typeSubs,
435 bool doCopy = true );
436
437/// Replaces all the type parameters of a generic type with their
438/// concrete equivalents under the current environment.
439void replaceParametersWithConcrete(
440 ast::vector<ast::Expr> & params,
441 ast::TypeSubstitution const & typeSubs ) {
442 for ( ast::ptr<ast::Expr> & paramExpr : params ) {
443 ast::TypeExpr const * param = paramExpr.as<ast::TypeExpr>();
444 assertf( param, "Aggregate parameters should be type expressions." );
445 paramExpr = ast::mutate_field( param, &ast::TypeExpr::type,
446 replaceWithConcrete( param->type.get(), typeSubs, false ) );
447 }
448}
449
450ast::Type const * replaceWithConcrete(
451 ast::Type const * type,
452 ast::TypeSubstitution const & typeSubs,
453 bool doCopy ) {
454 if ( auto instType = dynamic_cast<ast::TypeInstType const *>( type ) ) {
455 ast::Type const * concrete = typeSubs.lookup( instType );
456 return ( nullptr != concrete ) ? concrete : instType;
457 } else if ( auto structType =
458 dynamic_cast<ast::StructInstType const *>( type ) ) {
459 ast::StructInstType * newType =
460 doCopy ? ast::deepCopy( structType ) : ast::mutate( structType );
461 replaceParametersWithConcrete( newType->params, typeSubs );
462 return newType;
463 } else if ( auto unionType =
464 dynamic_cast<ast::UnionInstType const *>( type ) ) {
465 ast::UnionInstType * newType =
466 doCopy ? ast::deepCopy( unionType ) : ast::mutate( unionType );
467 replaceParametersWithConcrete( newType->params, typeSubs );
468 return newType;
469 } else {
470 return type;
471 }
472}
473
474std::string makePolyMonoSuffix(
475 ast::FunctionType const * function,
476 TypeVarMap const & typeVars ) {
477 // If the return type or a parameter type involved polymorphic types,
478 // then the adapter will need to take those polymorphic types as pointers.
479 // Therefore, there can be two different functions with the same mangled
480 // name, so we need to further mangle the names.
481 std::stringstream name;
482 for ( auto ret : function->returns ) {
483 name << ( isPolyType( ret, typeVars ) ? 'P' : 'M' );
484 }
485 name << '_';
486 for ( auto arg : function->params ) {
487 name << ( isPolyType( arg, typeVars ) ? 'P' : 'M' );
488 }
489 return name.str();
490}
491
492std::string mangleAdapterName(
493 ast::FunctionType const * function,
494 TypeVarMap const & typeVars ) {
495 return Mangle::mangle( function, {} )
496 + makePolyMonoSuffix( function, typeVars );
497}
498
499std::string makeAdapterName( std::string const & mangleName ) {
500 return "_adapter" + mangleName;
501}
502
503void makeRetParam( ast::FunctionType * type ) {
504 ast::ptr<ast::Type> & retParam = type->returns.front();
505
506 // Make a new parameter that is a pointer to the type of the old return value.
507 retParam = new ast::PointerType( retParam.get() );
508 type->params.emplace( type->params.begin(), retParam );
509
510 // We don't need the return value any more.
511 type->returns.clear();
512}
513
514ast::FunctionType * makeAdapterType(
515 ast::FunctionType const * adaptee,
516 TypeVarMap const & typeVars ) {
517 ast::FunctionType * adapter = ast::deepCopy( adaptee );
518 if ( isDynRet( adapter, typeVars ) ) {
519 makeRetParam( adapter );
520 }
521 adapter->params.emplace( adapter->params.begin(),
522 new ast::PointerType( new ast::FunctionType( ast::VariableArgs ) )
523 );
524 return adapter;
525}
526
527CallAdapter::CallAdapter() : tmpNamer( "_temp" ) {}
528
529void CallAdapter::previsit( ast::Decl const * ) {
530 // Prevent type declaration information from leaking out.
531 GuardScope( scopeTypeVars );
532}
533
534ast::FunctionDecl const * CallAdapter::previsit( ast::FunctionDecl const * decl ) {
535 // Prevent type declaration information from leaking out.
536 GuardScope( scopeTypeVars );
537
538 if ( nullptr == decl->stmts ) {
539 return decl;
540 }
541
542 GuardValue( retval );
543
544 // Process polymorphic return value.
545 retval = nullptr;
546 ast::FunctionType const * type = decl->type;
547 if ( isDynRet( type ) && decl->linkage != ast::Linkage::C ) {
548 retval = decl->returns.front();
549
550 // Give names to unnamed return values.
551 if ( "" == retval->name ) {
552 auto mutRet = ast::mutate( retval );
553 mutRet->name = "_retparam";
554 mutRet->linkage = ast::Linkage::C;
555 retval = mutRet;
556 decl = ast::mutate_field_index( decl,
557 &ast::FunctionDecl::returns, 0, mutRet );
558 }
559 }
560
561 // The formal_usage/expr_id values may be off if we get them from the
562 // type, trying the declaration instead.
563 makeTypeVarMap( type, scopeTypeVars );
564
565 // Get all needed adapters from the call. We will forward them.
566 ast::vector<ast::FunctionType> functions;
567 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
568 auto atype = assertion->result.get();
569 findFunction( atype, functions, scopeTypeVars, needsAdapter );
570 }
571
572 for ( ast::ptr<ast::Type> const & arg : type->params ) {
573 findFunction( arg, functions, scopeTypeVars, needsAdapter );
574 }
575
576 for ( auto funcType : functions ) {
577 std::string mangleName = mangleAdapterName( funcType, scopeTypeVars );
578 if ( adapters.contains( mangleName ) ) continue;
579 std::string adapterName = makeAdapterName( mangleName );
580 // NODE: This creates floating nodes, breaking invariants.
581 // This is corrected in the RewireAdapters sub-pass.
582 adapters.insert(
583 mangleName,
584 new ast::ObjectDecl(
585 decl->location,
586 adapterName,
587 new ast::PointerType(
588 makeAdapterType( funcType, scopeTypeVars ) ),
589 nullptr, // init
590 ast::Storage::Classes(),
591 ast::Linkage::C
592 )
593 );
594 }
595
596 return decl;
597}
598
599void CallAdapter::previsit( ast::TypeDecl const * decl ) {
600 addToTypeVarMap( decl, scopeTypeVars );
601}
602
603void CallAdapter::previsit( ast::CommaExpr const * expr ) {
604 // Attempting to find application expressions that were mutated by the
605 // copy constructor passes to use an explicit return variable, so that
606 // the variable can be reused as a parameter to the call rather than
607 // creating a new temporary variable. Previously this step was an
608 // optimization, but with the introduction of tuples and UniqueExprs,
609 // it is necessary to ensure that they use the same variable.
610 // Essentially, looking for pattern:
611 // (x=f(...), x)
612 // To compound the issue, the right side can be *x, etc.
613 // because of lvalue-returning functions
614 if ( auto assign = expr->arg1.as<ast::UntypedExpr>() ) {
615 if ( CodeGen::isAssignment( ast::getFunctionName( assign ) ) ) {
616 assert( 2 == assign->args.size() );
617 if ( auto app = assign->args.back().as<ast::ApplicationExpr>() ) {
618 // First argument is assignable, so it must be an lvalue,
619 // so it should be legal to takes its address.
620 retVals.insert_or_assign( app, assign->args.front() );
621 }
622 }
623 }
624}
625
626ast::Expr const * CallAdapter::postvisit( ast::ApplicationExpr const * expr ) {
627 assert( expr->func->result );
628 ast::FunctionType const * function = getFunctionType( expr->func->result );
629 assertf( function, "ApplicationExpr has non-function type %s",
630 toCString( expr->func->result ) );
631
632 if ( auto newExpr = handleIntrinsics( expr ) ) {
633 return newExpr;
634 }
635
636 ast::ApplicationExpr * mutExpr = ast::mutate( expr );
637 ast::Expr const * ret = expr;
638
639 TypeVarMap exprTypeVars;
640 makeTypeVarMap( function, exprTypeVars );
641 auto dynRetType = isDynRet( function, exprTypeVars );
642
643 // NOTE: addDynRetParam needs to know the actual (generated) return type
644 // so it can make a temporary variable, so pass the result type form the
645 // `expr` `passTypeVars` needs to know the program-text return type ([ex]
646 // the distinction between _conc_T30 and T3(int)) concRetType may not be
647 // a good name in one or both of these places.
648 if ( dynRetType ) {
649 ast::Type const * result = mutExpr->result;
650 ast::Type const * concRetType = result->isVoid() ? nullptr : result;
651 // [Comment from before translation.]
652 // Used to use dynRetType instead of concRetType.
653 ret = addDynRetParam( mutExpr, concRetType );
654 } else if ( needsAdapter( function, scopeTypeVars )
655 && !needsAdapter( function, exprTypeVars ) ) {
656 // Change the application so it calls the adapter rather than the
657 // passed function.
658 ret = applyAdapter( mutExpr, function );
659 }
660
661 ast::vector<ast::Expr> prependArgs;
662 passTypeVars( mutExpr, prependArgs, function );
663 addInferredParams( mutExpr, prependArgs, function, exprTypeVars );
664
665 boxParams( mutExpr, dynRetType, function, exprTypeVars );
666 spliceBegin( mutExpr->args, prependArgs );
667 passAdapters( mutExpr, function, exprTypeVars );
668
669 return ret;
670}
671
672bool isPolyDeref( ast::UntypedExpr const * expr,
673 TypeVarMap const & typeVars,
674 ast::TypeSubstitution const * typeSubs ) {
675 if ( expr->result && isPolyType( expr->result, typeVars, typeSubs ) ) {
676 if ( auto name = expr->func.as<ast::NameExpr>() ) {
677 if ( "*?" == name->name ) {
678 return true;
679 }
680 }
681 }
682 return false;
683}
684
685ast::Expr const * CallAdapter::postvisit( ast::UntypedExpr const * expr ) {
686 if ( isPolyDeref( expr, scopeTypeVars, typeSubs ) ) {
687 return expr->args.front();
688 }
689 return expr;
690}
691
692void CallAdapter::previsit( ast::AddressExpr const * ) {
693 visit_children = false;
694}
695
696ast::Expr const * CallAdapter::postvisit( ast::AddressExpr const * expr ) {
697 assert( expr->arg->result );
698 assert( !expr->arg->result->isVoid() );
699
700 bool doesNeedAdapter = false;
701 if ( auto un = expr->arg.as<ast::UntypedExpr>() ) {
702 if ( isPolyDeref( un, scopeTypeVars, typeSubs ) ) {
703 if ( auto app = un->args.front().as<ast::ApplicationExpr>() ) {
704 assert( app->func->result );
705 auto function = getFunctionType( app->func->result );
706 assert( function );
707 doesNeedAdapter = needsAdapter( function, scopeTypeVars );
708 }
709 }
710 }
711 // isPolyType check needs to happen before mutating expr arg,
712 // so pull it forward out of the if condition.
713 expr = ast::mutate_field( expr, &ast::AddressExpr::arg,
714 expr->arg->accept( *visitor ) );
715 // But must happen after mutate, since argument might change
716 // (ex. intrinsic *?, ?[?]) re-evaluate above comment.
717 bool polyType = isPolyType( expr->arg->result, scopeTypeVars, typeSubs );
718 if ( polyType || doesNeedAdapter ) {
719 ast::Expr * ret = ast::mutate( expr->arg.get() );
720 ret->result = ast::deepCopy( expr->result );
721 return ret;
722 } else {
723 return expr;
724 }
725}
726
727ast::ReturnStmt const * CallAdapter::previsit( ast::ReturnStmt const * stmt ) {
728 // Since retval is set when the return type is dynamic, this function
729 // should have been converted to void return & out parameter.
730 if ( retval && stmt->expr ) {
731 assert( stmt->expr->result );
732 assert( !stmt->expr->result->isVoid() );
733 return ast::mutate_field( stmt, &ast::ReturnStmt::expr, nullptr );
734 }
735 return stmt;
736}
737
738void CallAdapter::beginScope() {
739 adapters.beginScope();
740}
741
742void CallAdapter::endScope() {
743 adapters.endScope();
744}
745
746/// Find instances of polymorphic type parameters.
747struct PolyFinder {
748 TypeVarMap const & typeVars;
749 bool result = false;
750 PolyFinder( TypeVarMap const & tvs ) : typeVars( tvs ) {}
751
752 void previsit( ast::TypeInstType const * type ) {
753 if ( isPolyType( type, typeVars ) ) result = true;
754 }
755};
756
757/// True if these is an instance of a polymorphic type parameter in the type.
758bool hasPolymorphism( ast::Type const * type, TypeVarMap const & typeVars ) {
759 return ast::Pass<PolyFinder>::read( type, typeVars );
760}
761
762void CallAdapter::passTypeVars(
763 ast::ApplicationExpr * expr,
764 ast::vector<ast::Expr> & extraArgs,
765 ast::FunctionType const * function ) {
766 assert( typeSubs );
767 // Pass size/align for type variables.
768 for ( ast::ptr<ast::TypeInstType> const & typeVar : function->forall ) {
769 if ( !typeVar->base->isComplete() ) continue;
770 ast::Type const * concrete = typeSubs->lookup( typeVar );
771 if ( !concrete ) {
772 // Should this be an assertion?
773 SemanticError( expr->location, "\nunbound type variable %s in application %s",
774 toString( typeSubs ).c_str(), typeVar->typeString().c_str() );
775 }
776 extraArgs.emplace_back(
777 new ast::SizeofExpr( expr->location, ast::deepCopy( concrete ) ) );
778 extraArgs.emplace_back(
779 new ast::AlignofExpr( expr->location, ast::deepCopy( concrete ) ) );
780 }
781}
782
783ast::Expr const * CallAdapter::addRetParam(
784 ast::ApplicationExpr * expr, ast::Type const * retType ) {
785 // Create temporary to hold return value of polymorphic function and
786 // produce that temporary as a result using a comma expression.
787 assert( retType );
788
789 ast::Expr * paramExpr = nullptr;
790 // Try to use existing return value parameter if it exists,
791 // otherwise create a new temporary.
792 if ( retVals.count( expr ) ) {
793 paramExpr = ast::deepCopy( retVals[ expr ] );
794 } else {
795 auto newObj = makeTemporary( expr->location, ast::deepCopy( retType ) );
796 paramExpr = new ast::VariableExpr( expr->location, newObj );
797 }
798 ast::Expr * retExpr = ast::deepCopy( paramExpr );
799
800 // If the type of the temporary is not polpmorphic, box temporary by
801 // taking its address; otherwise the temporary is already boxed and can
802 // be used directly.
803 if ( !isPolyType( paramExpr->result, scopeTypeVars, typeSubs ) ) {
804 paramExpr = new ast::AddressExpr( paramExpr->location, paramExpr );
805 }
806 // Add argument to function call.
807 expr->args.insert( expr->args.begin(), paramExpr );
808 // Build a comma expression to call the function and return a value.
809 ast::CommaExpr * comma = new ast::CommaExpr(
810 expr->location, expr, retExpr );
811 comma->env = expr->env;
812 expr->env = nullptr;
813 return comma;
814}
815
816ast::Expr const * CallAdapter::addDynRetParam(
817 ast::ApplicationExpr * expr, ast::Type const * polyType ) {
818 assert( typeSubs );
819 ast::Type const * concrete = replaceWithConcrete( polyType, *typeSubs );
820 // Add out-parameter for return value.
821 return addRetParam( expr, concrete );
822}
823
824ast::Expr const * CallAdapter::applyAdapter(
825 ast::ApplicationExpr * expr,
826 ast::FunctionType const * function ) {
827 ast::Expr const * ret = expr;
828 if ( isDynRet( function, scopeTypeVars ) ) {
829 ret = addRetParam( expr, function->returns.front() );
830 }
831 std::string mangleName = mangleAdapterName( function, scopeTypeVars );
832 std::string adapterName = makeAdapterName( mangleName );
833
834 // Cast adaptee to `void (*)()`, since it may have any type inside a
835 // polymorphic function.
836 ast::Type const * adapteeType = new ast::PointerType(
837 new ast::FunctionType( ast::VariableArgs ) );
838 expr->args.insert( expr->args.begin(),
839 new ast::CastExpr( expr->location, expr->func, adapteeType ) );
840 // The result field is never set on NameExpr. / Now it is.
841 auto head = new ast::NameExpr( expr->location, adapterName );
842 head->result = ast::deepCopy( adapteeType );
843 expr->func = head;
844
845 return ret;
846}
847
848/// Cast parameters to polymorphic functions so that types are replaced with
849/// `void *` if they are type parameters in the formal type.
850/// This gets rid of warnings from gcc.
851void addCast(
852 ast::ptr<ast::Expr> & actual,
853 ast::Type const * formal,
854 TypeVarMap const & typeVars ) {
855 // Type contains polymorphism, but isn't exactly a polytype, in which
856 // case it has some real actual type (ex. unsigned int) and casting to
857 // `void *` is wrong.
858 if ( hasPolymorphism( formal, typeVars )
859 && !isPolyType( formal, typeVars ) ) {
860 ast::Type const * newType = ast::deepCopy( formal );
861 newType = scrubTypeVars( newType, typeVars );
862 actual = new ast::CastExpr( actual->location, actual, newType );
863 }
864}
865
866void CallAdapter::boxParam( ast::ptr<ast::Expr> & arg,
867 ast::Type const * param, TypeVarMap const & exprTypeVars ) {
868 assertf( arg->result, "arg does not have result: %s", toCString( arg ) );
869 addCast( arg, param, exprTypeVars );
870 if ( !needsBoxing( param, arg->result, exprTypeVars, typeSubs ) ) {
871 return;
872 }
873 CodeLocation const & location = arg->location;
874
875 if ( arg->get_lvalue() ) {
876 // The argument expression may be CFA lvalue, but not C lvalue,
877 // so apply generalizedLvalue transformations.
878 // if ( auto var = dynamic_cast<ast::VariableExpr const *>( arg ) ) {
879 // if ( dynamic_cast<ast::ArrayType const *>( varExpr->var->get_type() ) ){
880 // // temporary hack - don't box arrays, because &arr is not the same as &arr[0]
881 // return;
882 // }
883 // }
884 arg = generalizedLvalue( new ast::AddressExpr( arg->location, arg ) );
885 if ( !ResolvExpr::typesCompatible( param, arg->result ) ) {
886 // Silence warnings by casting boxed parameters when the actually
887 // type does not match up with the formal type.
888 arg = new ast::CastExpr( location, arg, ast::deepCopy( param ) );
889 }
890 } else {
891 // Use type computed in unification to declare boxed variables.
892 ast::ptr<ast::Type> newType = ast::deepCopy( param );
893 if ( typeSubs ) typeSubs->apply( newType );
894 ast::ObjectDecl * newObj = makeTemporary( location, newType );
895 auto assign = ast::UntypedExpr::createCall( location, "?=?", {
896 new ast::VariableExpr( location, newObj ),
897 arg,
898 } );
899 stmtsToAddBefore.push_back( new ast::ExprStmt( location, assign ) );
900 arg = new ast::AddressExpr(
901 new ast::VariableExpr( location, newObj ) );
902 }
903}
904
905void CallAdapter::boxParams(
906 ast::ApplicationExpr * expr,
907 ast::Type const * polyRetType,
908 ast::FunctionType const * function,
909 const TypeVarMap & typeVars ) {
910 // Start at the beginning, but the return argument may have been added.
911 auto arg = expr->args.begin();
912 if ( polyRetType ) ++arg;
913
914 for ( auto param : function->params ) {
915 assertf( arg != expr->args.end(),
916 "boxParams: missing argument for param %s to %s in %s",
917 toCString( param ), toCString( function ), toCString( expr ) );
918 boxParam( *arg, param, typeVars );
919 ++arg;
920 }
921}
922
923void CallAdapter::addInferredParams(
924 ast::ApplicationExpr * expr,
925 ast::vector<ast::Expr> & extraArgs,
926 ast::FunctionType const * functionType,
927 TypeVarMap const & typeVars ) {
928 for ( auto assertion : functionType->assertions ) {
929 auto inferParam = expr->inferred.inferParams().find(
930 assertion->var->uniqueId );
931 assertf( inferParam != expr->inferred.inferParams().end(),
932 "addInferredParams missing inferred parameter: %s in: %s",
933 toCString( assertion ), toCString( expr ) );
934 ast::ptr<ast::Expr> newExpr = ast::deepCopy( inferParam->second.expr );
935 boxParam( newExpr, assertion->result, typeVars );
936 extraArgs.emplace_back( newExpr.release() );
937 }
938}
939
940/// Modifies the ApplicationExpr to accept adapter functions for its
941/// assertion and parameters, declares the required adapters.
942void CallAdapter::passAdapters(
943 ast::ApplicationExpr * expr,
944 ast::FunctionType const * type,
945 const TypeVarMap & exprTypeVars ) {
946 // Collect a list of function types passed as parameters or implicit
947 // parameters (assertions).
948 ast::vector<ast::Type> const & paramList = type->params;
949 ast::vector<ast::FunctionType> functions;
950
951 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
952 findFunction( assertion->result, functions, exprTypeVars, needsAdapter );
953 }
954 for ( ast::ptr<ast::Type> const & arg : paramList ) {
955 findFunction( arg, functions, exprTypeVars, needsAdapter );
956 }
957
958 // Parameter function types for which an appropriate adapter has been
959 // generated. We cannot use the types after applying substitutions,
960 // since two different parameter types may be unified to the same type.
961 std::set<std::string> adaptersDone;
962
963 CodeLocation const & location = expr->location;
964
965 for ( ast::ptr<ast::FunctionType> const & funcType : functions ) {
966 std::string mangleName = Mangle::mangle( funcType );
967
968 // Only attempt to create an adapter or pass one as a parameter if we
969 // haven't already done so for this pre-substitution parameter
970 // function type.
971 // The second part of the result if is if the element was inserted.
972 if ( !adaptersDone.insert( mangleName ).second ) continue;
973
974 // Apply substitution to type variables to figure out what the
975 // adapter's type should look like. (Copy to make the release safe.)
976 assert( typeSubs );
977 auto result = typeSubs->apply( ast::deepCopy( funcType ) );
978 ast::FunctionType * realType = ast::mutate( result.node.release() );
979 mangleName = Mangle::mangle( realType );
980 mangleName += makePolyMonoSuffix( funcType, exprTypeVars );
981
982 // Check if the adapter has already been created, or has to be.
983 using AdapterIter = decltype(adapters)::iterator;
984 AdapterIter adapter = adapters.find( mangleName );
985 if ( adapter == adapters.end() ) {
986 ast::FunctionDecl * newAdapter = makeAdapter(
987 funcType, realType, mangleName, exprTypeVars, location );
988 std::pair<AdapterIter, bool> answer =
989 adapters.insert( mangleName, newAdapter );
990 adapter = answer.first;
991 stmtsToAddBefore.push_back(
992 new ast::DeclStmt( location, newAdapter ) );
993 }
994 assert( adapter != adapters.end() );
995
996 // Add the approprate adapter as a parameter.
997 expr->args.insert( expr->args.begin(),
998 new ast::VariableExpr( location, adapter->second ) );
999 }
1000}
1001
1002// Parameter and argument may be used wrong around here.
1003ast::Expr * makeAdapterArg(
1004 ast::DeclWithType const * param,
1005 ast::Type const * arg,
1006 ast::Type const * realParam,
1007 TypeVarMap const & typeVars,
1008 CodeLocation const & location ) {
1009 assert( param );
1010 assert( arg );
1011 assert( realParam );
1012 if ( isPolyType( realParam, typeVars ) && !isPolyType( arg ) ) {
1013 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref(
1014 location,
1015 new ast::CastExpr( location,
1016 new ast::VariableExpr( location, param ),
1017 new ast::PointerType( ast::deepCopy( arg ) )
1018 )
1019 );
1020 deref->result = ast::deepCopy( arg );
1021 return deref;
1022 }
1023 return new ast::VariableExpr( location, param );
1024}
1025
1026// This seems to be one of the problematic functions.
1027void addAdapterParams(
1028 ast::ApplicationExpr * adaptee,
1029 ast::vector<ast::Type>::const_iterator arg,
1030 ast::vector<ast::DeclWithType>::iterator param,
1031 ast::vector<ast::DeclWithType>::iterator paramEnd,
1032 ast::vector<ast::Type>::const_iterator realParam,
1033 TypeVarMap const & typeVars,
1034 CodeLocation const & location ) {
1035 UniqueName paramNamer( "_p" );
1036 for ( ; param != paramEnd ; ++param, ++arg, ++realParam ) {
1037 if ( "" == (*param)->name ) {
1038 auto mutParam = (*param).get_and_mutate();
1039 mutParam->name = paramNamer.newName();
1040 mutParam->linkage = ast::Linkage::C;
1041 }
1042 adaptee->args.push_back(
1043 makeAdapterArg( *param, *arg, *realParam, typeVars, location ) );
1044 }
1045}
1046
1047ast::FunctionDecl * CallAdapter::makeAdapter(
1048 ast::FunctionType const * adaptee,
1049 ast::FunctionType const * realType,
1050 std::string const & mangleName,
1051 TypeVarMap const & typeVars,
1052 CodeLocation const & location ) const {
1053 ast::FunctionType * adapterType = makeAdapterType( adaptee, typeVars );
1054 adapterType = ast::mutate( scrubTypeVars( adapterType, typeVars ) );
1055
1056 // Some of these names will be overwritten, but it gives a default.
1057 UniqueName pNamer( "_param" );
1058 UniqueName rNamer( "_ret" );
1059
1060 bool first = true;
1061
1062 ast::FunctionDecl * adapterDecl = new ast::FunctionDecl( location,
1063 makeAdapterName( mangleName ),
1064 {}, // forall
1065 {}, // assertions
1066 map_range<ast::vector<ast::DeclWithType>>( adapterType->params,
1067 [&pNamer, &location, &first]( ast::ptr<ast::Type> const & param ) {
1068 // [Trying to make the generated code match exactly more often.]
1069 if ( first ) {
1070 first = false;
1071 return new ast::ObjectDecl( location, "_adaptee", param );
1072 }
1073 return new ast::ObjectDecl( location, pNamer.newName(), param );
1074 } ),
1075 map_range<ast::vector<ast::DeclWithType>>( adapterType->returns,
1076 [&rNamer, &location]( ast::ptr<ast::Type> const & retval ) {
1077 return new ast::ObjectDecl( location, rNamer.newName(), retval );
1078 } ),
1079 nullptr, // stmts
1080 {}, // storage
1081 ast::Linkage::C
1082 );
1083
1084 ast::DeclWithType * adapteeDecl =
1085 adapterDecl->params.front().get_and_mutate();
1086 adapteeDecl->name = "_adaptee";
1087
1088 // Do not carry over attributes to real type parameters/return values.
1089 auto mutRealType = ast::mutate( realType );
1090 for ( ast::ptr<ast::Type> & decl : mutRealType->params ) {
1091 if ( decl->attributes.empty() ) continue;
1092 auto mut = ast::mutate( decl.get() );
1093 mut->attributes.clear();
1094 decl = mut;
1095 }
1096 for ( ast::ptr<ast::Type> & decl : mutRealType->returns ) {
1097 if ( decl->attributes.empty() ) continue;
1098 auto mut = ast::mutate( decl.get() );
1099 mut->attributes.clear();
1100 decl = mut;
1101 }
1102 realType = mutRealType;
1103
1104 ast::ApplicationExpr * adapteeApp = new ast::ApplicationExpr( location,
1105 new ast::CastExpr( location,
1106 new ast::VariableExpr( location, adapteeDecl ),
1107 new ast::PointerType( realType )
1108 )
1109 );
1110
1111 for ( auto group : group_iterate( realType->assertions,
1112 adapterType->assertions, adaptee->assertions ) ) {
1113 auto assertArg = std::get<0>( group );
1114 auto assertParam = std::get<1>( group );
1115 auto assertReal = std::get<2>( group );
1116 adapteeApp->args.push_back( makeAdapterArg(
1117 assertParam->var, assertArg->var->get_type(),
1118 assertReal->var->get_type(), typeVars, location
1119 ) );
1120 }
1121
1122 ast::vector<ast::Type>::const_iterator
1123 arg = realType->params.begin(),
1124 param = adapterType->params.begin(),
1125 realParam = adaptee->params.begin();
1126 ast::vector<ast::DeclWithType>::iterator
1127 paramDecl = adapterDecl->params.begin();
1128 // Skip adaptee parameter in the adapter type.
1129 ++param;
1130 ++paramDecl;
1131
1132 ast::Stmt * bodyStmt;
1133 // Returns void/nothing.
1134 if ( realType->returns.empty() ) {
1135 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1136 realParam, typeVars, location );
1137 bodyStmt = new ast::ExprStmt( location, adapteeApp );
1138 // Returns a polymorphic type.
1139 } else if ( isDynType( adaptee->returns.front(), typeVars ) ) {
1140 ast::UntypedExpr * assign = new ast::UntypedExpr( location,
1141 new ast::NameExpr( location, "?=?" ) );
1142 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref( location,
1143 new ast::CastExpr( location,
1144 new ast::VariableExpr( location, *paramDecl++ ),
1145 new ast::PointerType(
1146 ast::deepCopy( realType->returns.front() ) ) ) );
1147 assign->args.push_back( deref );
1148 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1149 realParam, typeVars, location );
1150 assign->args.push_back( adapteeApp );
1151 bodyStmt = new ast::ExprStmt( location, assign );
1152 // Adapter for a function that returns a monomorphic value.
1153 } else {
1154 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1155 realParam, typeVars, location );
1156 bodyStmt = new ast::ReturnStmt( location, adapteeApp );
1157 }
1158
1159 adapterDecl->stmts = new ast::CompoundStmt( location, { bodyStmt } );
1160 return adapterDecl;
1161}
1162
1163ast::Expr const * makeIncrDecrExpr(
1164 CodeLocation const & location,
1165 ast::ApplicationExpr const * expr,
1166 ast::Type const * polyType,
1167 bool isIncr ) {
1168 ast::NameExpr * opExpr =
1169 new ast::NameExpr( location, isIncr ? "?+=?" : "?-=?" );
1170 ast::UntypedExpr * addAssign = new ast::UntypedExpr( location, opExpr );
1171 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1172 addAssign->args.push_back( address->arg );
1173 } else {
1174 addAssign->args.push_back( expr->args.front() );
1175 }
1176 addAssign->args.push_back( new ast::NameExpr( location,
1177 sizeofName( Mangle::mangleType( polyType ) ) ) );
1178 addAssign->result = ast::deepCopy( expr->result );
1179 addAssign->env = expr->env ? expr->env : addAssign->env;
1180 return addAssign;
1181}
1182
1183/// Handles intrinsic functions for postvisit ApplicationExpr.
1184ast::Expr const * CallAdapter::handleIntrinsics(
1185 ast::ApplicationExpr const * expr ) {
1186 auto varExpr = expr->func.as<ast::VariableExpr>();
1187 if ( !varExpr || varExpr->var->linkage != ast::Linkage::Intrinsic ) {
1188 return nullptr;
1189 }
1190 std::string const & varName = varExpr->var->name;
1191
1192 // Index Intrinsic:
1193 if ( "?[?]" == varName ) {
1194 assert( expr->result );
1195 assert( 2 == expr->args.size() );
1196
1197 ast::Type const * baseType1 =
1198 isPolyPtr( expr->args.front()->result, scopeTypeVars, typeSubs );
1199 ast::Type const * baseType2 =
1200 isPolyPtr( expr->args.back()->result, scopeTypeVars, typeSubs );
1201 // If neither argument is a polymorphic pointer, do nothing.
1202 if ( !baseType1 && !baseType2 ) {
1203 return expr;
1204 }
1205 // The arguments cannot both be polymorphic pointers.
1206 assert( !baseType1 || !baseType2 );
1207 // (So exactly one of the arguments is a polymorphic pointer.)
1208
1209 CodeLocation const & location = expr->location;
1210 CodeLocation const & location1 = expr->args.front()->location;
1211 CodeLocation const & location2 = expr->args.back()->location;
1212
1213 ast::UntypedExpr * ret = new ast::UntypedExpr( location,
1214 new ast::NameExpr( location, "?+?" ) );
1215 if ( baseType1 ) {
1216 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1217 expr->args.back(),
1218 new ast::SizeofExpr( location1, deepCopy( baseType1 ) ),
1219 } );
1220 ret->args.push_back( expr->args.front() );
1221 ret->args.push_back( multiply );
1222 } else {
1223 assert( baseType2 );
1224 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1225 expr->args.front(),
1226 new ast::SizeofExpr( location2, deepCopy( baseType2 ) ),
1227 } );
1228 ret->args.push_back( multiply );
1229 ret->args.push_back( expr->args.back() );
1230 }
1231 ret->result = ast::deepCopy( expr->result );
1232 ret->env = expr->env ? expr->env : ret->env;
1233 return ret;
1234 // Dereference Intrinsic:
1235 } else if ( "*?" == varName ) {
1236 assert( expr->result );
1237 assert( 1 == expr->args.size() );
1238
1239 // If this isn't for a poly type, then do nothing.
1240 if ( !isPolyType( expr->result, scopeTypeVars, typeSubs ) ) {
1241 return expr;
1242 }
1243
1244 // Remove dereference from polymorphic types since they are boxed.
1245 ast::Expr * ret = ast::deepCopy( expr->args.front() );
1246 // Fix expression type to remove pointer.
1247 ret->result = expr->result;
1248 ret->env = expr->env ? expr->env : ret->env;
1249 return ret;
1250 // Post-Increment/Decrement Intrinsics:
1251 } else if ( "?++" == varName || "?--" == varName ) {
1252 assert( expr->result );
1253 assert( 1 == expr->args.size() );
1254
1255 ast::Type const * baseType =
1256 isPolyType( expr->result, scopeTypeVars, typeSubs );
1257 if ( nullptr == baseType ) {
1258 return expr;
1259 }
1260 ast::Type * tempType = ast::deepCopy( expr->result );
1261 if ( typeSubs ) {
1262 auto result = typeSubs->apply( tempType );
1263 tempType = ast::mutate( result.node.release() );
1264 }
1265 CodeLocation const & location = expr->location;
1266 ast::ObjectDecl * newObj = makeTemporary( location, tempType );
1267 ast::VariableExpr * tempExpr =
1268 new ast::VariableExpr( location, newObj );
1269 ast::UntypedExpr * assignExpr = new ast::UntypedExpr( location,
1270 new ast::NameExpr( location, "?=?" ) );
1271 assignExpr->args.push_back( ast::deepCopy( tempExpr ) );
1272 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1273 assignExpr->args.push_back( ast::deepCopy( address->arg ) );
1274 } else {
1275 assignExpr->args.push_back( ast::deepCopy( expr->args.front() ) );
1276 }
1277 return new ast::CommaExpr( location,
1278 new ast::CommaExpr( location,
1279 assignExpr,
1280 makeIncrDecrExpr( location, expr, baseType, "?++" == varName )
1281 ),
1282 tempExpr
1283 );
1284 // Pre-Increment/Decrement Intrinsics:
1285 } else if ( "++?" == varName || "--?" == varName ) {
1286 assert( expr->result );
1287 assert( 1 == expr->args.size() );
1288
1289 ast::Type const * baseType =
1290 isPolyType( expr->result, scopeTypeVars, typeSubs );
1291 if ( nullptr == baseType ) {
1292 return expr;
1293 }
1294 return makeIncrDecrExpr(
1295 expr->location, expr, baseType, "++?" == varName );
1296 // Addition and Subtration Intrinsics:
1297 } else if ( "?+?" == varName || "?-?" == varName ) {
1298 assert( expr->result );
1299 assert( 2 == expr->args.size() );
1300
1301 auto baseType1 =
1302 isPolyPtr( expr->args.front()->result, scopeTypeVars, typeSubs );
1303 auto baseType2 =
1304 isPolyPtr( expr->args.back()->result, scopeTypeVars, typeSubs );
1305
1306 CodeLocation const & location = expr->location;
1307 CodeLocation const & location1 = expr->args.front()->location;
1308 CodeLocation const & location2 = expr->args.back()->location;
1309 // LHS op RHS -> (LHS op RHS) / sizeof(LHS)
1310 if ( baseType1 && baseType2 ) {
1311 auto divide = ast::UntypedExpr::createCall( location, "?/?", {
1312 expr,
1313 new ast::SizeofExpr( location, deepCopy( baseType1 ) ),
1314 } );
1315 if ( expr->env ) divide->env = expr->env;
1316 return divide;
1317 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1318 } else if ( baseType1 ) {
1319 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1320 expr->args.back(),
1321 new ast::SizeofExpr( location1, deepCopy( baseType1 ) ),
1322 } );
1323 return ast::mutate_field_index(
1324 expr, &ast::ApplicationExpr::args, 1, multiply );
1325 // LHS op RHS -> (LHS * sizeof(RHS)) op RHS
1326 } else if ( baseType2 ) {
1327 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1328 expr->args.front(),
1329 new ast::SizeofExpr( location2, deepCopy( baseType2 ) ),
1330 } );
1331 return ast::mutate_field_index(
1332 expr, &ast::ApplicationExpr::args, 0, multiply );
1333 }
1334 // Addition and Subtration Relative Assignment Intrinsics:
1335 } else if ( "?+=?" == varName || "?-=?" == varName ) {
1336 assert( expr->result );
1337 assert( 2 == expr->args.size() );
1338
1339 CodeLocation const & location1 = expr->args.front()->location;
1340 CodeLocation const & location2 = expr->args.back()->location;
1341 auto baseType = isPolyPtr( expr->result, scopeTypeVars, typeSubs );
1342 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1343 if ( baseType ) {
1344 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1345 expr->args.back(),
1346 new ast::SizeofExpr( location1, deepCopy( baseType ) ),
1347 } );
1348 return ast::mutate_field_index(
1349 expr, &ast::ApplicationExpr::args, 1, multiply );
1350 }
1351 }
1352 return expr;
1353}
1354
1355ast::ObjectDecl * CallAdapter::makeTemporary(
1356 CodeLocation const & location, ast::Type const * type ) {
1357 auto newObj = new ast::ObjectDecl( location, tmpNamer.newName(), type );
1358 stmtsToAddBefore.push_back( new ast::DeclStmt( location, newObj ) );
1359 return newObj;
1360}
1361
1362// --------------------------------------------------------------------------
1363/// Modifies declarations to accept implicit parameters.
1364/// * Move polymorphic returns in function types to pointer-type parameters.
1365/// * Adds type size and assertion parameters to parameter lists.
1366struct DeclAdapter final {
1367 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
1368 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
1369private:
1370 void addAdapters( ast::FunctionDecl * decl, TypeVarMap & localTypeVars );
1371};
1372
1373ast::ObjectDecl * makeObj(
1374 CodeLocation const & location, std::string const & name ) {
1375 // The size/align parameters may be unused, so add the unused attribute.
1376 return new ast::ObjectDecl( location, name,
1377 makeLayoutCType(),
1378 nullptr, ast::Storage::Classes(), ast::Linkage::C, nullptr,
1379 { new ast::Attribute( "unused" ) } );
1380}
1381
1382/// A modified and specialized version of ast::add_qualifiers.
1383ast::Type const * addConst( ast::Type const * type ) {
1384 ast::CV::Qualifiers cvq = { ast::CV::Const };
1385 if ( ( type->qualifiers & cvq ) != 0 ) return type;
1386 auto mutType = ast::mutate( type );
1387 mutType->qualifiers |= cvq;
1388 return mutType;
1389}
1390
1391ast::FunctionDecl const * DeclAdapter::previsit( ast::FunctionDecl const * decl ) {
1392 TypeVarMap localTypeVars;
1393 makeTypeVarMap( decl, localTypeVars );
1394
1395 auto mutDecl = mutate( decl );
1396
1397 // Move polymorphic return type to parameter list.
1398 if ( isDynRet( mutDecl->type ) ) {
1399 auto ret = strict_dynamic_cast<ast::ObjectDecl *>(
1400 mutDecl->returns.front().get_and_mutate() );
1401 ret->set_type( new ast::PointerType( ret->type ) );
1402 mutDecl->params.insert( mutDecl->params.begin(), ret );
1403 mutDecl->returns.erase( mutDecl->returns.begin() );
1404 ret->init = nullptr;
1405 }
1406
1407 // Add size/align and assertions for type parameters to parameter list.
1408 ast::vector<ast::DeclWithType> inferredParams;
1409 ast::vector<ast::DeclWithType> layoutParams;
1410 for ( ast::ptr<ast::TypeDecl> & typeParam : mutDecl->type_params ) {
1411 auto mutParam = mutate( typeParam.get() );
1412 // Add all size and alignment parameters to parameter list.
1413 if ( mutParam->isComplete() ) {
1414 ast::TypeInstType paramType( mutParam );
1415 std::string paramName = Mangle::mangleType( &paramType );
1416
1417 auto sizeParam = makeObj( typeParam->location, sizeofName( paramName ) );
1418 layoutParams.emplace_back( sizeParam );
1419
1420 auto alignParam = makeObj( typeParam->location, alignofName( paramName ) );
1421 layoutParams.emplace_back( alignParam );
1422 }
1423 // Assertions should be stored in the main list.
1424 assert( mutParam->assertions.empty() );
1425 typeParam = mutParam;
1426 }
1427 for ( ast::ptr<ast::DeclWithType> & assert : mutDecl->assertions ) {
1428 ast::DeclWithType * mutAssert = ast::mutate( assert.get() );
1429 // Assertion parameters may not be used in body,
1430 // pass along with unused attribute.
1431 mutAssert->attributes.push_back( new ast::Attribute( "unused" ) );
1432 mutAssert->set_type( addConst( mutAssert->get_type() ) );
1433 inferredParams.emplace_back( mutAssert );
1434 }
1435 mutDecl->assertions.clear();
1436
1437 // Prepend each argument group. From last group to first. addAdapters
1438 // does do the same, it just does it itself and see all other parameters.
1439 spliceBegin( mutDecl->params, inferredParams );
1440 spliceBegin( mutDecl->params, layoutParams );
1441 addAdapters( mutDecl, localTypeVars );
1442
1443 // Now have to update the type to match the declaration.
1444 ast::FunctionType * type = new ast::FunctionType(
1445 mutDecl->type->isVarArgs, mutDecl->type->qualifiers );
1446 // The forall clauses don't match until Eraser. The assertions are empty.
1447 for ( auto param : mutDecl->params ) {
1448 type->params.emplace_back( param->get_type() );
1449 }
1450 for ( auto retval : mutDecl->returns ) {
1451 type->returns.emplace_back( retval->get_type() );
1452 }
1453 mutDecl->type = type;
1454
1455 return mutDecl;
1456}
1457
1458ast::FunctionDecl const * DeclAdapter::postvisit(
1459 ast::FunctionDecl const * decl ) {
1460 ast::FunctionDecl * mutDecl = mutate( decl );
1461 if ( !mutDecl->returns.empty() && mutDecl->stmts
1462 // Intrinsic functions won't be using the _retval so no need to
1463 // generate it.
1464 && mutDecl->linkage != ast::Linkage::Intrinsic
1465 // Remove check for prefix once thunks properly use ctor/dtors.
1466 && !isPrefix( mutDecl->name, "_thunk" )
1467 && !isPrefix( mutDecl->name, "_adapter" ) ) {
1468 assert( 1 == mutDecl->returns.size() );
1469 ast::DeclWithType const * retval = mutDecl->returns.front();
1470 if ( "" == retval->name ) {
1471 retval = ast::mutate_field(
1472 retval, &ast::DeclWithType::name, "_retval" );
1473 mutDecl->returns.front() = retval;
1474 }
1475 auto stmts = mutDecl->stmts.get_and_mutate();
1476 stmts->kids.push_front( new ast::DeclStmt( retval->location, retval ) );
1477 ast::DeclWithType * newRet = ast::deepCopy( retval );
1478 mutDecl->returns.front() = newRet;
1479 }
1480 // Errors should have been caught by this point, remove initializers from
1481 // parameters to allow correct codegen of default arguments.
1482 for ( ast::ptr<ast::DeclWithType> & param : mutDecl->params ) {
1483 if ( auto obj = param.as<ast::ObjectDecl>() ) {
1484 param = ast::mutate_field( obj, &ast::ObjectDecl::init, nullptr );
1485 }
1486 }
1487 return mutDecl;
1488}
1489
1490void DeclAdapter::addAdapters(
1491 ast::FunctionDecl * mutDecl, TypeVarMap & localTypeVars ) {
1492 ast::vector<ast::FunctionType> functions;
1493 for ( ast::ptr<ast::DeclWithType> & arg : mutDecl->params ) {
1494 ast::Type const * type = arg->get_type();
1495 type = findAndReplaceFunction( type, functions, localTypeVars, needsAdapter );
1496 arg.get_and_mutate()->set_type( type );
1497 }
1498 std::set<std::string> adaptersDone;
1499 for ( ast::ptr<ast::FunctionType> const & func : functions ) {
1500 std::string mangleName = mangleAdapterName( func, localTypeVars );
1501 if ( adaptersDone.find( mangleName ) != adaptersDone.end() ) {
1502 continue;
1503 }
1504 std::string adapterName = makeAdapterName( mangleName );
1505 // The adapter may not actually be used, so make sure it has unused.
1506 mutDecl->params.insert( mutDecl->params.begin(), new ast::ObjectDecl(
1507 mutDecl->location, adapterName,
1508 new ast::PointerType( makeAdapterType( func, localTypeVars ) ),
1509 nullptr, {}, {}, nullptr,
1510 { new ast::Attribute( "unused" ) } ) );
1511 adaptersDone.insert( adaptersDone.begin(), mangleName );
1512 }
1513}
1514
1515// --------------------------------------------------------------------------
1516/// Corrects the floating nodes created in CallAdapter.
1517struct RewireAdapters final : public ast::WithGuards {
1518 ScopedMap<std::string, ast::ObjectDecl const *> adapters;
1519 void beginScope() { adapters.beginScope(); }
1520 void endScope() { adapters.endScope(); }
1521 void previsit( ast::FunctionDecl const * decl );
1522 ast::VariableExpr const * previsit( ast::VariableExpr const * expr );
1523};
1524
1525void RewireAdapters::previsit( ast::FunctionDecl const * decl ) {
1526 GuardScope( adapters );
1527 for ( ast::ptr<ast::DeclWithType> const & param : decl->params ) {
1528 if ( auto objectParam = param.as<ast::ObjectDecl>() ) {
1529 adapters.insert( objectParam->name, objectParam );
1530 }
1531 }
1532}
1533
1534ast::VariableExpr const * RewireAdapters::previsit(
1535 ast::VariableExpr const * expr ) {
1536 // If the node is not floating, we can skip.
1537 if ( expr->var->isManaged() ) return expr;
1538 auto it = adapters.find( expr->var->name );
1539 assertf( it != adapters.end(), "Could not correct floating node." );
1540 return ast::mutate_field( expr, &ast::VariableExpr::var, it->second );
1541}
1542
1543// --------------------------------------------------------------------------
1544/// Inserts code to access polymorphic layout inforation.
1545/// * Replaces member and size/alignment/offsetof expressions on polymorphic
1546/// generic types with calculated expressions.
1547/// * Replaces member expressions for polymorphic types with calculated
1548/// add-field-offset-and-dereference.
1549/// * Calculates polymorphic offsetof expressions from offset array.
1550/// * Inserts dynamic calculation of polymorphic type layouts where needed.
1551struct PolyGenericCalculator final :
1552 public ast::WithConstTypeSubstitution,
1553 public ast::WithDeclsToAdd<>,
1554 public ast::WithGuards,
1555 public ast::WithStmtsToAdd<>,
1556 public ast::WithVisitorRef<PolyGenericCalculator> {
1557 PolyGenericCalculator();
1558
1559 void previsit( ast::FunctionDecl const * decl );
1560 void previsit( ast::TypedefDecl const * decl );
1561 void previsit( ast::TypeDecl const * decl );
1562 ast::Decl const * postvisit( ast::TypeDecl const * decl );
1563 ast::StructDecl const * previsit( ast::StructDecl const * decl );
1564 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
1565 ast::DeclStmt const * previsit( ast::DeclStmt const * stmt );
1566 ast::Expr const * postvisit( ast::MemberExpr const * expr );
1567 void previsit( ast::AddressExpr const * expr );
1568 ast::Expr const * postvisit( ast::AddressExpr const * expr );
1569 ast::Expr const * postvisit( ast::SizeofExpr const * expr );
1570 ast::Expr const * postvisit( ast::AlignofExpr const * expr );
1571 ast::Expr const * postvisit( ast::OffsetofExpr const * expr );
1572 ast::Expr const * postvisit( ast::OffsetPackExpr const * expr );
1573
1574 void beginScope();
1575 void endScope();
1576private:
1577 /// Makes a new variable in the current scope with the given name,
1578 /// type and optional initializer.
1579 ast::ObjectDecl * makeVar(
1580 CodeLocation const & location, std::string const & name,
1581 ast::Type const * type, ast::Init const * init = nullptr );
1582 /// Returns true if the type has a dynamic layout;
1583 /// such a layout will be stored in appropriately-named local variables
1584 /// when the function returns.
1585 bool findGeneric( CodeLocation const & location, ast::Type const * );
1586 /// Adds type parameters to the layout call; will generate the
1587 /// appropriate parameters if needed.
1588 void addSTypeParamsToLayoutCall(
1589 ast::UntypedExpr * layoutCall,
1590 const ast::vector<ast::Type> & otypeParams );
1591 /// Change the type of generic aggregate members to char[].
1592 void mutateMembers( ast::AggregateDecl * aggr );
1593 /// Returns the calculated sizeof expression for type, or nullptr for use
1594 /// C sizeof().
1595 ast::Expr const * genSizeof( CodeLocation const &, ast::Type const * );
1596 /// Enters a new scope for type-variables,
1597 /// adding the type variables from the provided type.
1598 void beginTypeScope( ast::Type const * );
1599
1600 /// The type variables and polymorphic parameters currently in scope.
1601 TypeVarMap scopeTypeVars;
1602 /// Set of generic type layouts known in the current scope,
1603 /// indexed by sizeofName.
1604 ScopedSet<std::string> knownLayouts;
1605 /// Set of non-generic types for which the offset array exists in the
1606 /// current scope, indexed by offsetofName.
1607 ScopedSet<std::string> knownOffsets;
1608 /// Namer for VLA (variable length array) buffers.
1609 UniqueName bufNamer;
1610 /// If the argument of an AddressExpr is MemberExpr, it is stored here.
1611 ast::MemberExpr const * addrMember = nullptr;
1612};
1613
1614PolyGenericCalculator::PolyGenericCalculator() :
1615 knownLayouts(), knownOffsets(), bufNamer( "_buf" )
1616{}
1617
1618/// Converts polymorphic type into a suitable monomorphic representation.
1619/// Currently: __attribute__(( aligned(8) )) char[size_T];
1620ast::Type * polyToMonoType( CodeLocation const & location,
1621 ast::Type const * declType ) {
1622 auto charType = new ast::BasicType( ast::BasicType::Char );
1623 auto size = new ast::NameExpr( location,
1624 sizeofName( Mangle::mangleType( declType ) ) );
1625 auto ret = new ast::ArrayType( charType, size,
1626 ast::VariableLen, ast::DynamicDim, ast::CV::Qualifiers() );
1627 ret->attributes.emplace_back( new ast::Attribute( "aligned",
1628 { ast::ConstantExpr::from_int( location, 8 ) } ) );
1629 return ret;
1630}
1631
1632void PolyGenericCalculator::previsit( ast::FunctionDecl const * decl ) {
1633 GuardScope( *this );
1634 beginTypeScope( decl->type );
1635}
1636
1637void PolyGenericCalculator::previsit( ast::TypedefDecl const * decl ) {
1638 assertf( false, "All typedef declarations should be removed." );
1639 beginTypeScope( decl->base );
1640}
1641
1642void PolyGenericCalculator::previsit( ast::TypeDecl const * decl ) {
1643 addToTypeVarMap( decl, scopeTypeVars );
1644}
1645
1646ast::Decl const * PolyGenericCalculator::postvisit(
1647 ast::TypeDecl const * decl ) {
1648 ast::Type const * base = decl->base;
1649 if ( nullptr == base ) return decl;
1650
1651 // Add size/align variables for opaque type declarations.
1652 ast::TypeInstType inst( decl->name, decl );
1653 std::string typeName = Mangle::mangleType( &inst );
1654
1655 ast::ObjectDecl * sizeDecl = new ast::ObjectDecl( decl->location,
1656 sizeofName( typeName ), makeLayoutCType(),
1657 new ast::SingleInit( decl->location,
1658 new ast::SizeofExpr( decl->location, deepCopy( base ) )
1659 )
1660 );
1661 ast::ObjectDecl * alignDecl = new ast::ObjectDecl( decl->location,
1662 alignofName( typeName ), makeLayoutCType(),
1663 new ast::SingleInit( decl->location,
1664 new ast::AlignofExpr( decl->location, deepCopy( base ) )
1665 )
1666 );
1667
1668 // Ensure that the initializing sizeof/alignof exprs are properly mutated.
1669 sizeDecl->accept( *visitor );
1670 alignDecl->accept( *visitor );
1671
1672 // A little trick to replace this with two declarations.
1673 // Adding after makes sure that there is no conflict with adding stmts.
1674 declsToAddAfter.push_back( alignDecl );
1675 return sizeDecl;
1676}
1677
1678ast::StructDecl const * PolyGenericCalculator::previsit(
1679 ast::StructDecl const * decl ) {
1680 auto mutDecl = mutate( decl );
1681 mutateMembers( mutDecl );
1682 return mutDecl;
1683}
1684
1685ast::UnionDecl const * PolyGenericCalculator::previsit(
1686 ast::UnionDecl const * decl ) {
1687 auto mutDecl = mutate( decl );
1688 mutateMembers( mutDecl );
1689 return mutDecl;
1690}
1691
1692ast::DeclStmt const * PolyGenericCalculator::previsit( ast::DeclStmt const * stmt ) {
1693 ast::ObjectDecl const * decl = stmt->decl.as<ast::ObjectDecl>();
1694 if ( !decl || !findGeneric( decl->location, decl->type ) ) {
1695 return stmt;
1696 }
1697
1698 // Change initialization of a polymorphic value object to allocate via a
1699 // variable-length-array (alloca cannot be safely used in loops).
1700 ast::ObjectDecl * newBuf = new ast::ObjectDecl( decl->location,
1701 bufNamer.newName(),
1702 polyToMonoType( decl->location, decl->type ),
1703 nullptr, {}, ast::Linkage::C
1704 );
1705 stmtsToAddBefore.push_back( new ast::DeclStmt( stmt->location, newBuf ) );
1706
1707 // If the object has a cleanup attribute, the clean-up should be on the
1708 // buffer, not the pointer. [Perhaps this should be lifted?]
1709 auto matchAndMove = [newBuf]( ast::ptr<ast::Attribute> & attr ) {
1710 if ( "cleanup" == attr->name ) {
1711 newBuf->attributes.push_back( attr );
1712 return true;
1713 }
1714 return false;
1715 };
1716
1717 auto mutDecl = mutate( decl );
1718
1719 // Forally, side effects are not safe in this function. But it works.
1720 erase_if( mutDecl->attributes, matchAndMove );
1721
1722 mutDecl->init = new ast::SingleInit( decl->location,
1723 new ast::VariableExpr( decl->location, newBuf ) );
1724
1725 return ast::mutate_field( stmt, &ast::DeclStmt::decl, mutDecl );
1726}
1727
1728/// Checks if memberDecl matches the decl from an aggregate.
1729bool isMember( ast::DeclWithType const * memberDecl, ast::Decl const * decl ) {
1730 // No matter the field, if the name is different it is not the same.
1731 if ( memberDecl->name != decl->name ) {
1732 return false;
1733 }
1734
1735 if ( memberDecl->name.empty() ) {
1736 // Plan-9 Field: Match on unique_id.
1737 return ( memberDecl->uniqueId == decl->uniqueId );
1738 }
1739
1740 ast::DeclWithType const * declWithType =
1741 strict_dynamic_cast<ast::DeclWithType const *>( decl );
1742
1743 if ( memberDecl->mangleName.empty() || declWithType->mangleName.empty() ) {
1744 // Tuple-Element Field: Expect neither had mangled name;
1745 // accept match on simple name (like field_2) only.
1746 assert( memberDecl->mangleName.empty() );
1747 assert( declWithType->mangleName.empty() );
1748 return true;
1749 }
1750
1751 // Ordinary Field: Use full name to accommodate overloading.
1752 return ( memberDecl->mangleName == declWithType->mangleName );
1753}
1754
1755/// Finds the member in the base list that matches the given declaration;
1756/// returns its index, or -1 if not present.
1757long findMember( ast::DeclWithType const * memberDecl,
1758 const ast::vector<ast::Decl> & baseDecls ) {
1759 for ( auto const & [index, value] : enumerate( baseDecls ) ) {
1760 if ( isMember( memberDecl, value.get() ) ) {
1761 return index;
1762 }
1763 }
1764 return -1;
1765}
1766
1767/// Returns an index expression into the offset array for a type.
1768ast::Expr * makeOffsetIndex( CodeLocation const & location,
1769 ast::Type const * objectType, long i ) {
1770 std::string name = offsetofName( Mangle::mangleType( objectType ) );
1771 return ast::UntypedExpr::createCall( location, "?[?]", {
1772 new ast::NameExpr( location, name ),
1773 ast::ConstantExpr::from_ulong( location, i ),
1774 } );
1775}
1776
1777ast::Expr const * PolyGenericCalculator::postvisit(
1778 ast::MemberExpr const * expr ) {
1779 // Only mutate member expressions for polymorphic types.
1780 ast::Type const * objectType = hasPolyBase(
1781 expr->aggregate->result, scopeTypeVars
1782 );
1783 if ( !objectType ) return expr;
1784 // Ensure layout for this type is available.
1785 // The boolean result is ignored.
1786 findGeneric( expr->location, objectType );
1787
1788 // Replace member expression with dynamically-computed layout expression.
1789 ast::Expr * newMemberExpr = nullptr;
1790 if ( auto structType = dynamic_cast<ast::StructInstType const *>( objectType ) ) {
1791 long offsetIndex = findMember( expr->member, structType->base->members );
1792 if ( -1 == offsetIndex ) return expr;
1793
1794 // Replace member expression with pointer to struct plus offset.
1795 ast::UntypedExpr * fieldLoc = new ast::UntypedExpr( expr->location,
1796 new ast::NameExpr( expr->location, "?+?" ) );
1797 ast::Expr * aggr = deepCopy( expr->aggregate );
1798 aggr->env = nullptr;
1799 fieldLoc->args.push_back( aggr );
1800 fieldLoc->args.push_back(
1801 makeOffsetIndex( expr->location, objectType, offsetIndex ) );
1802 fieldLoc->result = deepCopy( expr->result );
1803 newMemberExpr = fieldLoc;
1804 // Union members are all at offset zero, so just use the aggregate expr.
1805 } else if ( dynamic_cast<ast::UnionInstType const *>( objectType ) ) {
1806 ast::Expr * aggr = deepCopy( expr->aggregate );
1807 aggr->env = nullptr;
1808 aggr->result = deepCopy( expr->result );
1809 newMemberExpr = aggr;
1810 } else {
1811 return expr;
1812 }
1813 assert( newMemberExpr );
1814
1815 // Must apply the generic substitution to the member type to handle cases
1816 // where the member is a generic parameter subsituted by a known concrete
1817 // type. [ex]
1818 // forall( T ) struct Box { T x; }
1819 // forall( T ) void f() {
1820 // Box( T * ) b; b.x;
1821 // }
1822 // TODO: expr->result should be exactly expr->member->get_type() after
1823 // substitution, so it doesn't seem like it should be necessary to apply
1824 // the substitution manually. For some reason this is not currently the
1825 // case. This requires more investigation.
1826 ast::ptr<ast::Type> memberType = deepCopy( expr->member->get_type() );
1827 ast::TypeSubstitution sub = genericSubstitution( objectType );
1828 sub.apply( memberType );
1829
1830 // Not all members of a polymorphic type are themselves of a polymorphic
1831 // type; in this case the member expression should be wrapped and
1832 // dereferenced to form an lvalue.
1833 if ( !isPolyType( memberType, scopeTypeVars ) ) {
1834 auto ptrCastExpr = new ast::CastExpr( expr->location, newMemberExpr,
1835 new ast::PointerType( memberType ) );
1836 auto derefExpr = ast::UntypedExpr::createDeref( expr->location,
1837 ptrCastExpr );
1838 newMemberExpr = derefExpr;
1839 }
1840
1841 return newMemberExpr;
1842}
1843
1844void PolyGenericCalculator::previsit( ast::AddressExpr const * expr ) {
1845 GuardValue( addrMember ) = expr->arg.as<ast::MemberExpr>();
1846}
1847
1848ast::Expr const * PolyGenericCalculator::postvisit(
1849 ast::AddressExpr const * expr ) {
1850 // arg has to have been a MemberExpr and has been mutated.
1851 if ( nullptr == addrMember || expr->arg == addrMember ) {
1852 return expr;
1853 }
1854 ast::UntypedExpr const * untyped = expr->arg.as<ast::UntypedExpr>();
1855 if ( !untyped || getFunctionName( untyped ) != "?+?" ) {
1856 return expr;
1857 }
1858 // MemberExpr was converted to pointer + offset; and it is not valid C to
1859 // take the address of an addition, so strip away the address-of.
1860 // It also preserves the env value.
1861 return ast::mutate_field( expr->arg.get(), &ast::Expr::env, expr->env );
1862}
1863
1864ast::Expr const * PolyGenericCalculator::postvisit(
1865 ast::SizeofExpr const * expr ) {
1866 ast::Type const * type = expr->type ? expr->type : expr->expr->result;
1867 ast::Expr const * gen = genSizeof( expr->location, type );
1868 return ( gen ) ? gen : expr;
1869}
1870
1871ast::Expr const * PolyGenericCalculator::postvisit(
1872 ast::AlignofExpr const * expr ) {
1873 ast::Type const * type = expr->type ? expr->type : expr->expr->result;
1874 if ( findGeneric( expr->location, type ) ) {
1875 return new ast::NameExpr( expr->location,
1876 alignofName( Mangle::mangleType( type ) ) );
1877 } else {
1878 return expr;
1879 }
1880}
1881
1882ast::Expr const * PolyGenericCalculator::postvisit(
1883 ast::OffsetofExpr const * expr ) {
1884 ast::Type const * type = expr->type;
1885 if ( !findGeneric( expr->location, type ) ) return expr;
1886
1887 // Structures replace offsetof expression with an index into offset array.
1888 if ( auto structType = dynamic_cast<ast::StructInstType const *>( type ) ) {
1889 long offsetIndex = findMember( expr->member, structType->base->members );
1890 if ( -1 == offsetIndex ) return expr;
1891
1892 return makeOffsetIndex( expr->location, type, offsetIndex );
1893 // All union members are at offset zero.
1894 } else if ( dynamic_cast<ast::UnionInstType const *>( type ) ) {
1895 return ast::ConstantExpr::from_ulong( expr->location, 0 );
1896 } else {
1897 return expr;
1898 }
1899}
1900
1901ast::Expr const * PolyGenericCalculator::postvisit(
1902 ast::OffsetPackExpr const * expr ) {
1903 ast::StructInstType const * type = expr->type;
1904
1905 // Pull offset back from generated type information.
1906 if ( findGeneric( expr->location, type ) ) {
1907 return new ast::NameExpr( expr->location,
1908 offsetofName( Mangle::mangleType( type ) ) );
1909 }
1910
1911 std::string offsetName = offsetofName( Mangle::mangleType( type ) );
1912 // Use the already generated offsets for this type.
1913 if ( knownOffsets.contains( offsetName ) ) {
1914 return new ast::NameExpr( expr->location, offsetName );
1915 }
1916
1917 knownOffsets.insert( offsetName );
1918
1919 // Build initializer list for offset array.
1920 ast::vector<ast::Init> inits;
1921 for ( ast::ptr<ast::Decl> const & member : type->base->members ) {
1922 auto memberDecl = member.as<ast::DeclWithType>();
1923 assertf( memberDecl, "Requesting offset of non-DWT member: %s",
1924 toCString( member ) );
1925 inits.push_back( new ast::SingleInit( expr->location,
1926 new ast::OffsetofExpr( expr->location,
1927 deepCopy( type ),
1928 memberDecl
1929 )
1930 ) );
1931 }
1932
1933 auto offsetArray = makeVar( expr->location, offsetName,
1934 new ast::ArrayType(
1935 makeLayoutType(),
1936 ast::ConstantExpr::from_ulong( expr->location, inits.size() ),
1937 ast::FixedLen,
1938 ast::DynamicDim
1939 ),
1940 new ast::ListInit( expr->location, std::move( inits ) )
1941 );
1942
1943 return new ast::VariableExpr( expr->location, offsetArray );
1944}
1945
1946void PolyGenericCalculator::beginScope() {
1947 knownLayouts.beginScope();
1948 knownOffsets.beginScope();
1949}
1950
1951void PolyGenericCalculator::endScope() {
1952 knownOffsets.endScope();
1953 knownLayouts.endScope();
1954}
1955
1956ast::ObjectDecl * PolyGenericCalculator::makeVar(
1957 CodeLocation const & location, std::string const & name,
1958 ast::Type const * type, ast::Init const * init ) {
1959 ast::ObjectDecl * ret = new ast::ObjectDecl( location, name, type, init );
1960 stmtsToAddBefore.push_back( new ast::DeclStmt( location, ret ) );
1961 return ret;
1962}
1963
1964/// Returns true if any of the otype parameters have a dynamic layout; and
1965/// puts all otype parameters in the output list.
1966bool findGenericParams(
1967 ast::vector<ast::Type> & out,
1968 ast::vector<ast::TypeDecl> const & baseParams,
1969 ast::vector<ast::Expr> const & typeParams ) {
1970 bool hasDynamicLayout = false;
1971
1972 for ( auto pair : group_iterate( baseParams, typeParams ) ) {
1973 auto baseParam = std::get<0>( pair );
1974 auto typeParam = std::get<1>( pair );
1975 if ( !baseParam->isComplete() ) continue;
1976 ast::TypeExpr const * typeExpr = typeParam.as<ast::TypeExpr>();
1977 assertf( typeExpr, "All type parameters should be type expressions." );
1978
1979 ast::Type const * type = typeExpr->type.get();
1980 out.push_back( type );
1981 if ( isPolyType( type ) ) hasDynamicLayout = true;
1982 }
1983
1984 return hasDynamicLayout;
1985}
1986
1987bool PolyGenericCalculator::findGeneric(
1988 CodeLocation const & location, ast::Type const * type ) {
1989 type = replaceTypeInst( type, typeSubs );
1990
1991 if ( auto inst = dynamic_cast<ast::TypeInstType const *>( type ) ) {
1992 // Assumes that getting put in the scopeTypeVars includes having the
1993 // layout variables set.
1994 if ( scopeTypeVars.contains( *inst ) ) {
1995 return true;
1996 }
1997 } else if ( auto inst = dynamic_cast<ast::StructInstType const *>( type ) ) {
1998 // Check if this type already has a layout generated for it.
1999 std::string typeName = Mangle::mangleType( type );
2000 if ( knownLayouts.contains( typeName ) ) return true;
2001
2002 // Check if any type parameters have dynamic layout;
2003 // If none do, this type is (or will be) monomorphized.
2004 ast::vector<ast::Type> sizedParams;
2005 if ( !findGenericParams( sizedParams,
2006 inst->base->params, inst->params ) ) {
2007 return false;
2008 }
2009
2010 // Insert local variables for layout and generate call to layout
2011 // function.
2012 // Done early so as not to interfere with the later addition of
2013 // parameters to the layout call.
2014 knownLayouts.insert( typeName );
2015
2016 int memberCount = inst->base->members.size();
2017 if ( 0 == memberCount ) {
2018 // All empty structures have the same layout (size 1, align 1).
2019 makeVar( location,
2020 sizeofName( typeName ), makeLayoutType(),
2021 new ast::SingleInit( location,
2022 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2023 makeVar( location,
2024 alignofName( typeName ), makeLayoutType(),
2025 new ast::SingleInit( location,
2026 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2027 // Since 0-length arrays are forbidden in C, skip the offset array.
2028 } else {
2029 ast::ObjectDecl const * sizeofVar = makeVar( location,
2030 sizeofName( typeName ), makeLayoutType(), nullptr );
2031 ast::ObjectDecl const * alignofVar = makeVar( location,
2032 alignofName( typeName ), makeLayoutType(), nullptr );
2033 ast::ObjectDecl const * offsetofVar = makeVar( location,
2034 offsetofName( typeName ),
2035 new ast::ArrayType(
2036 makeLayoutType(),
2037 ast::ConstantExpr::from_int( location, memberCount ),
2038 ast::FixedLen,
2039 ast::DynamicDim
2040 ),
2041 nullptr
2042 );
2043
2044 // Generate call to layout function.
2045 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2046 new ast::NameExpr( location, layoutofName( inst->base ) ),
2047 {
2048 new ast::AddressExpr(
2049 new ast::VariableExpr( location, sizeofVar ) ),
2050 new ast::AddressExpr(
2051 new ast::VariableExpr( location, alignofVar ) ),
2052 new ast::VariableExpr( location, offsetofVar ),
2053 } );
2054
2055 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2056
2057 stmtsToAddBefore.emplace_back(
2058 new ast::ExprStmt( location, layoutCall ) );
2059 }
2060
2061 return true;
2062 } else if ( auto inst = dynamic_cast<ast::UnionInstType const *>( type ) ) {
2063 // Check if this type already has a layout generated for it.
2064 std::string typeName = Mangle::mangleType( type );
2065 if ( knownLayouts.contains( typeName ) ) return true;
2066
2067 // Check if any type parameters have dynamic layout;
2068 // If none do, this type is (or will be) monomorphized.
2069 ast::vector<ast::Type> sizedParams;
2070 if ( !findGenericParams( sizedParams,
2071 inst->base->params, inst->params ) ) {
2072 return false;
2073 }
2074
2075 // Insert local variables for layout and generate call to layout
2076 // function.
2077 // Done early so as not to interfere with the later addition of
2078 // parameters to the layout call.
2079 knownLayouts.insert( typeName );
2080
2081 ast::ObjectDecl * sizeofVar = makeVar( location,
2082 sizeofName( typeName ), makeLayoutType() );
2083 ast::ObjectDecl * alignofVar = makeVar( location,
2084 alignofName( typeName ), makeLayoutType() );
2085
2086 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2087 new ast::NameExpr( location, layoutofName( inst->base ) ),
2088 {
2089 new ast::AddressExpr(
2090 new ast::VariableExpr( location, sizeofVar ) ),
2091 new ast::AddressExpr(
2092 new ast::VariableExpr( location, alignofVar ) ),
2093 } );
2094
2095 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2096
2097 stmtsToAddBefore.emplace_back(
2098 new ast::ExprStmt( location, layoutCall ) );
2099
2100 return true;
2101 }
2102 return false;
2103}
2104
2105void PolyGenericCalculator::addSTypeParamsToLayoutCall(
2106 ast::UntypedExpr * layoutCall,
2107 const ast::vector<ast::Type> & otypeParams ) {
2108 CodeLocation const & location = layoutCall->location;
2109 ast::vector<ast::Expr> & args = layoutCall->args;
2110 for ( ast::ptr<ast::Type> const & param : otypeParams ) {
2111 if ( findGeneric( location, param ) ) {
2112 // Push size/align vars for a generic parameter back.
2113 std::string paramName = Mangle::mangleType( param );
2114 args.emplace_back(
2115 new ast::NameExpr( location, sizeofName( paramName ) ) );
2116 args.emplace_back(
2117 new ast::NameExpr( location, alignofName( paramName ) ) );
2118 } else {
2119 args.emplace_back(
2120 new ast::SizeofExpr( location, ast::deepCopy( param ) ) );
2121 args.emplace_back(
2122 new ast::AlignofExpr( location, ast::deepCopy( param ) ) );
2123 }
2124 }
2125}
2126
2127void PolyGenericCalculator::mutateMembers( ast::AggregateDecl * aggr ) {
2128 std::set<std::string> genericParams;
2129 for ( ast::ptr<ast::TypeDecl> const & decl : aggr->params ) {
2130 genericParams.insert( decl->name );
2131 }
2132 for ( ast::ptr<ast::Decl> & decl : aggr->members ) {
2133 auto field = decl.as<ast::ObjectDecl>();
2134 if ( nullptr == field ) continue;
2135
2136 ast::Type const * type = replaceTypeInst( field->type, typeSubs );
2137 auto typeInst = dynamic_cast<ast::TypeInstType const *>( type );
2138 if ( nullptr == typeInst ) continue;
2139
2140 // Do not try to monoporphize generic parameters.
2141 if ( scopeTypeVars.contains( ast::TypeEnvKey( *typeInst ) ) &&
2142 !genericParams.count( typeInst->name ) ) {
2143 // Polymorphic aggregate members should be converted into
2144 // monomorphic members. Using char[size_T] here respects
2145 // the expected sizing rules of an aggregate type.
2146 decl = ast::mutate_field( field, &ast::ObjectDecl::type,
2147 polyToMonoType( field->location, field->type ) );
2148 }
2149 }
2150}
2151
2152ast::Expr const * PolyGenericCalculator::genSizeof(
2153 CodeLocation const & location, ast::Type const * type ) {
2154 if ( auto * array = dynamic_cast<ast::ArrayType const *>( type ) ) {
2155 // Generate calculated size for possibly generic array.
2156 ast::Expr const * sizeofBase = genSizeof( location, array->base );
2157 if ( nullptr == sizeofBase ) return nullptr;
2158 ast::Expr const * dim = array->dimension;
2159 return makeOp( location, "?*?", sizeofBase, dim );
2160 } else if ( findGeneric( location, type ) ) {
2161 // Generate calculated size for generic type.
2162 return new ast::NameExpr( location, sizeofName(
2163 Mangle::mangleType( type ) ) );
2164 } else {
2165 return nullptr;
2166 }
2167}
2168
2169void PolyGenericCalculator::beginTypeScope( ast::Type const * type ) {
2170 GuardScope( scopeTypeVars );
2171 makeTypeVarMap( type, scopeTypeVars );
2172}
2173
2174// --------------------------------------------------------------------------
2175/// Removes unneeded or incorrect type information.
2176/// * Replaces initialization of polymorphic values with alloca.
2177/// * Replaces declaration of dtype/ftype with appropriate void expression.
2178/// * Replaces sizeof expressions of polymorphic types with a variable.
2179/// * Strips fields from generic structure declarations.
2180struct Eraser final :
2181 public ast::WithGuards {
2182 void guardTypeVarMap( ast::Type const * type ) {
2183 GuardScope( scopeTypeVars );
2184 makeTypeVarMap( type, scopeTypeVars );
2185 }
2186
2187 ast::ObjectDecl const * previsit( ast::ObjectDecl const * decl );
2188 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
2189 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
2190 ast::TypedefDecl const * previsit( ast::TypedefDecl const * decl );
2191 ast::StructDecl const * previsit( ast::StructDecl const * decl );
2192 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
2193 void previsit( ast::TypeDecl const * decl );
2194 void previsit( ast::PointerType const * type );
2195 void previsit( ast::FunctionType const * type );
2196public:
2197 TypeVarMap scopeTypeVars;
2198};
2199
2200ast::ObjectDecl const * Eraser::previsit( ast::ObjectDecl const * decl ) {
2201 guardTypeVarMap( decl->type );
2202 return scrubAllTypeVars( decl );
2203}
2204
2205ast::FunctionDecl const * Eraser::previsit( ast::FunctionDecl const * decl ) {
2206 guardTypeVarMap( decl->type );
2207 return scrubAllTypeVars( decl );
2208}
2209
2210ast::FunctionDecl const * Eraser::postvisit( ast::FunctionDecl const * decl ) {
2211 if ( decl->type_params.empty() ) return decl;
2212 auto mutDecl = mutate( decl );
2213 mutDecl->type_params.clear();
2214 return mutDecl;
2215}
2216
2217ast::TypedefDecl const * Eraser::previsit( ast::TypedefDecl const * decl ) {
2218 guardTypeVarMap( decl->base );
2219 return scrubAllTypeVars( decl );
2220}
2221
2222/// Strips the members from a generic aggregate.
2223template<typename node_t>
2224node_t const * stripGenericMembers( node_t const * decl ) {
2225 if ( decl->params.empty() ) return decl;
2226 auto mutDecl = ast::mutate( decl );
2227 mutDecl->members.clear();
2228 return mutDecl;
2229}
2230
2231ast::StructDecl const * Eraser::previsit( ast::StructDecl const * decl ) {
2232 return stripGenericMembers( decl );
2233}
2234
2235ast::UnionDecl const * Eraser::previsit( ast::UnionDecl const * decl ) {
2236 return stripGenericMembers( decl );
2237}
2238
2239void Eraser::previsit( ast::TypeDecl const * decl ) {
2240 addToTypeVarMap( decl, scopeTypeVars );
2241}
2242
2243void Eraser::previsit( ast::PointerType const * type ) {
2244 guardTypeVarMap( type );
2245}
2246
2247void Eraser::previsit( ast::FunctionType const * type ) {
2248 guardTypeVarMap( type );
2249}
2250
2251} // namespace
2252
2253// --------------------------------------------------------------------------
2254void box( ast::TranslationUnit & translationUnit ) {
2255 ast::Pass<LayoutFunctionBuilder>::run( translationUnit );
2256 ast::Pass<CallAdapter>::run( translationUnit );
2257 ast::Pass<DeclAdapter>::run( translationUnit );
2258 ast::Pass<RewireAdapters>::run( translationUnit );
2259 ast::Pass<PolyGenericCalculator>::run( translationUnit );
2260 ast::Pass<Eraser>::run( translationUnit );
2261}
2262
2263} // namespace GenPoly
2264
2265// Local Variables: //
2266// tab-width: 4 //
2267// mode: c++ //
2268// compile-command: "make install" //
2269// End: //
Note: See TracBrowser for help on using the repository browser.