source: src/GenPoly/Box.cpp@ 332e93a

Last change on this file since 332e93a was d84f2ae, checked in by Michael Brooks <mlbrooks@…>, 9 months ago

Fix transpiler-induced unused parameter on layoutof.

  • Property mode set to 100644
File size: 85.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cpp -- Implement polymorphic function calls and types.
8//
9// Author : Andrew Beach
10// Created On : Thr Oct 6 13:39:00 2022
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Dec 14 17:42:17 2023
13// Update Count : 7
14//
15
16#include "Box.hpp"
17
18#include "AST/Decl.hpp" // for Decl, FunctionDecl, ...
19#include "AST/Expr.hpp" // for AlignofExpr, ConstantExpr, ...
20#include "AST/Init.hpp" // for Init, SingleInit
21#include "AST/Inspect.hpp" // for getFunctionName
22#include "AST/Pass.hpp" // for Pass, WithDeclsToAdd, ...
23#include "AST/Stmt.hpp" // for CompoundStmt, ExprStmt, ...
24#include "AST/Vector.hpp" // for vector
25#include "AST/GenericSubstitution.hpp" // for genericSubstitution
26#include "CodeGen/OperatorTable.hpp" // for isAssignment
27#include "Common/Iterate.hpp" // for group_iterate
28#include "Common/ScopedMap.hpp" // for ScopedMap
29#include "Common/ToString.hpp" // for toCString
30#include "Common/UniqueName.hpp" // for UniqueName
31#include "GenPoly/FindFunction.hpp" // for findFunction
32#include "GenPoly/GenPoly.hpp" // for getFunctionType, isPolyType, ...
33#include "GenPoly/Lvalue.hpp" // for generalizedLvalue
34#include "GenPoly/ScopedSet.hpp" // for ScopedSet
35#include "GenPoly/ScrubTypeVars.hpp" // for scrubTypeVars, scrubAllTypeVars
36#include "ResolvExpr/Unify.hpp" // for typesCompatible
37#include "SymTab/Mangler.hpp" // for mangle, mangleType
38
39namespace GenPoly {
40
41namespace {
42
43/// The layout type is used to represent sizes, alignments and offsets.
44const ast::Type * getLayoutType( const ast::TranslationUnit & transUnit ) {
45 assert( transUnit.global.sizeType.get() );
46 return transUnit.global.sizeType;
47}
48
49/// Fixed version of layout type (just adding a 'C' in C++ style).
50const ast::Type * getLayoutCType( const ast::TranslationUnit & transUnit ) {
51 // Hack for optimization: don't want to clone every time, but don't want
52 // to hardcode a global-translation-unit assumption here either. So
53 // cache it: will be fast if there is a single translation unit, but
54 // still correct otherwise.
55 static ast::ptr<ast::Type> lastLayoutType = nullptr;
56 static ast::ptr<ast::Type> lastLayoutCType = nullptr;
57 const ast::Type * curLayoutType = getLayoutType( transUnit );
58 if (lastLayoutType != curLayoutType ) {
59 lastLayoutCType = ast::deepCopy( curLayoutType );
60 add_qualifiers(
61 lastLayoutCType, ast::CV::Qualifiers{ ast::CV::Const } );
62 }
63 return lastLayoutCType;
64}
65
66// --------------------------------------------------------------------------
67/// Adds layout-generation functions to polymorphic types.
68struct LayoutFunctionBuilder final :
69 public ast::WithConstTranslationUnit,
70 public ast::WithDeclsToAdd,
71 public ast::WithShortCircuiting,
72 public ast::WithVisitorRef<LayoutFunctionBuilder> {
73 void previsit( ast::StructDecl const * decl );
74 void previsit( ast::UnionDecl const * decl );
75};
76
77/// Get all sized type declarations; those that affect a layout function.
78ast::vector<ast::TypeDecl> takeSizedParams(
79 ast::vector<ast::TypeDecl> const & decls ) {
80 ast::vector<ast::TypeDecl> sizedParams;
81 for ( ast::ptr<ast::TypeDecl> const & decl : decls ) {
82 if ( decl->isComplete() ) {
83 sizedParams.emplace_back( decl );
84 }
85 }
86 return sizedParams;
87}
88
89/// Adds parameters for otype size and alignment to a function type.
90void addSTypeParams(
91 ast::vector<ast::DeclWithType> & params,
92 ast::vector<ast::TypeDecl> const & sizedParams,
93 const ast::TranslationUnit & transUnit ) {
94 for ( ast::ptr<ast::TypeDecl> const & sizedParam : sizedParams ) {
95 ast::TypeInstType inst( sizedParam );
96 std::string paramName = Mangle::mangleType( &inst );
97 auto sizeofParam = new ast::ObjectDecl(
98 sizedParam->location,
99 sizeofName( paramName ),
100 getLayoutCType( transUnit )
101 );
102 sizeofParam->attributes.push_back( new ast::Attribute( "unused" ) );
103 params.emplace_back( sizeofParam );
104 auto alignofParam = new ast::ObjectDecl(
105 sizedParam->location,
106 alignofName( paramName ),
107 getLayoutCType( transUnit )
108 );
109 alignofParam->attributes.push_back( new ast::Attribute( "unused" ) );
110 params.emplace_back( alignofParam );
111 }
112}
113
114ast::Type * getLayoutOutType( const ast::TranslationUnit & transUnit ) {
115 return new ast::PointerType( getLayoutType( transUnit ) );
116}
117
118struct LayoutData {
119 ast::FunctionDecl * function;
120 ast::ObjectDecl * sizeofParam;
121 ast::ObjectDecl * alignofParam;
122 ast::ObjectDecl * offsetofParam;
123};
124
125LayoutData buildLayoutFunction(
126 CodeLocation const & location, ast::AggregateDecl const * aggr,
127 ast::vector<ast::TypeDecl> const & sizedParams,
128 bool isInFunction, bool isStruct,
129 const ast::TranslationUnit & transUnit ) {
130 ast::ObjectDecl * sizeParam = new ast::ObjectDecl(
131 location,
132 sizeofName( aggr->name ),
133 getLayoutOutType( transUnit )
134 );
135 ast::ObjectDecl * alignParam = new ast::ObjectDecl(
136 location,
137 alignofName( aggr->name ),
138 getLayoutOutType( transUnit )
139 );
140 ast::ObjectDecl * offsetParam = nullptr;
141 ast::vector<ast::DeclWithType> params = { sizeParam, alignParam };
142 if ( isStruct ) {
143 offsetParam = new ast::ObjectDecl(
144 location,
145 offsetofName( aggr->name ),
146 getLayoutOutType( transUnit )
147 );
148 params.push_back( offsetParam );
149 }
150 addSTypeParams( params, sizedParams, transUnit );
151
152 // Routines at global scope marked "static" to prevent multiple
153 // definitions is separate translation units because each unit generates
154 // copies of the default routines for each aggregate.
155 ast::FunctionDecl * layoutDecl = new ast::FunctionDecl(
156 location,
157 layoutofName( aggr ),
158 {}, // forall
159 {}, // assertions
160 std::move( params ),
161 {}, // returns
162 new ast::CompoundStmt( location ),
163 isInFunction ? ast::Storage::Classes() : ast::Storage::Static,
164 ast::Linkage::AutoGen,
165 {}, // attrs
166 ast::Function::Inline,
167 ast::FixedArgs
168 );
169 layoutDecl->fixUniqueId();
170 return LayoutData{ layoutDecl, sizeParam, alignParam, offsetParam };
171}
172
173/// Makes a binary operation.
174ast::Expr * makeOp( CodeLocation const & location, std::string const & name,
175 ast::Expr const * lhs, ast::Expr const * rhs ) {
176 return new ast::UntypedExpr( location,
177 new ast::NameExpr( location, name ), { lhs, rhs } );
178}
179
180/// Make a binary operation and wrap it in a statement.
181ast::Stmt * makeOpStmt( CodeLocation const & location, std::string const & name,
182 ast::Expr const * lhs, ast::Expr const * rhs ) {
183 return new ast::ExprStmt( location, makeOp( location, name, lhs, rhs ) );
184}
185
186/// Returns the dereference of a local pointer variable.
187ast::Expr * derefVar(
188 CodeLocation const & location, ast::ObjectDecl const * var ) {
189 return ast::UntypedExpr::createDeref( location,
190 new ast::VariableExpr( location, var ) );
191}
192
193/// Makes an if-statement with a single-expression then and no else.
194ast::Stmt * makeCond( CodeLocation const & location,
195 ast::Expr const * cond, ast::Expr const * thenPart ) {
196 return new ast::IfStmt( location,
197 cond, new ast::ExprStmt( location, thenPart ), nullptr );
198}
199
200/// Makes a statement that aligns lhs to rhs (rhs should be an integer
201/// power of two).
202ast::Stmt * makeAlignTo( CodeLocation const & location,
203 ast::Expr const * lhs, ast::Expr const * rhs ) {
204 // Check that the lhs is zeroed out to the level of rhs.
205 ast::Expr * ifCond = makeOp( location, "?&?", lhs,
206 makeOp( location, "?-?", rhs,
207 ast::ConstantExpr::from_ulong( location, 1 ) ) );
208 // If not aligned, increment to alignment.
209 ast::Expr * ifExpr = makeOp( location, "?+=?", ast::deepCopy( lhs ),
210 makeOp( location, "?-?", ast::deepCopy( rhs ),
211 ast::deepCopy( ifCond ) ) );
212 return makeCond( location, ifCond, ifExpr );
213}
214
215/// Makes a statement that assigns rhs to lhs if lhs < rhs.
216ast::Stmt * makeAssignMax( CodeLocation const & location,
217 ast::Expr const * lhs, ast::Expr const * rhs ) {
218 return makeCond( location,
219 makeOp( location, "?<?", ast::deepCopy( lhs ), ast::deepCopy( rhs ) ),
220 makeOp( location, "?=?", lhs, rhs ) );
221}
222
223void LayoutFunctionBuilder::previsit( ast::StructDecl const * decl ) {
224 // Do not generate layout function for empty tag structures.
225 visit_children = false;
226 if ( decl->members.empty() ) return;
227
228 // Get parameters that can change layout, exiting early if none.
229 ast::vector<ast::TypeDecl> sizedParams =
230 takeSizedParams( decl->params );
231 if ( sizedParams.empty() ) return;
232
233 CodeLocation const & location = decl->location;
234
235 // Build layout function signature.
236 LayoutData layout = buildLayoutFunction(
237 location, decl, sizedParams, isInFunction(), true, transUnit() );
238 ast::FunctionDecl * layoutDecl = layout.function;
239 // Also return these or extract them from the parameter list?
240 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
241 ast::ObjectDecl const * alignofParam = layout.alignofParam;
242 ast::ObjectDecl const * offsetofParam = layout.offsetofParam;
243 assert( nullptr != layout.offsetofParam );
244
245 // Calculate structure layout in function body.
246 // Initialize size and alignment to 0 and 1
247 // (Will have at least one member to update size).
248 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
249 kids.emplace_back( makeOpStmt( location, "?=?",
250 derefVar( location, sizeofParam ),
251 ast::ConstantExpr::from_ulong( location, 0 )
252 ) );
253 kids.emplace_back( makeOpStmt( location, "?=?",
254 derefVar( location, alignofParam ),
255 ast::ConstantExpr::from_ulong( location, 1 )
256 ) );
257 // TODO: Polymorphic types will be out of the struct declaration scope.
258 // This breaks invariants until it is corrected later.
259 for ( auto const & member : enumerate( decl->members ) ) {
260 auto dwt = member.val.strict_as<ast::DeclWithType>();
261 ast::Type const * memberType = dwt->get_type();
262
263 if ( 0 < member.idx ) {
264 // Make sure all later members have padding to align them.
265 kids.emplace_back( makeAlignTo( location,
266 derefVar( location, sizeofParam ),
267 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
268 ) );
269 }
270
271 // Place current size in the current offset index.
272 kids.emplace_back( makeOpStmt( location, "?=?",
273 makeOp( location, "?[?]",
274 new ast::VariableExpr( location, offsetofParam ),
275 ast::ConstantExpr::from_ulong( location, member.idx ) ),
276 derefVar( location, sizeofParam ) ) );
277
278 // Add member size to current size.
279 kids.emplace_back( makeOpStmt( location, "?+=?",
280 derefVar( location, sizeofParam ),
281 new ast::SizeofExpr( location, ast::deepCopy( memberType ) ) ) );
282
283 // Take max of member alignment and global alignment.
284 // (As align is always 2^n, this will always be a multiple of both.)
285 kids.emplace_back( makeAssignMax( location,
286 derefVar( location, alignofParam ),
287 new ast::AlignofExpr( location, ast::deepCopy( memberType ) ) ) );
288 }
289 // Make sure the type is end-padded to a multiple of its alignment.
290 kids.emplace_back( makeAlignTo( location,
291 derefVar( location, sizeofParam ),
292 derefVar( location, alignofParam ) ) );
293
294 declsToAddAfter.emplace_back( layoutDecl );
295}
296
297void LayoutFunctionBuilder::previsit( ast::UnionDecl const * decl ) {
298 visit_children = false;
299 // Do not generate layout function for empty tag unions.
300 if ( decl->members.empty() ) return;
301
302 // Get parameters that can change layout, exiting early if none.
303 ast::vector<ast::TypeDecl> sizedParams =
304 takeSizedParams( decl->params );
305 if ( sizedParams.empty() ) return;
306
307 CodeLocation const & location = decl->location;
308
309 // Build layout function signature.
310 LayoutData layout = buildLayoutFunction(
311 location, decl, sizedParams, isInFunction(), false, transUnit() );
312 ast::FunctionDecl * layoutDecl = layout.function;
313 // Also return these or extract them from the parameter list?
314 ast::ObjectDecl const * sizeofParam = layout.sizeofParam;
315 ast::ObjectDecl const * alignofParam = layout.alignofParam;
316 assert( nullptr == layout.offsetofParam );
317
318 // Calculate union layout in function body.
319 // Both are simply the maximum for union (actually align is always the
320 // LCM, but with powers of two that is also the maximum).
321 auto & kids = layoutDecl->stmts.get_and_mutate()->kids;
322 kids.emplace_back( makeOpStmt( location,
323 "?=?", derefVar( location, sizeofParam ),
324 ast::ConstantExpr::from_ulong( location, 1 )
325 ) );
326 kids.emplace_back( makeOpStmt( location,
327 "?=?", derefVar( location, alignofParam ),
328 ast::ConstantExpr::from_ulong( location, 1 )
329 ) );
330 // TODO: Polymorphic types will be out of the union declaration scope.
331 // This breaks invariants until it is corrected later.
332 for ( auto const & member : decl->members ) {
333 auto dwt = member.strict_as<ast::DeclWithType>();
334 ast::Type const * memberType = dwt->get_type();
335
336 // Take max member size and global size.
337 kids.emplace_back( makeAssignMax( location,
338 derefVar( location, sizeofParam ),
339 new ast::SizeofExpr( location, ast::deepCopy( memberType ) )
340 ) );
341
342 // Take max of member alignment and global alignment.
343 kids.emplace_back( makeAssignMax( location,
344 derefVar( location, alignofParam ),
345 new ast::AlignofExpr( location, ast::deepCopy( memberType ) )
346 ) );
347 }
348 kids.emplace_back( makeAlignTo( location,
349 derefVar( location, sizeofParam ),
350 derefVar( location, alignofParam ) ) );
351
352 declsToAddAfter.emplace_back( layoutDecl );
353}
354
355// --------------------------------------------------------------------------
356/// Application expression transformer.
357/// * Replaces polymorphic return types with out-parameters.
358/// * Replaces call to polymorphic functions with adapter calls which handles
359/// dynamic arguments and return values.
360/// * Adds appropriate type variables to the function calls.
361struct CallAdapter final :
362 public ast::WithConstTypeSubstitution,
363 public ast::WithGuards,
364 public ast::WithShortCircuiting,
365 public ast::WithStmtsToAdd,
366 public ast::WithVisitorRef<CallAdapter> {
367 CallAdapter();
368
369 void previsit( ast::Decl const * decl );
370 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
371 void previsit( ast::TypeDecl const * decl );
372 void previsit( ast::CommaExpr const * expr );
373 ast::Expr const * postvisit( ast::ApplicationExpr const * expr );
374 ast::Expr const * postvisit( ast::UntypedExpr const * expr );
375 void previsit( ast::AddressExpr const * expr );
376 ast::Expr const * postvisit( ast::AddressExpr const * expr );
377 ast::ReturnStmt const * previsit( ast::ReturnStmt const * stmt );
378
379 void beginScope();
380 void endScope();
381private:
382 // Many helpers here use a mutable ApplicationExpr as an in/out parameter
383 // instead of using the return value, to save on mutates and free up the
384 // return value.
385
386 /// Passes extra layout arguments for sized polymorphic type parameters.
387 void passTypeVars(
388 ast::ApplicationExpr * expr,
389 ast::vector<ast::Expr> & extraArgs,
390 ast::FunctionType const * funcType );
391 /// Wraps a function application with a new temporary for the
392 /// out-parameter return value.
393 ast::Expr const * addRetParam(
394 ast::ApplicationExpr * expr, ast::Type const * retType );
395 /// Wraps a function application returning a polymorphic type with a new
396 /// temporary for the out-parameter return value.
397 ast::Expr const * addDynRetParam(
398 ast::ApplicationExpr * expr, ast::Type const * polyType );
399 /// Modify a call so it passes the function through the correct adapter.
400 ast::Expr const * applyAdapter(
401 ast::ApplicationExpr * expr,
402 ast::FunctionType const * function );
403 /// Convert a single argument into its boxed form to pass the parameter.
404 void boxParam( ast::ptr<ast::Expr> & arg,
405 ast::Type const * formal, TypeVarMap const & exprTyVars );
406 /// Box every argument from arg forward, matching the functionType
407 /// parameter list. arg should point into expr's argument list.
408 void boxParams(
409 ast::ApplicationExpr * expr,
410 ast::Type const * polyRetType,
411 ast::FunctionType const * function,
412 const TypeVarMap & typeVars );
413 /// Adds the inferred parameters derived from the assertions of the
414 /// expression to the call.
415 void addInferredParams(
416 ast::ApplicationExpr * expr,
417 ast::vector<ast::Expr> & extraArgs,
418 ast::FunctionType const * functionType,
419 const TypeVarMap & typeVars );
420 /// Stores assignment operators from assertion list in
421 /// local map of assignment operations.
422 void passAdapters(
423 ast::ApplicationExpr * expr,
424 ast::FunctionType const * type,
425 const TypeVarMap & typeVars );
426 /// Create an adapter function based on the type of the adaptee and the
427 /// real type with the type substitutions applied.
428 ast::FunctionDecl * makeAdapter(
429 ast::FunctionType const * adaptee,
430 ast::FunctionType const * realType,
431 std::string const & mangleName,
432 TypeVarMap const & typeVars,
433 CodeLocation const & location ) const;
434 /// Replaces intrinsic operator functions with their arithmetic desugaring.
435 ast::Expr const * handleIntrinsics( ast::ApplicationExpr const * );
436 /// Inserts a new temporary variable into the current scope with an
437 /// auto-generated name.
438 ast::ObjectDecl * makeTemporary(
439 CodeLocation const & location, ast::Type const * type );
440
441 TypeVarMap scopeTypeVars;
442 ScopedMap< std::string, ast::DeclWithType const * > adapters;
443 std::map< ast::ApplicationExpr const *, ast::Expr const * > retVals;
444 ast::DeclWithType const * retval;
445 UniqueName tmpNamer;
446};
447
448/// Replaces a polymorphic type with its concrete equivalant under the
449/// current environment (returns itself if concrete).
450/// If `doClone` is set to false, will not clone interior types
451ast::Type const * replaceWithConcrete(
452 ast::Type const * type,
453 ast::TypeSubstitution const & typeSubs,
454 bool doCopy = true );
455
456/// Replaces all the type parameters of a generic type with their
457/// concrete equivalents under the current environment.
458void replaceParametersWithConcrete(
459 ast::vector<ast::Expr> & params,
460 ast::TypeSubstitution const & typeSubs ) {
461 for ( ast::ptr<ast::Expr> & paramExpr : params ) {
462 ast::TypeExpr const * param = paramExpr.as<ast::TypeExpr>();
463 assertf( param, "Aggregate parameters should be type expressions." );
464 paramExpr = ast::mutate_field( param, &ast::TypeExpr::type,
465 replaceWithConcrete( param->type.get(), typeSubs, false ) );
466 }
467}
468
469ast::Type const * replaceWithConcrete(
470 ast::Type const * type,
471 ast::TypeSubstitution const & typeSubs,
472 bool doCopy ) {
473 if ( auto instType = dynamic_cast<ast::TypeInstType const *>( type ) ) {
474 ast::Type const * concrete = typeSubs.lookup( instType );
475 return ( nullptr != concrete ) ? concrete : instType;
476 } else if ( auto structType =
477 dynamic_cast<ast::StructInstType const *>( type ) ) {
478 ast::StructInstType * newType =
479 doCopy ? ast::deepCopy( structType ) : ast::mutate( structType );
480 replaceParametersWithConcrete( newType->params, typeSubs );
481 return newType;
482 } else if ( auto unionType =
483 dynamic_cast<ast::UnionInstType const *>( type ) ) {
484 ast::UnionInstType * newType =
485 doCopy ? ast::deepCopy( unionType ) : ast::mutate( unionType );
486 replaceParametersWithConcrete( newType->params, typeSubs );
487 return newType;
488 } else {
489 return type;
490 }
491}
492
493std::string makePolyMonoSuffix(
494 ast::FunctionType const * function,
495 TypeVarMap const & typeVars ) {
496 // If the return type or a parameter type involved polymorphic types,
497 // then the adapter will need to take those polymorphic types as pointers.
498 // Therefore, there can be two different functions with the same mangled
499 // name, so we need to further mangle the names.
500 std::stringstream name;
501 for ( auto ret : function->returns ) {
502 name << ( isPolyType( ret, typeVars ) ? 'P' : 'M' );
503 }
504 name << '_';
505 for ( auto arg : function->params ) {
506 name << ( isPolyType( arg, typeVars ) ? 'P' : 'M' );
507 }
508 return name.str();
509}
510
511std::string mangleAdapterName(
512 ast::FunctionType const * function,
513 TypeVarMap const & typeVars ) {
514 return Mangle::mangle( function, {} )
515 + makePolyMonoSuffix( function, typeVars );
516}
517
518std::string makeAdapterName( std::string const & mangleName ) {
519 return "_adapter" + mangleName;
520}
521
522void makeRetParam( ast::FunctionType * type ) {
523 ast::ptr<ast::Type> & retParam = type->returns.front();
524
525 // Make a new parameter that is a pointer to the type of the old return value.
526 retParam = new ast::PointerType( retParam.get() );
527 type->params.emplace( type->params.begin(), retParam );
528
529 // We don't need the return value any more.
530 type->returns.clear();
531}
532
533ast::FunctionType * makeAdapterType(
534 ast::FunctionType const * adaptee,
535 TypeVarMap const & typeVars ) {
536 assertf( ast::FixedArgs == adaptee->isVarArgs,
537 "Cannot adapt a varadic function, should have been checked." );
538 ast::FunctionType * adapter = ast::deepCopy( adaptee );
539 if ( isDynRet( adapter, typeVars ) ) {
540 makeRetParam( adapter );
541 }
542 adapter->params.emplace( adapter->params.begin(),
543 new ast::PointerType( new ast::FunctionType( ast::VariableArgs ) )
544 );
545 return adapter;
546}
547
548CallAdapter::CallAdapter() : tmpNamer( "_temp" ) {}
549
550void CallAdapter::previsit( ast::Decl const * ) {
551 // Prevent type declaration information from leaking out.
552 GuardScope( scopeTypeVars );
553}
554
555ast::FunctionDecl const * CallAdapter::previsit( ast::FunctionDecl const * decl ) {
556 // Prevent type declaration information from leaking out.
557 GuardScope( scopeTypeVars );
558
559 if ( nullptr == decl->stmts ) {
560 return decl;
561 }
562
563 GuardValue( retval );
564
565 // Process polymorphic return value.
566 retval = nullptr;
567 ast::FunctionType const * type = decl->type;
568 if ( isDynRet( type ) && decl->linkage != ast::Linkage::C ) {
569 retval = decl->returns.front();
570
571 // Give names to unnamed return values.
572 if ( "" == retval->name ) {
573 auto mutRet = ast::mutate( retval );
574 mutRet->name = "_retparam";
575 mutRet->linkage = ast::Linkage::C;
576 retval = mutRet;
577 decl = ast::mutate_field_index( decl,
578 &ast::FunctionDecl::returns, 0, mutRet );
579 }
580 }
581
582 // The formal_usage/expr_id values may be off if we get them from the
583 // type, trying the declaration instead.
584 makeTypeVarMap( type, scopeTypeVars );
585
586 // Get all needed adapters from the call. We will forward them.
587 ast::vector<ast::FunctionType> functions;
588 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
589 auto atype = assertion->result.get();
590 findFunction( atype, functions, scopeTypeVars, needsAdapter );
591 }
592
593 for ( ast::ptr<ast::Type> const & arg : type->params ) {
594 findFunction( arg, functions, scopeTypeVars, needsAdapter );
595 }
596
597 for ( auto funcType : functions ) {
598 std::string mangleName = mangleAdapterName( funcType, scopeTypeVars );
599 if ( adapters.contains( mangleName ) ) continue;
600 std::string adapterName = makeAdapterName( mangleName );
601 // NODE: This creates floating nodes, breaking invariants.
602 // This is corrected in the RewireAdapters sub-pass.
603 adapters.insert(
604 mangleName,
605 new ast::ObjectDecl(
606 decl->location,
607 adapterName,
608 new ast::PointerType(
609 makeAdapterType( funcType, scopeTypeVars ) ),
610 nullptr, // init
611 ast::Storage::Classes(),
612 ast::Linkage::C
613 )
614 );
615 }
616
617 return decl;
618}
619
620void CallAdapter::previsit( ast::TypeDecl const * decl ) {
621 addToTypeVarMap( decl, scopeTypeVars );
622}
623
624void CallAdapter::previsit( ast::CommaExpr const * expr ) {
625 // Attempting to find application expressions that were mutated by the
626 // copy constructor passes to use an explicit return variable, so that
627 // the variable can be reused as a parameter to the call rather than
628 // creating a new temporary variable. Previously this step was an
629 // optimization, but with the introduction of tuples and UniqueExprs,
630 // it is necessary to ensure that they use the same variable.
631 // Essentially, looking for pattern:
632 // (x=f(...), x)
633 // To compound the issue, the right side can be *x, etc.
634 // because of lvalue-returning functions
635 if ( auto assign = expr->arg1.as<ast::UntypedExpr>() ) {
636 if ( CodeGen::isAssignment( ast::getFunctionName( assign ) ) ) {
637 assert( 2 == assign->args.size() );
638 if ( auto app = assign->args.back().as<ast::ApplicationExpr>() ) {
639 // First argument is assignable, so it must be an lvalue,
640 // so it should be legal to takes its address.
641 retVals.insert_or_assign( app, assign->args.front() );
642 }
643 }
644 }
645}
646
647ast::Expr const * CallAdapter::postvisit( ast::ApplicationExpr const * expr ) {
648 assert( expr->func->result );
649 ast::FunctionType const * function = getFunctionType( expr->func->result );
650 assertf( function, "ApplicationExpr has non-function type %s",
651 toCString( expr->func->result ) );
652
653 if ( auto newExpr = handleIntrinsics( expr ) ) {
654 return newExpr;
655 }
656
657 ast::ApplicationExpr * mutExpr = ast::mutate( expr );
658 ast::Expr const * ret = expr;
659
660 TypeVarMap exprTypeVars;
661 makeTypeVarMap( function, exprTypeVars );
662 auto dynRetType = isDynRet( function, exprTypeVars );
663
664 // NOTE: addDynRetParam needs to know the actual (generated) return type
665 // so it can make a temporary variable, so pass the result type form the
666 // `expr` `passTypeVars` needs to know the program-text return type ([ex]
667 // the distinction between _conc_T30 and T3(int)) concRetType may not be
668 // a good name in one or both of these places.
669 if ( dynRetType ) {
670 ast::Type const * result = mutExpr->result;
671 ast::Type const * concRetType = result->isVoid() ? nullptr : result;
672 // [Comment from before translation.]
673 // Used to use dynRetType instead of concRetType.
674 ret = addDynRetParam( mutExpr, concRetType );
675 } else if ( needsAdapter( function, scopeTypeVars )
676 && !needsAdapter( function, exprTypeVars ) ) {
677 // Change the application so it calls the adapter rather than the
678 // passed function.
679 ret = applyAdapter( mutExpr, function );
680 }
681
682 ast::vector<ast::Expr> prependArgs;
683 passTypeVars( mutExpr, prependArgs, function );
684 addInferredParams( mutExpr, prependArgs, function, exprTypeVars );
685
686 boxParams( mutExpr, dynRetType, function, exprTypeVars );
687 spliceBegin( mutExpr->args, prependArgs );
688 passAdapters( mutExpr, function, exprTypeVars );
689
690 return ret;
691}
692
693// Get the referent (base type of pointer). Must succeed.
694ast::Type const * getReferentType( ast::ptr<ast::Type> const & type ) {
695 auto pointerType = type.strict_as<ast::PointerType>();
696 assertf( pointerType->base, "getReferentType: pointer base is nullptr." );
697 return pointerType->base.get();
698}
699
700bool isPolyDeref( ast::UntypedExpr const * expr,
701 TypeVarMap const & typeVars,
702 ast::TypeSubstitution const * typeSubs ) {
703 auto name = expr->func.as<ast::NameExpr>();
704 if ( name && "*?" == name->name ) {
705 // It's a deref.
706 // Must look under the * (and strip its ptr-ty) because expr's
707 // result could be ar/ptr-decayed. If expr.inner:T(*)[n], then
708 // expr is a poly deref, even though expr:T*, which is not poly.
709 auto referentType = getReferentType( expr->args.front()->result );
710 return isPolyType( referentType, typeVars, typeSubs );
711 }
712 return false;
713}
714
715ast::Expr const * CallAdapter::postvisit( ast::UntypedExpr const * expr ) {
716 if ( isPolyDeref( expr, scopeTypeVars, typeSubs ) ) {
717 return expr->args.front();
718 }
719 return expr;
720}
721
722void CallAdapter::previsit( ast::AddressExpr const * ) {
723 visit_children = false;
724}
725
726ast::Expr const * CallAdapter::postvisit( ast::AddressExpr const * expr ) {
727 assert( expr->arg->result );
728 assert( !expr->arg->result->isVoid() );
729
730 bool doesNeedAdapter = false;
731 if ( auto un = expr->arg.as<ast::UntypedExpr>() ) {
732 if ( isPolyDeref( un, scopeTypeVars, typeSubs ) ) {
733 if ( auto app = un->args.front().as<ast::ApplicationExpr>() ) {
734 assert( app->func->result );
735 auto function = getFunctionType( app->func->result );
736 assert( function );
737 doesNeedAdapter = needsAdapter( function, scopeTypeVars );
738 }
739 }
740 }
741 // isPolyType check needs to happen before mutating expr arg,
742 // so pull it forward out of the if condition.
743 expr = ast::mutate_field( expr, &ast::AddressExpr::arg,
744 expr->arg->accept( *visitor ) );
745 // But must happen after mutate, since argument might change
746 // (ex. intrinsic *?, ?[?]) re-evaluate above comment.
747 bool polyType = isPolyType( expr->arg->result, scopeTypeVars, typeSubs );
748 if ( polyType || doesNeedAdapter ) {
749 ast::Expr * ret = ast::mutate( expr->arg.get() );
750 ret->result = ast::deepCopy( expr->result );
751 return ret;
752 } else {
753 return expr;
754 }
755}
756
757ast::ReturnStmt const * CallAdapter::previsit( ast::ReturnStmt const * stmt ) {
758 // Since retval is set when the return type is dynamic, this function
759 // should have been converted to void return & out parameter.
760 if ( retval && stmt->expr ) {
761 assert( stmt->expr->result );
762 assert( !stmt->expr->result->isVoid() );
763 return ast::mutate_field( stmt, &ast::ReturnStmt::expr, nullptr );
764 }
765 return stmt;
766}
767
768void CallAdapter::beginScope() {
769 adapters.beginScope();
770}
771
772void CallAdapter::endScope() {
773 adapters.endScope();
774}
775
776/// Find instances of polymorphic type parameters.
777struct PolyFinder {
778 TypeVarMap const & typeVars;
779 bool result = false;
780 PolyFinder( TypeVarMap const & tvs ) : typeVars( tvs ) {}
781
782 void previsit( ast::TypeInstType const * type ) {
783 if ( isPolyType( type, typeVars ) ) result = true;
784 }
785};
786
787/// True if these is an instance of a polymorphic type parameter in the type.
788bool hasPolymorphism( ast::Type const * type, TypeVarMap const & typeVars ) {
789 return ast::Pass<PolyFinder>::read( type, typeVars );
790}
791
792void CallAdapter::passTypeVars(
793 ast::ApplicationExpr * expr,
794 ast::vector<ast::Expr> & extraArgs,
795 ast::FunctionType const * function ) {
796 assert( typeSubs );
797 // Pass size/align for type variables.
798 for ( ast::ptr<ast::TypeInstType> const & typeVar : function->forall ) {
799 if ( !typeVar->base->isComplete() ) continue;
800 ast::Type const * concrete = typeSubs->lookup( typeVar );
801 if ( !concrete ) {
802 // Should this be an assertion?
803 SemanticError( expr->location, "\nunbound type variable %s in application %s",
804 toString( typeSubs ).c_str(), typeVar->typeString().c_str() );
805 }
806 extraArgs.emplace_back(
807 new ast::SizeofExpr( expr->location, ast::deepCopy( concrete ) ) );
808 extraArgs.emplace_back(
809 new ast::AlignofExpr( expr->location, ast::deepCopy( concrete ) ) );
810 }
811}
812
813ast::Expr const * CallAdapter::addRetParam(
814 ast::ApplicationExpr * expr, ast::Type const * retType ) {
815 // Create temporary to hold return value of polymorphic function and
816 // produce that temporary as a result using a comma expression.
817 assert( retType );
818
819 ast::Expr * paramExpr = nullptr;
820 // Try to use existing return value parameter if it exists,
821 // otherwise create a new temporary.
822 if ( retVals.count( expr ) ) {
823 paramExpr = ast::deepCopy( retVals[ expr ] );
824 } else {
825 auto newObj = makeTemporary( expr->location, ast::deepCopy( retType ) );
826 paramExpr = new ast::VariableExpr( expr->location, newObj );
827 }
828 ast::Expr * retExpr = ast::deepCopy( paramExpr );
829
830 // If the type of the temporary is not polpmorphic, box temporary by
831 // taking its address; otherwise the temporary is already boxed and can
832 // be used directly.
833 if ( !isPolyType( paramExpr->result, scopeTypeVars, typeSubs ) ) {
834 paramExpr = new ast::AddressExpr( paramExpr->location, paramExpr );
835 }
836 // Add argument to function call.
837 expr->args.insert( expr->args.begin(), paramExpr );
838 // Build a comma expression to call the function and return a value.
839 ast::CommaExpr * comma = new ast::CommaExpr(
840 expr->location, expr, retExpr );
841 comma->env = expr->env;
842 expr->env = nullptr;
843 return comma;
844}
845
846ast::Expr const * CallAdapter::addDynRetParam(
847 ast::ApplicationExpr * expr, ast::Type const * polyType ) {
848 assert( typeSubs );
849 ast::Type const * concrete = replaceWithConcrete( polyType, *typeSubs );
850 // Add out-parameter for return value.
851 return addRetParam( expr, concrete );
852}
853
854ast::Expr const * CallAdapter::applyAdapter(
855 ast::ApplicationExpr * expr,
856 ast::FunctionType const * function ) {
857 ast::Expr const * ret = expr;
858 if ( isDynRet( function, scopeTypeVars ) ) {
859 ret = addRetParam( expr, function->returns.front() );
860 }
861 std::string mangleName = mangleAdapterName( function, scopeTypeVars );
862 std::string adapterName = makeAdapterName( mangleName );
863
864 // Cast adaptee to `void (*)()`, since it may have any type inside a
865 // polymorphic function.
866 ast::Type const * adapteeType = new ast::PointerType(
867 new ast::FunctionType( ast::VariableArgs ) );
868 expr->args.insert( expr->args.begin(),
869 new ast::CastExpr( expr->location, expr->func, adapteeType ) );
870 // The result field is never set on NameExpr. / Now it is.
871 auto head = new ast::NameExpr( expr->location, adapterName );
872 head->result = ast::deepCopy( adapteeType );
873 expr->func = head;
874
875 return ret;
876}
877
878/// Cast parameters to polymorphic functions so that types are replaced with
879/// `void *` if they are type parameters in the formal type.
880/// This gets rid of warnings from gcc.
881void addCast(
882 ast::ptr<ast::Expr> & actual,
883 ast::Type const * formal,
884 TypeVarMap const & typeVars ) {
885 // Type contains polymorphism, but isn't exactly a polytype, in which
886 // case it has some real actual type (ex. unsigned int) and casting to
887 // `void *` is wrong.
888 if ( hasPolymorphism( formal, typeVars )
889 && !isPolyType( formal, typeVars ) ) {
890 ast::Type const * newType = ast::deepCopy( formal );
891 newType = scrubTypeVars( newType, typeVars );
892 actual = new ast::CastExpr( actual->location, actual, newType );
893 }
894}
895
896void CallAdapter::boxParam( ast::ptr<ast::Expr> & arg,
897 ast::Type const * param, TypeVarMap const & exprTypeVars ) {
898 assertf( arg->result, "arg does not have result: %s", toCString( arg ) );
899 addCast( arg, param, exprTypeVars );
900 if ( !needsBoxing( param, arg->result, exprTypeVars, typeSubs ) ) {
901 return;
902 }
903 CodeLocation const & location = arg->location;
904
905 if ( arg->get_lvalue() ) {
906 // The argument expression may be CFA lvalue, but not C lvalue,
907 // so apply generalizedLvalue transformations.
908 // if ( auto var = dynamic_cast<ast::VariableExpr const *>( arg ) ) {
909 // if ( dynamic_cast<ast::ArrayType const *>( varExpr->var->get_type() ) ){
910 // // temporary hack - don't box arrays, because &arr is not the same as &arr[0]
911 // return;
912 // }
913 // }
914 arg = generalizedLvalue( new ast::AddressExpr( arg->location, arg ) );
915 if ( !ResolvExpr::typesCompatible( param, arg->result ) ) {
916 // Silence warnings by casting boxed parameters when the actually
917 // type does not match up with the formal type.
918 arg = new ast::CastExpr( location, arg, ast::deepCopy( param ) );
919 }
920 } else {
921 // Use type computed in unification to declare boxed variables.
922 ast::ptr<ast::Type> newType = ast::deepCopy( param );
923 if ( typeSubs ) typeSubs->apply( newType );
924 ast::ObjectDecl * newObj = makeTemporary( location, newType );
925 auto assign = ast::UntypedExpr::createCall( location, "?=?", {
926 new ast::VariableExpr( location, newObj ),
927 arg,
928 } );
929 stmtsToAddBefore.push_back( new ast::ExprStmt( location, assign ) );
930 arg = new ast::AddressExpr(
931 new ast::VariableExpr( location, newObj ) );
932 }
933}
934
935void CallAdapter::boxParams(
936 ast::ApplicationExpr * expr,
937 ast::Type const * polyRetType,
938 ast::FunctionType const * function,
939 const TypeVarMap & typeVars ) {
940 // Start at the beginning, but the return argument may have been added.
941 auto arg = expr->args.begin();
942 if ( polyRetType ) ++arg;
943
944 for ( auto param : function->params ) {
945 assertf( arg != expr->args.end(),
946 "boxParams: missing argument for param %s to %s in %s",
947 toCString( param ), toCString( function ), toCString( expr ) );
948 boxParam( *arg, param, typeVars );
949 ++arg;
950 }
951}
952
953void CallAdapter::addInferredParams(
954 ast::ApplicationExpr * expr,
955 ast::vector<ast::Expr> & extraArgs,
956 ast::FunctionType const * functionType,
957 TypeVarMap const & typeVars ) {
958 for ( auto assertion : functionType->assertions ) {
959 auto inferParam = expr->inferred.inferParams().find(
960 assertion->var->uniqueId );
961 assertf( inferParam != expr->inferred.inferParams().end(),
962 "addInferredParams missing inferred parameter: %s in: %s",
963 toCString( assertion ), toCString( expr ) );
964 ast::ptr<ast::Expr> newExpr = ast::deepCopy( inferParam->second.expr );
965 boxParam( newExpr, assertion->result, typeVars );
966 extraArgs.emplace_back( newExpr.release() );
967 }
968}
969
970/// Modifies the ApplicationExpr to accept adapter functions for its
971/// assertion and parameters, declares the required adapters.
972void CallAdapter::passAdapters(
973 ast::ApplicationExpr * expr,
974 ast::FunctionType const * type,
975 const TypeVarMap & exprTypeVars ) {
976 // Collect a list of function types passed as parameters or implicit
977 // parameters (assertions).
978 ast::vector<ast::Type> const & paramList = type->params;
979 ast::vector<ast::FunctionType> functions;
980
981 for ( ast::ptr<ast::VariableExpr> const & assertion : type->assertions ) {
982 findFunction( assertion->result, functions, exprTypeVars, needsAdapter );
983 }
984 for ( ast::ptr<ast::Type> const & arg : paramList ) {
985 findFunction( arg, functions, exprTypeVars, needsAdapter );
986 }
987
988 // Parameter function types for which an appropriate adapter has been
989 // generated. We cannot use the types after applying substitutions,
990 // since two different parameter types may be unified to the same type.
991 std::set<std::string> adaptersDone;
992
993 CodeLocation const & location = expr->location;
994
995 for ( ast::ptr<ast::FunctionType> const & funcType : functions ) {
996 std::string mangleName = Mangle::mangle( funcType );
997
998 // Only attempt to create an adapter or pass one as a parameter if we
999 // haven't already done so for this pre-substitution parameter
1000 // function type.
1001 // The second part of the result if is if the element was inserted.
1002 if ( !adaptersDone.insert( mangleName ).second ) continue;
1003
1004 // Apply substitution to type variables to figure out what the
1005 // adapter's type should look like. (Copy to make the release safe.)
1006 assert( typeSubs );
1007 auto result = typeSubs->apply( ast::deepCopy( funcType ) );
1008 ast::FunctionType * realType = ast::mutate( result.node.release() );
1009 mangleName = Mangle::mangle( realType );
1010 mangleName += makePolyMonoSuffix( funcType, exprTypeVars );
1011
1012 // Check if the adapter has already been created, or has to be.
1013 using AdapterIter = decltype(adapters)::iterator;
1014 AdapterIter adapter = adapters.find( mangleName );
1015 if ( adapter == adapters.end() ) {
1016 ast::FunctionDecl * newAdapter = makeAdapter(
1017 funcType, realType, mangleName, exprTypeVars, location );
1018 std::pair<AdapterIter, bool> answer =
1019 adapters.insert( mangleName, newAdapter );
1020 adapter = answer.first;
1021 stmtsToAddBefore.push_back(
1022 new ast::DeclStmt( location, newAdapter ) );
1023 }
1024 assert( adapter != adapters.end() );
1025
1026 // Add the approprate adapter as a parameter.
1027 expr->args.insert( expr->args.begin(),
1028 new ast::VariableExpr( location, adapter->second ) );
1029 }
1030}
1031
1032// Parameter and argument may be used wrong around here.
1033ast::Expr * makeAdapterArg(
1034 ast::DeclWithType const * param,
1035 ast::Type const * arg,
1036 ast::Type const * realParam,
1037 TypeVarMap const & typeVars,
1038 CodeLocation const & location ) {
1039 assert( param );
1040 assert( arg );
1041 assert( realParam );
1042 if ( isPolyType( realParam, typeVars ) && !isPolyType( arg ) ) {
1043 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref(
1044 location,
1045 new ast::CastExpr( location,
1046 new ast::VariableExpr( location, param ),
1047 new ast::PointerType( ast::deepCopy( arg ) )
1048 )
1049 );
1050 deref->result = ast::deepCopy( arg );
1051 return deref;
1052 }
1053 return new ast::VariableExpr( location, param );
1054}
1055
1056// This seems to be one of the problematic functions.
1057void addAdapterParams(
1058 ast::ApplicationExpr * adaptee,
1059 ast::vector<ast::Type>::const_iterator arg,
1060 ast::vector<ast::DeclWithType>::iterator param,
1061 ast::vector<ast::DeclWithType>::iterator paramEnd,
1062 ast::vector<ast::Type>::const_iterator realParam,
1063 TypeVarMap const & typeVars,
1064 CodeLocation const & location ) {
1065 UniqueName paramNamer( "_p" );
1066 for ( ; param != paramEnd ; ++param, ++arg, ++realParam ) {
1067 if ( "" == (*param)->name ) {
1068 auto mutParam = (*param).get_and_mutate();
1069 mutParam->name = paramNamer.newName();
1070 mutParam->linkage = ast::Linkage::C;
1071 }
1072 adaptee->args.push_back(
1073 makeAdapterArg( *param, *arg, *realParam, typeVars, location ) );
1074 }
1075}
1076
1077ast::FunctionDecl * CallAdapter::makeAdapter(
1078 ast::FunctionType const * adaptee,
1079 ast::FunctionType const * realType,
1080 std::string const & mangleName,
1081 TypeVarMap const & typeVars,
1082 CodeLocation const & location ) const {
1083 ast::FunctionType * adapterType = makeAdapterType( adaptee, typeVars );
1084 adapterType = ast::mutate( scrubTypeVars( adapterType, typeVars ) );
1085
1086 // Some of these names will be overwritten, but it gives a default.
1087 UniqueName pNamer( "_param" );
1088 UniqueName rNamer( "_ret" );
1089
1090 bool first = true;
1091
1092 ast::FunctionDecl * adapterDecl = new ast::FunctionDecl( location,
1093 makeAdapterName( mangleName ),
1094 {}, // forall
1095 {}, // assertions
1096 map_range<ast::vector<ast::DeclWithType>>( adapterType->params,
1097 [&pNamer, &location, &first]( ast::ptr<ast::Type> const & param ) {
1098 // [Trying to make the generated code match exactly more often.]
1099 if ( first ) {
1100 first = false;
1101 return new ast::ObjectDecl( location, "_adaptee", param );
1102 }
1103 return new ast::ObjectDecl( location, pNamer.newName(), param );
1104 } ),
1105 map_range<ast::vector<ast::DeclWithType>>( adapterType->returns,
1106 [&rNamer, &location]( ast::ptr<ast::Type> const & retval ) {
1107 return new ast::ObjectDecl( location, rNamer.newName(), retval );
1108 } ),
1109 nullptr, // stmts
1110 {}, // storage
1111 ast::Linkage::C
1112 );
1113
1114 ast::DeclWithType * adapteeDecl =
1115 adapterDecl->params.front().get_and_mutate();
1116 adapteeDecl->name = "_adaptee";
1117
1118 // Do not carry over attributes to real type parameters/return values.
1119 auto mutRealType = ast::mutate( realType );
1120 for ( ast::ptr<ast::Type> & decl : mutRealType->params ) {
1121 if ( decl->attributes.empty() ) continue;
1122 auto mut = ast::mutate( decl.get() );
1123 mut->attributes.clear();
1124 decl = mut;
1125 }
1126 for ( ast::ptr<ast::Type> & decl : mutRealType->returns ) {
1127 if ( decl->attributes.empty() ) continue;
1128 auto mut = ast::mutate( decl.get() );
1129 mut->attributes.clear();
1130 decl = mut;
1131 }
1132 realType = mutRealType;
1133
1134 ast::ApplicationExpr * adapteeApp = new ast::ApplicationExpr( location,
1135 new ast::CastExpr( location,
1136 new ast::VariableExpr( location, adapteeDecl ),
1137 new ast::PointerType( realType )
1138 )
1139 );
1140
1141 for ( auto const & [assertArg, assertParam, assertReal] : group_iterate(
1142 realType->assertions, adapterType->assertions, adaptee->assertions ) ) {
1143 adapteeApp->args.push_back( makeAdapterArg(
1144 assertParam->var, assertArg->var->get_type(),
1145 assertReal->var->get_type(), typeVars, location
1146 ) );
1147 }
1148
1149 ast::vector<ast::Type>::const_iterator
1150 arg = realType->params.begin(),
1151 param = adapterType->params.begin(),
1152 realParam = adaptee->params.begin();
1153 ast::vector<ast::DeclWithType>::iterator
1154 paramDecl = adapterDecl->params.begin();
1155 // Skip adaptee parameter in the adapter type.
1156 ++param;
1157 ++paramDecl;
1158
1159 ast::Stmt * bodyStmt;
1160 // Returns void/nothing.
1161 if ( realType->returns.empty() ) {
1162 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1163 realParam, typeVars, location );
1164 bodyStmt = new ast::ExprStmt( location, adapteeApp );
1165 // Returns a polymorphic type.
1166 } else if ( isDynType( adaptee->returns.front(), typeVars ) ) {
1167 ast::UntypedExpr * assign = new ast::UntypedExpr( location,
1168 new ast::NameExpr( location, "?=?" ) );
1169 ast::UntypedExpr * deref = ast::UntypedExpr::createDeref( location,
1170 new ast::CastExpr( location,
1171 new ast::VariableExpr( location, *paramDecl++ ),
1172 new ast::PointerType(
1173 ast::deepCopy( realType->returns.front() ) ) ) );
1174 assign->args.push_back( deref );
1175 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1176 realParam, typeVars, location );
1177 assign->args.push_back( adapteeApp );
1178 bodyStmt = new ast::ExprStmt( location, assign );
1179 // Adapter for a function that returns a monomorphic value.
1180 } else {
1181 addAdapterParams( adapteeApp, arg, paramDecl, adapterDecl->params.end(),
1182 realParam, typeVars, location );
1183 bodyStmt = new ast::ReturnStmt( location, adapteeApp );
1184 }
1185
1186 adapterDecl->stmts = new ast::CompoundStmt( location, { bodyStmt } );
1187 return adapterDecl;
1188}
1189
1190ast::Expr const * makeIncrDecrExpr(
1191 CodeLocation const & location,
1192 ast::ApplicationExpr const * expr,
1193 ast::Type const * polyType,
1194 bool isIncr ) {
1195 ast::NameExpr * opExpr =
1196 new ast::NameExpr( location, isIncr ? "?+=?" : "?-=?" );
1197 ast::UntypedExpr * addAssign = new ast::UntypedExpr( location, opExpr );
1198 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1199 addAssign->args.push_back( address->arg );
1200 } else {
1201 addAssign->args.push_back( expr->args.front() );
1202 }
1203 addAssign->args.push_back( new ast::NameExpr( location,
1204 sizeofName( Mangle::mangleType( polyType ) ) ) );
1205 addAssign->result = ast::deepCopy( expr->result );
1206 addAssign->env = expr->env ? expr->env : addAssign->env;
1207 return addAssign;
1208}
1209
1210/// Handles intrinsic functions for postvisit ApplicationExpr.
1211ast::Expr const * CallAdapter::handleIntrinsics(
1212 ast::ApplicationExpr const * expr ) {
1213 auto varExpr = expr->func.as<ast::VariableExpr>();
1214 if ( !varExpr || varExpr->var->linkage != ast::Linkage::Intrinsic ) {
1215 return nullptr;
1216 }
1217 std::string const & varName = varExpr->var->name;
1218
1219 // Index Intrinsic:
1220 if ( "?[?]" == varName ) {
1221 assert( expr->result );
1222 assert( 2 == expr->args.size() );
1223
1224 ast::ptr<ast::Type> const & argType1 = expr->args.front()->result;
1225 ast::ptr<ast::Type> const & argType2 = expr->args.back()->result;
1226
1227 // Two Cases: a[i] with first arg poly ptr, i[a] with second arg poly ptr
1228 bool isPoly1 = isPolyPtr( argType1, scopeTypeVars, typeSubs ) != nullptr;
1229 bool isPoly2 = isPolyPtr( argType2, scopeTypeVars, typeSubs ) != nullptr;
1230
1231 // If neither argument is a polymorphic pointer, do nothing.
1232 if ( !isPoly1 && !isPoly2 ) {
1233 return expr;
1234 }
1235 // The arguments cannot both be polymorphic pointers.
1236 assert( !isPoly1 || !isPoly2 );
1237 // (So exactly one of the arguments is a polymorphic pointer.)
1238
1239 CodeLocation const & location = expr->location;
1240 CodeLocation const & location1 = expr->args.front()->location;
1241 CodeLocation const & location2 = expr->args.back()->location;
1242
1243 ast::UntypedExpr * ret = new ast::UntypedExpr( location,
1244 new ast::NameExpr( location, "?+?" ) );
1245 if ( isPoly1 ) {
1246 auto referentType = getReferentType( argType1 );
1247 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1248 expr->args.back(),
1249 new ast::SizeofExpr( location1, deepCopy( referentType ) ),
1250 } );
1251 ret->args.push_back( expr->args.front() );
1252 ret->args.push_back( multiply );
1253 } else {
1254 assert( isPoly2 );
1255 auto referentType = getReferentType( argType2 );
1256 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1257 expr->args.front(),
1258 new ast::SizeofExpr( location2, deepCopy( referentType ) ),
1259 } );
1260 ret->args.push_back( multiply );
1261 ret->args.push_back( expr->args.back() );
1262 }
1263 ret->result = ast::deepCopy( expr->result );
1264 ret->env = expr->env ? expr->env : ret->env;
1265 return ret;
1266 // Dereference Intrinsic:
1267 } else if ( "*?" == varName ) {
1268 assert( expr->result );
1269 assert( 1 == expr->args.size() );
1270
1271 // If this isn't for a poly type, then do nothing.
1272 auto referentType = getReferentType( expr->args.front()->result );
1273 if ( !isPolyType( referentType, scopeTypeVars, typeSubs ) ) {
1274 return expr;
1275 }
1276
1277 // Remove dereference from polymorphic types since they are boxed.
1278 ast::Expr * ret = ast::deepCopy( expr->args.front() );
1279 // Fix expression type to remove pointer.
1280 ret->result = expr->result;
1281 // apply pointer decay
1282 if (auto retArTy = ret->result.as<ast::ArrayType>()) {
1283 ret->result = new ast::PointerType( retArTy->base );
1284 }
1285 ret->env = expr->env ? expr->env : ret->env;
1286 return ret;
1287 // Post-Increment/Decrement Intrinsics:
1288 } else if ( "?++" == varName || "?--" == varName ) {
1289 assert( expr->result );
1290 assert( 1 == expr->args.size() );
1291
1292 ast::Type const * baseType =
1293 isPolyType( expr->result, scopeTypeVars, typeSubs );
1294 if ( nullptr == baseType ) {
1295 return expr;
1296 }
1297 ast::Type * tempType = ast::deepCopy( expr->result );
1298 if ( typeSubs ) {
1299 auto result = typeSubs->apply( tempType );
1300 tempType = ast::mutate( result.node.release() );
1301 }
1302 CodeLocation const & location = expr->location;
1303 ast::ObjectDecl * newObj = makeTemporary( location, tempType );
1304 ast::VariableExpr * tempExpr =
1305 new ast::VariableExpr( location, newObj );
1306 ast::UntypedExpr * assignExpr = new ast::UntypedExpr( location,
1307 new ast::NameExpr( location, "?=?" ) );
1308 assignExpr->args.push_back( ast::deepCopy( tempExpr ) );
1309 if ( auto address = expr->args.front().as<ast::AddressExpr>() ) {
1310 assignExpr->args.push_back( ast::deepCopy( address->arg ) );
1311 } else {
1312 assignExpr->args.push_back( ast::deepCopy( expr->args.front() ) );
1313 }
1314 return new ast::CommaExpr( location,
1315 new ast::CommaExpr( location,
1316 assignExpr,
1317 makeIncrDecrExpr( location, expr, baseType, "?++" == varName )
1318 ),
1319 tempExpr
1320 );
1321 // Pre-Increment/Decrement Intrinsics:
1322 } else if ( "++?" == varName || "--?" == varName ) {
1323 assert( expr->result );
1324 assert( 1 == expr->args.size() );
1325
1326 ast::Type const * baseType =
1327 isPolyType( expr->result, scopeTypeVars, typeSubs );
1328 if ( nullptr == baseType ) {
1329 return expr;
1330 }
1331 return makeIncrDecrExpr(
1332 expr->location, expr, baseType, "++?" == varName );
1333 // Addition and Subtraction Intrinsics:
1334 } else if ( "?+?" == varName || "?-?" == varName ) {
1335 assert( expr->result );
1336 assert( 2 == expr->args.size() );
1337
1338 ast::ptr<ast::Type> const & argType1 = expr->args.front()->result;
1339 ast::ptr<ast::Type> const & argType2 = expr->args.back()->result;
1340
1341 bool isPoly1 = isPolyPtr( argType1, scopeTypeVars, typeSubs ) != nullptr;
1342 bool isPoly2 = isPolyPtr( argType2, scopeTypeVars, typeSubs ) != nullptr;
1343
1344 CodeLocation const & location = expr->location;
1345 CodeLocation const & location1 = expr->args.front()->location;
1346 CodeLocation const & location2 = expr->args.back()->location;
1347 // LHS - RHS -> (LHS - RHS) / sizeof(LHS)
1348 if ( isPoly1 && isPoly2 ) {
1349 // There are only subtraction intrinsics for this pattern.
1350 assert( "?-?" == varName );
1351 auto referentType = getReferentType( argType1 );
1352 auto divide = ast::UntypedExpr::createCall( location, "?/?", {
1353 expr,
1354 new ast::SizeofExpr( location, deepCopy( referentType ) ),
1355 } );
1356 if ( expr->env ) divide->env = expr->env;
1357 return divide;
1358 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1359 } else if ( isPoly1 ) {
1360 auto referentType = getReferentType( argType1 );
1361 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1362 expr->args.back(),
1363 new ast::SizeofExpr( location1, deepCopy( referentType ) ),
1364 } );
1365 return ast::mutate_field_index(
1366 expr, &ast::ApplicationExpr::args, 1, multiply );
1367 // LHS op RHS -> (LHS * sizeof(RHS)) op RHS
1368 } else if ( isPoly2 ) {
1369 auto referentType = getReferentType( argType2 );
1370 auto multiply = ast::UntypedExpr::createCall( location1, "?*?", {
1371 expr->args.front(),
1372 new ast::SizeofExpr( location2, deepCopy( referentType ) ),
1373 } );
1374 return ast::mutate_field_index(
1375 expr, &ast::ApplicationExpr::args, 0, multiply );
1376 }
1377 // Addition and Subtraction Relative Assignment Intrinsics:
1378 } else if ( "?+=?" == varName || "?-=?" == varName ) {
1379 assert( expr->result );
1380 assert( 2 == expr->args.size() );
1381
1382 CodeLocation const & location1 = expr->args.front()->location;
1383 CodeLocation const & location2 = expr->args.back()->location;
1384 auto baseType = isPolyPtr( expr->result, scopeTypeVars, typeSubs );
1385 // LHS op RHS -> LHS op (RHS * sizeof(LHS))
1386 if ( baseType ) {
1387 auto multiply = ast::UntypedExpr::createCall( location2, "?*?", {
1388 expr->args.back(),
1389 new ast::SizeofExpr( location1, deepCopy( baseType ) ),
1390 } );
1391 return ast::mutate_field_index(
1392 expr, &ast::ApplicationExpr::args, 1, multiply );
1393 }
1394 }
1395 return expr;
1396}
1397
1398ast::ObjectDecl * CallAdapter::makeTemporary(
1399 CodeLocation const & location, ast::Type const * type ) {
1400 auto newObj = new ast::ObjectDecl( location, tmpNamer.newName(), type );
1401 stmtsToAddBefore.push_back( new ast::DeclStmt( location, newObj ) );
1402 return newObj;
1403}
1404
1405// --------------------------------------------------------------------------
1406/// Modifies declarations to accept implicit parameters.
1407/// * Move polymorphic returns in function types to pointer-type parameters.
1408/// * Adds type size and assertion parameters to parameter lists.
1409struct DeclAdapter final :
1410 public ast::WithConstTranslationUnit {
1411 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
1412 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
1413private:
1414 void addAdapters( ast::FunctionDecl * decl, TypeVarMap & localTypeVars );
1415};
1416
1417ast::ObjectDecl * makeObj(
1418 CodeLocation const & location, std::string const & name,
1419 const ast::TranslationUnit & transUnit ) {
1420 // The size/align parameters may be unused, so add the unused attribute.
1421 return new ast::ObjectDecl( location, name,
1422 getLayoutCType( transUnit ),
1423 nullptr, ast::Storage::Classes(), ast::Linkage::C, nullptr,
1424 { new ast::Attribute( "unused" ) } );
1425}
1426
1427/// A modified and specialized version of ast::add_qualifiers.
1428ast::Type const * addConst( ast::Type const * type ) {
1429 ast::CV::Qualifiers cvq = { ast::CV::Const };
1430 if ( ( type->qualifiers & cvq ) != 0 ) return type;
1431 auto mutType = ast::mutate( type );
1432 mutType->qualifiers |= cvq;
1433 return mutType;
1434}
1435
1436ast::FunctionDecl const * DeclAdapter::previsit( ast::FunctionDecl const * decl ) {
1437 TypeVarMap localTypeVars;
1438 makeTypeVarMap( decl, localTypeVars );
1439
1440 auto mutDecl = mutate( decl );
1441
1442 // Move polymorphic return type to parameter list.
1443 if ( isDynRet( mutDecl->type ) ) {
1444 auto ret = strict_dynamic_cast<ast::ObjectDecl *>(
1445 mutDecl->returns.front().get_and_mutate() );
1446 ret->set_type( new ast::PointerType( ret->type ) );
1447 mutDecl->params.insert( mutDecl->params.begin(), ret );
1448 mutDecl->returns.erase( mutDecl->returns.begin() );
1449 ret->init = nullptr;
1450 }
1451
1452 // Add size/align and assertions for type parameters to parameter list.
1453 ast::vector<ast::DeclWithType> inferredParams;
1454 ast::vector<ast::DeclWithType> layoutParams;
1455 for ( ast::ptr<ast::TypeDecl> & typeParam : mutDecl->type_params ) {
1456 auto mutParam = mutate( typeParam.get() );
1457 // Add all size and alignment parameters to parameter list.
1458 if ( mutParam->isComplete() ) {
1459 ast::TypeInstType paramType( mutParam );
1460 std::string paramName = Mangle::mangleType( &paramType );
1461
1462 auto sizeParam = makeObj(
1463 typeParam->location, sizeofName( paramName ), transUnit() );
1464 layoutParams.emplace_back( sizeParam );
1465
1466 auto alignParam = makeObj(
1467 typeParam->location, alignofName( paramName ), transUnit() );
1468 layoutParams.emplace_back( alignParam );
1469 }
1470 // Assertions should be stored in the main list.
1471 assert( mutParam->assertions.empty() );
1472 typeParam = mutParam;
1473 }
1474 for ( ast::ptr<ast::DeclWithType> & assert : mutDecl->assertions ) {
1475 ast::DeclWithType * mutAssert = ast::mutate( assert.get() );
1476 // Assertion parameters may not be used in body,
1477 // pass along with unused attribute.
1478 mutAssert->attributes.push_back( new ast::Attribute( "unused" ) );
1479 mutAssert->set_type( addConst( mutAssert->get_type() ) );
1480 inferredParams.emplace_back( mutAssert );
1481 }
1482 mutDecl->assertions.clear();
1483
1484 // Prepend each argument group. From last group to first. addAdapters
1485 // does do the same, it just does it itself and see all other parameters.
1486 spliceBegin( mutDecl->params, inferredParams );
1487 spliceBegin( mutDecl->params, layoutParams );
1488 addAdapters( mutDecl, localTypeVars );
1489
1490 // Now have to update the type to match the declaration.
1491 ast::FunctionType * type = new ast::FunctionType(
1492 mutDecl->type->isVarArgs, mutDecl->type->qualifiers );
1493 // The forall clauses don't match until Eraser. The assertions are empty.
1494 for ( auto param : mutDecl->params ) {
1495 type->params.emplace_back( param->get_type() );
1496 }
1497 for ( auto retval : mutDecl->returns ) {
1498 type->returns.emplace_back( retval->get_type() );
1499 }
1500 mutDecl->type = type;
1501
1502 return mutDecl;
1503}
1504
1505ast::FunctionDecl const * DeclAdapter::postvisit(
1506 ast::FunctionDecl const * decl ) {
1507 ast::FunctionDecl * mutDecl = mutate( decl );
1508 if ( !mutDecl->returns.empty() && mutDecl->stmts
1509 // Intrinsic functions won't be using the _retval so no need to
1510 // generate it.
1511 && mutDecl->linkage != ast::Linkage::Intrinsic
1512 // Remove check for prefix once thunks properly use ctor/dtors.
1513 && !isPrefix( mutDecl->name, "_thunk" )
1514 && !isPrefix( mutDecl->name, "_adapter" ) ) {
1515 assert( 1 == mutDecl->returns.size() );
1516 ast::DeclWithType const * retval = mutDecl->returns.front();
1517 if ( "" == retval->name ) {
1518 retval = ast::mutate_field(
1519 retval, &ast::DeclWithType::name, "_retval" );
1520 mutDecl->returns.front() = retval;
1521 }
1522 auto stmts = mutDecl->stmts.get_and_mutate();
1523 stmts->kids.push_front( new ast::DeclStmt( retval->location, retval ) );
1524 ast::DeclWithType * newRet = ast::deepCopy( retval );
1525 mutDecl->returns.front() = newRet;
1526 }
1527 // Errors should have been caught by this point, remove initializers from
1528 // parameters to allow correct codegen of default arguments.
1529 for ( ast::ptr<ast::DeclWithType> & param : mutDecl->params ) {
1530 if ( auto obj = param.as<ast::ObjectDecl>() ) {
1531 param = ast::mutate_field( obj, &ast::ObjectDecl::init, nullptr );
1532 }
1533 }
1534 return mutDecl;
1535}
1536
1537void DeclAdapter::addAdapters(
1538 ast::FunctionDecl * mutDecl, TypeVarMap & localTypeVars ) {
1539 ast::vector<ast::FunctionType> functions;
1540 for ( ast::ptr<ast::DeclWithType> & arg : mutDecl->params ) {
1541 ast::Type const * type = arg->get_type();
1542 type = findAndReplaceFunction( type, functions, localTypeVars, needsAdapter );
1543 arg.get_and_mutate()->set_type( type );
1544 }
1545 std::set<std::string> adaptersDone;
1546 for ( ast::ptr<ast::FunctionType> const & func : functions ) {
1547 std::string mangleName = mangleAdapterName( func, localTypeVars );
1548 if ( adaptersDone.find( mangleName ) != adaptersDone.end() ) {
1549 continue;
1550 }
1551 std::string adapterName = makeAdapterName( mangleName );
1552 // The adapter may not actually be used, so make sure it has unused.
1553 mutDecl->params.insert( mutDecl->params.begin(), new ast::ObjectDecl(
1554 mutDecl->location, adapterName,
1555 new ast::PointerType( makeAdapterType( func, localTypeVars ) ),
1556 nullptr, {}, {}, nullptr,
1557 { new ast::Attribute( "unused" ) } ) );
1558 adaptersDone.insert( adaptersDone.begin(), mangleName );
1559 }
1560}
1561
1562// --------------------------------------------------------------------------
1563/// Corrects the floating nodes created in CallAdapter.
1564struct RewireAdapters final : public ast::WithGuards {
1565 ScopedMap<std::string, ast::ObjectDecl const *> adapters;
1566 void beginScope() { adapters.beginScope(); }
1567 void endScope() { adapters.endScope(); }
1568 void previsit( ast::FunctionDecl const * decl );
1569 ast::VariableExpr const * previsit( ast::VariableExpr const * expr );
1570};
1571
1572void RewireAdapters::previsit( ast::FunctionDecl const * decl ) {
1573 GuardScope( adapters );
1574 for ( ast::ptr<ast::DeclWithType> const & param : decl->params ) {
1575 if ( auto objectParam = param.as<ast::ObjectDecl>() ) {
1576 adapters.insert( objectParam->name, objectParam );
1577 }
1578 }
1579}
1580
1581ast::VariableExpr const * RewireAdapters::previsit(
1582 ast::VariableExpr const * expr ) {
1583 // If the node is not floating, we can skip.
1584 if ( expr->var->isManaged() ) return expr;
1585 auto it = adapters.find( expr->var->name );
1586 assertf( it != adapters.end(), "Could not correct floating node." );
1587 return ast::mutate_field( expr, &ast::VariableExpr::var, it->second );
1588}
1589
1590// --------------------------------------------------------------------------
1591/// Inserts code to access polymorphic layout inforation.
1592/// * Replaces member and size/alignment/offsetof expressions on polymorphic
1593/// generic types with calculated expressions.
1594/// * Replaces member expressions for polymorphic types with calculated
1595/// add-field-offset-and-dereference.
1596/// * Calculates polymorphic offsetof expressions from offset array.
1597/// * Inserts dynamic calculation of polymorphic type layouts where needed.
1598struct PolyGenericCalculator final :
1599 public ast::WithConstTranslationUnit,
1600 public ast::WithConstTypeSubstitution,
1601 public ast::WithDeclsToAdd,
1602 public ast::WithGuards,
1603 public ast::WithStmtsToAdd,
1604 public ast::WithVisitorRef<PolyGenericCalculator> {
1605 PolyGenericCalculator();
1606
1607 void previsit( ast::FunctionDecl const * decl );
1608 void previsit( ast::TypedefDecl const * decl );
1609 void previsit( ast::TypeDecl const * decl );
1610 ast::Decl const * postvisit( ast::TypeDecl const * decl );
1611 ast::StructDecl const * previsit( ast::StructDecl const * decl );
1612 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
1613 ast::DeclStmt const * previsit( ast::DeclStmt const * stmt );
1614 ast::Expr const * postvisit( ast::MemberExpr const * expr );
1615 void previsit( ast::AddressExpr const * expr );
1616 ast::Expr const * postvisit( ast::AddressExpr const * expr );
1617 ast::Expr const * postvisit( ast::SizeofExpr const * expr );
1618 ast::Expr const * postvisit( ast::AlignofExpr const * expr );
1619 ast::Expr const * postvisit( ast::OffsetofExpr const * expr );
1620 ast::Expr const * postvisit( ast::OffsetPackExpr const * expr );
1621
1622 void beginScope();
1623 void endScope();
1624private:
1625 /// Makes a new variable in the current scope with the given name,
1626 /// type and optional initializer.
1627 ast::ObjectDecl * makeVar(
1628 CodeLocation const & location, std::string const & name,
1629 ast::Type const * type, ast::Init const * init = nullptr );
1630 /// Returns true if the type has a dynamic layout;
1631 /// such a layout will be stored in appropriately-named local variables
1632 /// when the function returns.
1633 bool findGeneric( CodeLocation const & location, ast::Type const * );
1634 /// Adds type parameters to the layout call; will generate the
1635 /// appropriate parameters if needed.
1636 void addSTypeParamsToLayoutCall(
1637 ast::UntypedExpr * layoutCall,
1638 const ast::vector<ast::Type> & otypeParams );
1639 /// Change the type of generic aggregate members to char[].
1640 void mutateMembers( ast::AggregateDecl * aggr );
1641 /// Returns the calculated sizeof/alignof expressions for type, or
1642 /// nullptr for use C size/alignof().
1643 ast::Expr const * genSizeof( CodeLocation const &, ast::Type const * );
1644 ast::Expr const * genAlignof( CodeLocation const &, ast::Type const * );
1645 /// Enters a new scope for type-variables,
1646 /// adding the type variables from the provided type.
1647 void beginTypeScope( ast::Type const * );
1648
1649 /// The type variables and polymorphic parameters currently in scope.
1650 TypeVarMap scopeTypeVars;
1651 /// Set of generic type layouts known in the current scope,
1652 /// indexed by sizeofName.
1653 ScopedSet<std::string> knownLayouts;
1654 /// Set of non-generic types for which the offset array exists in the
1655 /// current scope, indexed by offsetofName.
1656 ScopedSet<std::string> knownOffsets;
1657 /// Namer for VLA (variable length array) buffers.
1658 UniqueName bufNamer;
1659 /// If the argument of an AddressExpr is MemberExpr, it is stored here.
1660 ast::MemberExpr const * addrMember = nullptr;
1661};
1662
1663PolyGenericCalculator::PolyGenericCalculator() :
1664 knownLayouts(), knownOffsets(), bufNamer( "_buf" )
1665{}
1666
1667/// Recursive section of polyToMonoType.
1668ast::Type * polyToMonoTypeRec( CodeLocation const & loc,
1669 ast::Type const * ty ) {
1670 if ( auto aTy = dynamic_cast<ast::ArrayType const *>( ty ) ) {
1671 auto monoBase = polyToMonoTypeRec( loc, aTy->base );
1672 return new ast::ArrayType( monoBase, aTy->dimension,
1673 aTy->isVarLen, aTy->isStatic, aTy->qualifiers );
1674 } else {
1675 auto charType = new ast::BasicType( ast::BasicKind::Char );
1676 auto size = new ast::NameExpr( loc,
1677 sizeofName( Mangle::mangleType( ty ) ) );
1678 return new ast::ArrayType( charType, size,
1679 ast::VariableLen, ast::DynamicDim, ast::CV::Qualifiers() );
1680 }
1681}
1682
1683/// Converts polymorphic type into a suitable monomorphic representation.
1684/// Simple cases: T -> __attribute__(( aligned(8) )) char[sizeof_T];
1685/// Array cases: T[eOut][eIn] -> __attribute__(( aligned(8) )) char[eOut][eIn][sizeof_T];
1686ast::Type * polyToMonoType( CodeLocation const & loc, ast::Type const * ty ) {
1687 auto ret = polyToMonoTypeRec( loc, ty );
1688 ret->attributes.emplace_back( new ast::Attribute( "aligned",
1689 { ast::ConstantExpr::from_int( loc, 8 ) } ) );
1690 return ret;
1691}
1692
1693void PolyGenericCalculator::previsit( ast::FunctionDecl const * decl ) {
1694 GuardScope( *this );
1695 beginTypeScope( decl->type );
1696}
1697
1698void PolyGenericCalculator::previsit( ast::TypedefDecl const * decl ) {
1699 assertf( false, "All typedef declarations should be removed." );
1700 beginTypeScope( decl->base );
1701}
1702
1703void PolyGenericCalculator::previsit( ast::TypeDecl const * decl ) {
1704 addToTypeVarMap( decl, scopeTypeVars );
1705}
1706
1707ast::Decl const * PolyGenericCalculator::postvisit(
1708 ast::TypeDecl const * decl ) {
1709 ast::Type const * base = decl->base;
1710 if ( nullptr == base ) return decl;
1711
1712 // Add size/align variables for opaque type declarations.
1713 ast::TypeInstType inst( decl->name, decl );
1714 std::string typeName = Mangle::mangleType( &inst );
1715
1716 ast::ObjectDecl * sizeDecl = new ast::ObjectDecl( decl->location,
1717 sizeofName( typeName ), getLayoutCType( transUnit() ),
1718 new ast::SingleInit( decl->location,
1719 new ast::SizeofExpr( decl->location, deepCopy( base ) )
1720 )
1721 );
1722 ast::ObjectDecl * alignDecl = new ast::ObjectDecl( decl->location,
1723 alignofName( typeName ), getLayoutCType( transUnit() ),
1724 new ast::SingleInit( decl->location,
1725 new ast::AlignofExpr( decl->location, deepCopy( base ) )
1726 )
1727 );
1728
1729 // Ensure that the initializing sizeof/alignof exprs are properly mutated.
1730 sizeDecl->accept( *visitor );
1731 alignDecl->accept( *visitor );
1732
1733 // A little trick to replace this with two declarations.
1734 // Adding after makes sure that there is no conflict with adding stmts.
1735 declsToAddAfter.push_back( alignDecl );
1736 return sizeDecl;
1737}
1738
1739ast::StructDecl const * PolyGenericCalculator::previsit(
1740 ast::StructDecl const * decl ) {
1741 auto mutDecl = mutate( decl );
1742 mutateMembers( mutDecl );
1743 return mutDecl;
1744}
1745
1746ast::UnionDecl const * PolyGenericCalculator::previsit(
1747 ast::UnionDecl const * decl ) {
1748 auto mutDecl = mutate( decl );
1749 mutateMembers( mutDecl );
1750 return mutDecl;
1751}
1752
1753ast::DeclStmt const * PolyGenericCalculator::previsit( ast::DeclStmt const * stmt ) {
1754 ast::ObjectDecl const * decl = stmt->decl.as<ast::ObjectDecl>();
1755 if ( !decl || !findGeneric( decl->location, decl->type ) ) {
1756 return stmt;
1757 }
1758
1759 // Change initialization of a polymorphic value object to allocate via a
1760 // variable-length-array (alloca cannot be safely used in loops).
1761 ast::ObjectDecl * newBuf = new ast::ObjectDecl( decl->location,
1762 bufNamer.newName(),
1763 polyToMonoType( decl->location, decl->type ),
1764 nullptr, {}, ast::Linkage::C
1765 );
1766 stmtsToAddBefore.push_back( new ast::DeclStmt( stmt->location, newBuf ) );
1767
1768 // If the object has a cleanup attribute, the clean-up should be on the
1769 // buffer, not the pointer. [Perhaps this should be lifted?]
1770 auto matchAndMove = [newBuf]( ast::ptr<ast::Attribute> & attr ) {
1771 if ( "cleanup" == attr->name ) {
1772 newBuf->attributes.push_back( attr );
1773 return true;
1774 }
1775 return false;
1776 };
1777
1778 auto mutDecl = mutate( decl );
1779
1780 // Forally, side effects are not safe in this function. But it works.
1781 erase_if( mutDecl->attributes, matchAndMove );
1782
1783 // Change the decl's type.
1784 // Upon finishing the box pass, it shall be void*.
1785 // At this middle-of-box-pass point, that type is T.
1786
1787 // example 1
1788 // before box: T t ;
1789 // before here: char _bufxx [_sizeof_Y1T]; T t = _bufxx;
1790 // after here: char _bufxx [_sizeof_Y1T]; T t = _bufxx; (no change here - non array case)
1791 // after box: char _bufxx [_sizeof_Y1T]; void *t = _bufxx;
1792
1793 // example 2
1794 // before box: T t[42] ;
1795 // before here: char _bufxx[42][_sizeof_Y1T]; T t[42] = _bufxx;
1796 // after here: char _bufxx[42][_sizeof_Y1T]; T t = _bufxx;
1797 // after box: char _bufxx[42][_sizeof_Y1T]; void *t = _bufxx;
1798
1799 // Strip all "array of" wrappers
1800 while ( auto arrayType = dynamic_cast<ast::ArrayType const *>( mutDecl->type.get() ) ) {
1801 mutDecl->type = arrayType->base;
1802 }
1803
1804 mutDecl->init = new ast::SingleInit( decl->location,
1805 new ast::VariableExpr( decl->location, newBuf ) );
1806
1807 return ast::mutate_field( stmt, &ast::DeclStmt::decl, mutDecl );
1808}
1809
1810/// Checks if memberDecl matches the decl from an aggregate.
1811bool isMember( ast::DeclWithType const * memberDecl, ast::Decl const * decl ) {
1812 // No matter the field, if the name is different it is not the same.
1813 if ( memberDecl->name != decl->name ) {
1814 return false;
1815 }
1816
1817 if ( memberDecl->name.empty() ) {
1818 // Plan-9 Field: Match on unique_id.
1819 return ( memberDecl->uniqueId == decl->uniqueId );
1820 }
1821
1822 ast::DeclWithType const * declWithType =
1823 strict_dynamic_cast<ast::DeclWithType const *>( decl );
1824
1825 if ( memberDecl->mangleName.empty() || declWithType->mangleName.empty() ) {
1826 // Tuple-Element Field: Expect neither had mangled name;
1827 // accept match on simple name (like field_2) only.
1828 assert( memberDecl->mangleName.empty() );
1829 assert( declWithType->mangleName.empty() );
1830 return true;
1831 }
1832
1833 // Ordinary Field: Use full name to accommodate overloading.
1834 return ( memberDecl->mangleName == declWithType->mangleName );
1835}
1836
1837/// Finds the member in the base list that matches the given declaration;
1838/// returns its index, or -1 if not present.
1839long findMember( ast::DeclWithType const * memberDecl,
1840 const ast::vector<ast::Decl> & baseDecls ) {
1841 for ( auto const & [index, value] : enumerate( baseDecls ) ) {
1842 if ( isMember( memberDecl, value.get() ) ) {
1843 return index;
1844 }
1845 }
1846 return -1;
1847}
1848
1849/// Returns an index expression into the offset array for a type.
1850ast::Expr * makeOffsetIndex( CodeLocation const & location,
1851 ast::Type const * objectType, long i ) {
1852 std::string name = offsetofName( Mangle::mangleType( objectType ) );
1853 return ast::UntypedExpr::createCall( location, "?[?]", {
1854 new ast::NameExpr( location, name ),
1855 ast::ConstantExpr::from_ulong( location, i ),
1856 } );
1857}
1858
1859ast::Expr const * PolyGenericCalculator::postvisit(
1860 ast::MemberExpr const * expr ) {
1861 // Only mutate member expressions for polymorphic types.
1862 ast::Type const * objectType = hasPolyBase(
1863 expr->aggregate->result, scopeTypeVars
1864 );
1865 if ( !objectType ) return expr;
1866 // Ensure layout for this type is available.
1867 // The boolean result is ignored.
1868 findGeneric( expr->location, objectType );
1869
1870 // Replace member expression with dynamically-computed layout expression.
1871 ast::Expr * newMemberExpr = nullptr;
1872 if ( auto structType = dynamic_cast<ast::StructInstType const *>( objectType ) ) {
1873 long offsetIndex = findMember( expr->member, structType->base->members );
1874 if ( -1 == offsetIndex ) return expr;
1875
1876 // Replace member expression with pointer to struct plus offset.
1877 ast::UntypedExpr * fieldLoc = new ast::UntypedExpr( expr->location,
1878 new ast::NameExpr( expr->location, "?+?" ) );
1879 ast::Expr * aggr = deepCopy( expr->aggregate );
1880 aggr->env = nullptr;
1881 fieldLoc->args.push_back( aggr );
1882 fieldLoc->args.push_back(
1883 makeOffsetIndex( expr->location, objectType, offsetIndex ) );
1884 fieldLoc->result = deepCopy( expr->result );
1885 newMemberExpr = fieldLoc;
1886 // Union members are all at offset zero, so just use the aggregate expr.
1887 } else if ( dynamic_cast<ast::UnionInstType const *>( objectType ) ) {
1888 ast::Expr * aggr = deepCopy( expr->aggregate );
1889 aggr->env = nullptr;
1890 aggr->result = deepCopy( expr->result );
1891 newMemberExpr = aggr;
1892 } else {
1893 return expr;
1894 }
1895 assert( newMemberExpr );
1896
1897 // Must apply the generic substitution to the member type to handle cases
1898 // where the member is a generic parameter subsituted by a known concrete
1899 // type. [ex]
1900 // forall( T ) struct Box { T x; }
1901 // forall( T ) void f() {
1902 // Box( T * ) b; b.x;
1903 // }
1904 // TODO: expr->result should be exactly expr->member->get_type() after
1905 // substitution, so it doesn't seem like it should be necessary to apply
1906 // the substitution manually. For some reason this is not currently the
1907 // case. This requires more investigation.
1908 ast::ptr<ast::Type> memberType = deepCopy( expr->member->get_type() );
1909 ast::TypeSubstitution sub = genericSubstitution( objectType );
1910 sub.apply( memberType );
1911
1912 // Not all members of a polymorphic type are themselves of a polymorphic
1913 // type; in this case the member expression should be wrapped and
1914 // dereferenced to form an lvalue.
1915 if ( !isPolyType( memberType, scopeTypeVars ) ) {
1916 auto ptrCastExpr = new ast::CastExpr( expr->location, newMemberExpr,
1917 new ast::PointerType( memberType ) );
1918 auto derefExpr = ast::UntypedExpr::createDeref( expr->location,
1919 ptrCastExpr );
1920 newMemberExpr = derefExpr;
1921 }
1922
1923 return newMemberExpr;
1924}
1925
1926void PolyGenericCalculator::previsit( ast::AddressExpr const * expr ) {
1927 GuardValue( addrMember ) = expr->arg.as<ast::MemberExpr>();
1928}
1929
1930ast::Expr const * PolyGenericCalculator::postvisit(
1931 ast::AddressExpr const * expr ) {
1932 // arg has to have been a MemberExpr and has been mutated.
1933 if ( nullptr == addrMember || expr->arg == addrMember ) {
1934 return expr;
1935 }
1936 ast::UntypedExpr const * untyped = expr->arg.as<ast::UntypedExpr>();
1937 if ( !untyped || getFunctionName( untyped ) != "?+?" ) {
1938 return expr;
1939 }
1940 // MemberExpr was converted to pointer + offset; and it is not valid C to
1941 // take the address of an addition, so strip away the address-of.
1942 // It also preserves the env value.
1943 return ast::mutate_field( expr->arg.get(), &ast::Expr::env, expr->env );
1944}
1945
1946ast::Expr const * PolyGenericCalculator::postvisit(
1947 ast::SizeofExpr const * expr ) {
1948 ast::Expr const * gen = genSizeof( expr->location, expr->type );
1949 return ( gen ) ? gen : expr;
1950}
1951
1952ast::Expr const * PolyGenericCalculator::postvisit(
1953 ast::AlignofExpr const * expr ) {
1954 ast::Expr const * gen = genAlignof( expr->location, expr->type );
1955 return ( gen ) ? gen : expr;
1956}
1957
1958ast::Expr const * PolyGenericCalculator::postvisit(
1959 ast::OffsetofExpr const * expr ) {
1960 ast::Type const * type = expr->type;
1961 if ( !findGeneric( expr->location, type ) ) return expr;
1962
1963 // Structures replace offsetof expression with an index into offset array.
1964 if ( auto structType = dynamic_cast<ast::StructInstType const *>( type ) ) {
1965 long offsetIndex = findMember( expr->member, structType->base->members );
1966 if ( -1 == offsetIndex ) return expr;
1967
1968 return makeOffsetIndex( expr->location, type, offsetIndex );
1969 // All union members are at offset zero.
1970 } else if ( dynamic_cast<ast::UnionInstType const *>( type ) ) {
1971 return ast::ConstantExpr::from_ulong( expr->location, 0 );
1972 } else {
1973 return expr;
1974 }
1975}
1976
1977ast::Expr const * PolyGenericCalculator::postvisit(
1978 ast::OffsetPackExpr const * expr ) {
1979 ast::StructInstType const * type = expr->type;
1980
1981 // Pull offset back from generated type information.
1982 if ( findGeneric( expr->location, type ) ) {
1983 return new ast::NameExpr( expr->location,
1984 offsetofName( Mangle::mangleType( type ) ) );
1985 }
1986
1987 std::string offsetName = offsetofName( Mangle::mangleType( type ) );
1988 // Use the already generated offsets for this type.
1989 if ( knownOffsets.contains( offsetName ) ) {
1990 return new ast::NameExpr( expr->location, offsetName );
1991 }
1992
1993 knownOffsets.insert( offsetName );
1994
1995 // Build initializer list for offset array.
1996 ast::vector<ast::Init> inits;
1997 for ( ast::ptr<ast::Decl> const & member : type->base->members ) {
1998 auto memberDecl = member.as<ast::DeclWithType>();
1999 assertf( memberDecl, "Requesting offset of non-DWT member: %s",
2000 toCString( member ) );
2001 inits.push_back( new ast::SingleInit( expr->location,
2002 new ast::OffsetofExpr( expr->location,
2003 deepCopy( type ),
2004 memberDecl
2005 )
2006 ) );
2007 }
2008
2009 auto offsetArray = makeVar( expr->location, offsetName,
2010 new ast::ArrayType(
2011 getLayoutType( transUnit() ),
2012 ast::ConstantExpr::from_ulong( expr->location, inits.size() ),
2013 ast::FixedLen,
2014 ast::DynamicDim
2015 ),
2016 new ast::ListInit( expr->location, std::move( inits ) )
2017 );
2018
2019 return new ast::VariableExpr( expr->location, offsetArray );
2020}
2021
2022void PolyGenericCalculator::beginScope() {
2023 knownLayouts.beginScope();
2024 knownOffsets.beginScope();
2025}
2026
2027void PolyGenericCalculator::endScope() {
2028 knownOffsets.endScope();
2029 knownLayouts.endScope();
2030}
2031
2032ast::ObjectDecl * PolyGenericCalculator::makeVar(
2033 CodeLocation const & location, std::string const & name,
2034 ast::Type const * type, ast::Init const * init ) {
2035 ast::ObjectDecl * ret = new ast::ObjectDecl( location, name, type, init );
2036 stmtsToAddBefore.push_back( new ast::DeclStmt( location, ret ) );
2037 return ret;
2038}
2039
2040/// Returns true if any of the otype parameters have a dynamic layout; and
2041/// puts all otype parameters in the output list.
2042bool findGenericParams(
2043 ast::vector<ast::Type> & out,
2044 ast::vector<ast::TypeDecl> const & baseParams,
2045 ast::vector<ast::Expr> const & typeParams ) {
2046 bool hasDynamicLayout = false;
2047
2048 for ( auto const & [baseParam, typeParam] : group_iterate(
2049 baseParams, typeParams ) ) {
2050 if ( !baseParam->isComplete() ) continue;
2051 ast::TypeExpr const * typeExpr = typeParam.as<ast::TypeExpr>();
2052 assertf( typeExpr, "All type parameters should be type expressions." );
2053
2054 ast::Type const * type = typeExpr->type.get();
2055 out.push_back( type );
2056 if ( isPolyType( type ) ) hasDynamicLayout = true;
2057 }
2058
2059 return hasDynamicLayout;
2060}
2061
2062bool PolyGenericCalculator::findGeneric(
2063 CodeLocation const & location, ast::Type const * type ) {
2064 type = replaceTypeInst( type, typeSubs );
2065
2066 if ( auto inst = dynamic_cast<ast::TypeInstType const *>( type ) ) {
2067 // Assumes that getting put in the scopeTypeVars includes having the
2068 // layout variables set.
2069 if ( scopeTypeVars.contains( *inst ) ) {
2070 return true;
2071 }
2072 } else if ( auto inst = dynamic_cast<ast::StructInstType const *>( type ) ) {
2073 // Check if this type already has a layout generated for it.
2074 std::string typeName = Mangle::mangleType( type );
2075 if ( knownLayouts.contains( typeName ) ) return true;
2076
2077 // Check if any type parameters have dynamic layout;
2078 // If none do, this type is (or will be) monomorphized.
2079 ast::vector<ast::Type> sizedParams;
2080 if ( !findGenericParams( sizedParams,
2081 inst->base->params, inst->params ) ) {
2082 return false;
2083 }
2084
2085 // Insert local variables for layout and generate call to layout
2086 // function.
2087 // Done early so as not to interfere with the later addition of
2088 // parameters to the layout call.
2089 knownLayouts.insert( typeName );
2090
2091 int memberCount = inst->base->members.size();
2092 if ( 0 == memberCount ) {
2093 // All empty structures have the same layout (size 1, align 1).
2094 makeVar( location,
2095 sizeofName( typeName ), getLayoutType( transUnit() ),
2096 new ast::SingleInit( location,
2097 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2098 makeVar( location,
2099 alignofName( typeName ), getLayoutType( transUnit() ),
2100 new ast::SingleInit( location,
2101 ast::ConstantExpr::from_ulong( location, 1 ) ) );
2102 // Since 0-length arrays are forbidden in C, skip the offset array.
2103 } else {
2104 ast::ObjectDecl const * sizeofVar = makeVar( location,
2105 sizeofName( typeName ), getLayoutType( transUnit() ), nullptr );
2106 ast::ObjectDecl const * alignofVar = makeVar( location,
2107 alignofName( typeName ), getLayoutType( transUnit() ), nullptr );
2108 ast::ObjectDecl const * offsetofVar = makeVar( location,
2109 offsetofName( typeName ),
2110 new ast::ArrayType(
2111 getLayoutType( transUnit() ),
2112 ast::ConstantExpr::from_int( location, memberCount ),
2113 ast::FixedLen,
2114 ast::DynamicDim
2115 ),
2116 nullptr
2117 );
2118
2119 // Generate call to layout function.
2120 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2121 new ast::NameExpr( location, layoutofName( inst->base ) ),
2122 {
2123 new ast::AddressExpr(
2124 new ast::VariableExpr( location, sizeofVar ) ),
2125 new ast::AddressExpr(
2126 new ast::VariableExpr( location, alignofVar ) ),
2127 new ast::VariableExpr( location, offsetofVar ),
2128 } );
2129
2130 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2131
2132 stmtsToAddBefore.emplace_back(
2133 new ast::ExprStmt( location, layoutCall ) );
2134 }
2135
2136 return true;
2137 } else if ( auto inst = dynamic_cast<ast::UnionInstType const *>( type ) ) {
2138 // Check if this type already has a layout generated for it.
2139 std::string typeName = Mangle::mangleType( type );
2140 if ( knownLayouts.contains( typeName ) ) return true;
2141
2142 // Check if any type parameters have dynamic layout;
2143 // If none do, this type is (or will be) monomorphized.
2144 ast::vector<ast::Type> sizedParams;
2145 if ( !findGenericParams( sizedParams,
2146 inst->base->params, inst->params ) ) {
2147 return false;
2148 }
2149
2150 // Insert local variables for layout and generate call to layout
2151 // function.
2152 // Done early so as not to interfere with the later addition of
2153 // parameters to the layout call.
2154 knownLayouts.insert( typeName );
2155
2156 ast::ObjectDecl * sizeofVar = makeVar( location,
2157 sizeofName( typeName ), getLayoutType( transUnit() ) );
2158 ast::ObjectDecl * alignofVar = makeVar( location,
2159 alignofName( typeName ), getLayoutType( transUnit() ) );
2160
2161 ast::UntypedExpr * layoutCall = new ast::UntypedExpr( location,
2162 new ast::NameExpr( location, layoutofName( inst->base ) ),
2163 {
2164 new ast::AddressExpr(
2165 new ast::VariableExpr( location, sizeofVar ) ),
2166 new ast::AddressExpr(
2167 new ast::VariableExpr( location, alignofVar ) ),
2168 } );
2169
2170 addSTypeParamsToLayoutCall( layoutCall, sizedParams );
2171
2172 stmtsToAddBefore.emplace_back(
2173 new ast::ExprStmt( location, layoutCall ) );
2174
2175 return true;
2176
2177 } else if ( auto inst = dynamic_cast<ast::ArrayType const *>( type ) ) {
2178 return findGeneric( location, inst->base );
2179 }
2180 return false;
2181}
2182
2183void PolyGenericCalculator::addSTypeParamsToLayoutCall(
2184 ast::UntypedExpr * layoutCall,
2185 const ast::vector<ast::Type> & otypeParams ) {
2186 CodeLocation const & location = layoutCall->location;
2187 ast::vector<ast::Expr> & args = layoutCall->args;
2188 for ( ast::ptr<ast::Type> const & param : otypeParams ) {
2189 if ( findGeneric( location, param ) ) {
2190 // Push size/align vars for a generic parameter back.
2191 std::string paramName = Mangle::mangleType( param );
2192 args.emplace_back(
2193 new ast::NameExpr( location, sizeofName( paramName ) ) );
2194 args.emplace_back(
2195 new ast::NameExpr( location, alignofName( paramName ) ) );
2196 } else {
2197 args.emplace_back(
2198 new ast::SizeofExpr( location, ast::deepCopy( param ) ) );
2199 args.emplace_back(
2200 new ast::AlignofExpr( location, ast::deepCopy( param ) ) );
2201 }
2202 }
2203}
2204
2205void PolyGenericCalculator::mutateMembers( ast::AggregateDecl * aggr ) {
2206 std::set<std::string> genericParams;
2207 for ( ast::ptr<ast::TypeDecl> const & decl : aggr->params ) {
2208 genericParams.insert( decl->name );
2209 }
2210 for ( ast::ptr<ast::Decl> & decl : aggr->members ) {
2211 auto field = decl.as<ast::ObjectDecl>();
2212 if ( nullptr == field ) continue;
2213
2214 ast::Type const * type = replaceTypeInst( field->type, typeSubs );
2215 auto typeInst = dynamic_cast<ast::TypeInstType const *>( type );
2216 if ( nullptr == typeInst ) continue;
2217
2218 // Do not try to monoporphize generic parameters.
2219 if ( scopeTypeVars.contains( ast::TypeEnvKey( *typeInst ) ) &&
2220 !genericParams.count( typeInst->name ) ) {
2221 // Polymorphic aggregate members should be converted into
2222 // monomorphic members. Using char[size_T] here respects
2223 // the expected sizing rules of an aggregate type.
2224 decl = ast::mutate_field( field, &ast::ObjectDecl::type,
2225 polyToMonoType( field->location, field->type ) );
2226 }
2227 }
2228}
2229
2230ast::Expr const * PolyGenericCalculator::genSizeof(
2231 CodeLocation const & location, ast::Type const * type ) {
2232 if ( auto * array = dynamic_cast<ast::ArrayType const *>( type ) ) {
2233 // Generate calculated size for possibly generic array.
2234 ast::Expr const * sizeofBase = genSizeof( location, array->base );
2235 if ( nullptr == sizeofBase ) return nullptr;
2236 ast::Expr const * dim = array->dimension;
2237 return makeOp( location, "?*?", sizeofBase, dim );
2238 } else if ( findGeneric( location, type ) ) {
2239 // Generate reference to _sizeof parameter
2240 return new ast::NameExpr( location, sizeofName(
2241 Mangle::mangleType( type ) ) );
2242 } else {
2243 return nullptr;
2244 }
2245}
2246
2247ast::Expr const * PolyGenericCalculator::genAlignof(
2248 CodeLocation const & location, ast::Type const * type ) {
2249 if ( auto * array = dynamic_cast<ast::ArrayType const *>( type ) ) {
2250 // alignof array is alignof element
2251 return genAlignof( location, array->base );
2252 } else if ( findGeneric( location, type ) ) {
2253 // Generate reference to _alignof parameter
2254 return new ast::NameExpr( location, alignofName(
2255 Mangle::mangleType( type ) ) );
2256 } else {
2257 return nullptr;
2258 }
2259}
2260
2261void PolyGenericCalculator::beginTypeScope( ast::Type const * type ) {
2262 GuardScope( scopeTypeVars );
2263 makeTypeVarMap( type, scopeTypeVars );
2264}
2265
2266// --------------------------------------------------------------------------
2267/// Removes unneeded or incorrect type information.
2268/// * Replaces initialization of polymorphic values with alloca.
2269/// * Replaces declaration of dtype/ftype with appropriate void expression.
2270/// * Replaces sizeof expressions of polymorphic types with a variable.
2271/// * Strips fields from generic structure declarations.
2272struct Eraser final :
2273 public ast::WithGuards {
2274 void guardTypeVarMap( ast::Type const * type ) {
2275 GuardScope( scopeTypeVars );
2276 makeTypeVarMap( type, scopeTypeVars );
2277 }
2278
2279 ast::ObjectDecl const * previsit( ast::ObjectDecl const * decl );
2280 ast::FunctionDecl const * previsit( ast::FunctionDecl const * decl );
2281 ast::FunctionDecl const * postvisit( ast::FunctionDecl const * decl );
2282 ast::TypedefDecl const * previsit( ast::TypedefDecl const * decl );
2283 ast::StructDecl const * previsit( ast::StructDecl const * decl );
2284 ast::UnionDecl const * previsit( ast::UnionDecl const * decl );
2285 void previsit( ast::TypeDecl const * decl );
2286 void previsit( ast::PointerType const * type );
2287 void previsit( ast::FunctionType const * type );
2288public:
2289 TypeVarMap scopeTypeVars;
2290};
2291
2292ast::ObjectDecl const * Eraser::previsit( ast::ObjectDecl const * decl ) {
2293 guardTypeVarMap( decl->type );
2294 return scrubAllTypeVars( decl );
2295}
2296
2297ast::FunctionDecl const * Eraser::previsit( ast::FunctionDecl const * decl ) {
2298 guardTypeVarMap( decl->type );
2299 return scrubAllTypeVars( decl );
2300}
2301
2302ast::FunctionDecl const * Eraser::postvisit( ast::FunctionDecl const * decl ) {
2303 if ( decl->type_params.empty() ) return decl;
2304 auto mutDecl = mutate( decl );
2305 mutDecl->type_params.clear();
2306 return mutDecl;
2307}
2308
2309ast::TypedefDecl const * Eraser::previsit( ast::TypedefDecl const * decl ) {
2310 guardTypeVarMap( decl->base );
2311 return scrubAllTypeVars( decl );
2312}
2313
2314/// Strips the members from a generic aggregate.
2315template<typename node_t>
2316node_t const * stripGenericMembers( node_t const * decl ) {
2317 if ( decl->params.empty() ) return decl;
2318 auto mutDecl = ast::mutate( decl );
2319 mutDecl->members.clear();
2320 return mutDecl;
2321}
2322
2323ast::StructDecl const * Eraser::previsit( ast::StructDecl const * decl ) {
2324 return stripGenericMembers( decl );
2325}
2326
2327ast::UnionDecl const * Eraser::previsit( ast::UnionDecl const * decl ) {
2328 return stripGenericMembers( decl );
2329}
2330
2331void Eraser::previsit( ast::TypeDecl const * decl ) {
2332 addToTypeVarMap( decl, scopeTypeVars );
2333}
2334
2335void Eraser::previsit( ast::PointerType const * type ) {
2336 guardTypeVarMap( type );
2337}
2338
2339void Eraser::previsit( ast::FunctionType const * type ) {
2340 guardTypeVarMap( type );
2341}
2342
2343} // namespace
2344
2345// --------------------------------------------------------------------------
2346void box( ast::TranslationUnit & translationUnit ) {
2347 ast::Pass<LayoutFunctionBuilder>::run( translationUnit );
2348 ast::Pass<CallAdapter>::run( translationUnit );
2349 ast::Pass<DeclAdapter>::run( translationUnit );
2350 ast::Pass<RewireAdapters>::run( translationUnit );
2351 ast::Pass<PolyGenericCalculator>::run( translationUnit );
2352 ast::Pass<Eraser>::run( translationUnit );
2353}
2354
2355} // namespace GenPoly
2356
2357// Local Variables: //
2358// tab-width: 4 //
2359// mode: c++ //
2360// compile-command: "make install" //
2361// End: //
Note: See TracBrowser for help on using the repository browser.