source: src/GenPoly/Box.cc@ fe84230

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since fe84230 was 62e5546, checked in by Thierry Delisle <tdelisle@…>, 9 years ago

Removed warnings when compiling with clang

  • Property mode set to 100644
File size: 97.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Wed Jun 29 21:43:03 2016
13// Update Count : 296
14//
15
16#include <algorithm>
17#include <iterator>
18#include <list>
19#include <map>
20#include <set>
21#include <stack>
22#include <string>
23#include <utility>
24#include <vector>
25#include <cassert>
26
27#include "Box.h"
28#include "DeclMutator.h"
29#include "PolyMutator.h"
30#include "FindFunction.h"
31#include "ScopedSet.h"
32#include "ScrubTyVars.h"
33
34#include "Parser/ParseNode.h"
35
36#include "SynTree/Constant.h"
37#include "SynTree/Declaration.h"
38#include "SynTree/Expression.h"
39#include "SynTree/Initializer.h"
40#include "SynTree/Mutator.h"
41#include "SynTree/Statement.h"
42#include "SynTree/Type.h"
43#include "SynTree/TypeSubstitution.h"
44
45#include "ResolvExpr/TypeEnvironment.h"
46#include "ResolvExpr/TypeMap.h"
47#include "ResolvExpr/typeops.h"
48
49#include "SymTab/Indexer.h"
50#include "SymTab/Mangler.h"
51
52#include "Common/ScopedMap.h"
53#include "Common/SemanticError.h"
54#include "Common/UniqueName.h"
55#include "Common/utility.h"
56
57#include <ext/functional> // temporary
58
59namespace GenPoly {
60 namespace {
61 const std::list<Label> noLabels;
62
63 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars );
64
65 /// Adds layout-generation functions to polymorphic types
66 class LayoutFunctionBuilder final : public DeclMutator {
67 unsigned int functionNesting; // current level of nested functions
68 public:
69 LayoutFunctionBuilder() : functionNesting( 0 ) {}
70
71 using DeclMutator::mutate;
72 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
73 virtual Declaration *mutate( StructDecl *structDecl ) override;
74 virtual Declaration *mutate( UnionDecl *unionDecl ) override;
75 };
76
77 /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call
78 class Pass1 final : public PolyMutator {
79 public:
80 Pass1();
81
82 using PolyMutator::mutate;
83 virtual Expression *mutate( ApplicationExpr *appExpr ) override;
84 virtual Expression *mutate( AddressExpr *addrExpr ) override;
85 virtual Expression *mutate( UntypedExpr *expr ) override;
86 virtual DeclarationWithType* mutate( FunctionDecl *functionDecl ) override;
87 virtual TypeDecl *mutate( TypeDecl *typeDecl ) override;
88 virtual Expression *mutate( CommaExpr *commaExpr ) override;
89 virtual Expression *mutate( ConditionalExpr *condExpr ) override;
90 virtual Statement * mutate( ReturnStmt *returnStmt ) override;
91 virtual Type *mutate( PointerType *pointerType ) override;
92 virtual Type * mutate( FunctionType *functionType ) override;
93
94 virtual void doBeginScope() override;
95 virtual void doEndScope() override;
96 private:
97 /// Pass the extra type parameters from polymorphic generic arguments or return types into a function application
98 void passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes );
99 /// passes extra type parameters into a polymorphic function application
100 void passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
101 /// wraps a function application with a new temporary for the out-parameter return value
102 Expression *addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg );
103 /// Replaces all the type parameters of a generic type with their concrete equivalents under the current environment
104 void replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params );
105 /// Replaces a polymorphic type with its concrete equivalant under the current environment (returns itself if concrete).
106 /// If `doClone` is set to false, will not clone interior types
107 Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true );
108 /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value
109 Expression *addDynRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg );
110 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
111 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars );
112 void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
113 void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars );
114 /// Stores assignment operators from assertion list in local map of assignment operations
115 void findTypeOps( const std::list< TypeDecl *> &forall );
116 void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars );
117 FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars );
118 /// Replaces intrinsic operator functions with their arithmetic desugaring
119 Expression *handleIntrinsics( ApplicationExpr *appExpr );
120 /// Inserts a new temporary variable into the current scope with an auto-generated name
121 ObjectDecl *makeTemporary( Type *type );
122
123 ScopedMap< std::string, DeclarationWithType* > assignOps; ///< Currently known type variable assignment operators
124 ScopedMap< std::string, DeclarationWithType* > ctorOps; ///< Currently known type variable constructors
125 ScopedMap< std::string, DeclarationWithType* > copyOps; ///< Currently known type variable copy constructors
126 ScopedMap< std::string, DeclarationWithType* > dtorOps; ///< Currently known type variable destructors
127 ResolvExpr::TypeMap< DeclarationWithType > scopedAssignOps; ///< Currently known assignment operators
128 ResolvExpr::TypeMap< DeclarationWithType > scopedCtorOps; ///< Currently known assignment operators
129 ResolvExpr::TypeMap< DeclarationWithType > scopedCopyOps; ///< Currently known assignment operators
130 ResolvExpr::TypeMap< DeclarationWithType > scopedDtorOps; ///< Currently known assignment operators
131 ScopedMap< std::string, DeclarationWithType* > adapters; ///< Set of adapter functions in the current scope
132
133 DeclarationWithType *retval;
134 bool useRetval;
135 UniqueName tempNamer;
136 };
137
138 /// * Moves polymorphic returns in function types to pointer-type parameters
139 /// * adds type size and assertion parameters to parameter lists
140 class Pass2 final : public PolyMutator {
141 public:
142 template< typename DeclClass >
143 DeclClass *handleDecl( DeclClass *decl, Type *type );
144
145 using PolyMutator::mutate;
146 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
147 virtual ObjectDecl *mutate( ObjectDecl *objectDecl ) override;
148 virtual TypeDecl *mutate( TypeDecl *typeDecl ) override;
149 virtual TypedefDecl *mutate( TypedefDecl *typedefDecl ) override;
150 virtual Type *mutate( PointerType *pointerType ) override;
151 virtual Type *mutate( FunctionType *funcType ) override;
152
153 private:
154 void addAdapters( FunctionType *functionType );
155
156 std::map< UniqueId, std::string > adapterName;
157 };
158
159 /// Replaces member and size/align/offsetof expressions on polymorphic generic types with calculated expressions.
160 /// * Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference
161 /// * Calculates polymorphic offsetof expressions from offset array
162 /// * Inserts dynamic calculation of polymorphic type layouts where needed
163 class PolyGenericCalculator final : public PolyMutator {
164 public:
165 typedef PolyMutator Parent;
166 using Parent::mutate;
167
168 template< typename DeclClass >
169 DeclClass *handleDecl( DeclClass *decl, Type *type );
170 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
171 virtual ObjectDecl *mutate( ObjectDecl *objectDecl ) override;
172 virtual TypedefDecl *mutate( TypedefDecl *objectDecl ) override;
173 virtual TypeDecl *mutate( TypeDecl *objectDecl ) override;
174 virtual Statement *mutate( DeclStmt *declStmt ) override;
175 virtual Type *mutate( PointerType *pointerType ) override;
176 virtual Type *mutate( FunctionType *funcType ) override;
177 virtual Expression *mutate( MemberExpr *memberExpr ) override;
178 virtual Expression *mutate( SizeofExpr *sizeofExpr ) override;
179 virtual Expression *mutate( AlignofExpr *alignofExpr ) override;
180 virtual Expression *mutate( OffsetofExpr *offsetofExpr ) override;
181 virtual Expression *mutate( OffsetPackExpr *offsetPackExpr ) override;
182
183 virtual void doBeginScope() override;
184 virtual void doEndScope() override;
185
186 private:
187 /// Makes a new variable in the current scope with the given name, type & optional initializer
188 ObjectDecl *makeVar( const std::string &name, Type *type, Initializer *init = 0 );
189 /// returns true if the type has a dynamic layout; such a layout will be stored in appropriately-named local variables when the function returns
190 bool findGeneric( Type *ty );
191 /// adds type parameters to the layout call; will generate the appropriate parameters if needed
192 void addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams );
193
194 /// Enters a new scope for type-variables, adding the type variables from ty
195 void beginTypeScope( Type *ty );
196 /// Exits the type-variable scope
197 void endTypeScope();
198
199 ScopedSet< std::string > knownLayouts; ///< Set of generic type layouts known in the current scope, indexed by sizeofName
200 ScopedSet< std::string > knownOffsets; ///< Set of non-generic types for which the offset array exists in the current scope, indexed by offsetofName
201 };
202
203 /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, and sizeof expressions of polymorphic types with the proper variable
204 class Pass3 final : public PolyMutator {
205 public:
206 template< typename DeclClass >
207 DeclClass *handleDecl( DeclClass *decl, Type *type );
208
209 using PolyMutator::mutate;
210 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
211 virtual ObjectDecl *mutate( ObjectDecl *objectDecl ) override;
212 virtual TypedefDecl *mutate( TypedefDecl *objectDecl ) override;
213 virtual TypeDecl *mutate( TypeDecl *objectDecl ) override;
214 virtual Type *mutate( PointerType *pointerType ) override;
215 virtual Type *mutate( FunctionType *funcType ) override;
216 private:
217 };
218
219 } // anonymous namespace
220
221 /// version of mutateAll with special handling for translation unit so you can check the end of the prelude when debugging
222 template< typename MutatorType >
223 inline void mutateTranslationUnit( std::list< Declaration* > &translationUnit, MutatorType &mutator ) {
224 bool seenIntrinsic = false;
225 SemanticError errors;
226 for ( typename std::list< Declaration* >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
227 try {
228 if ( *i ) {
229 if ( (*i)->get_linkage() == LinkageSpec::Intrinsic ) {
230 seenIntrinsic = true;
231 } else if ( seenIntrinsic ) {
232 seenIntrinsic = false; // break on this line when debugging for end of prelude
233 }
234
235 *i = dynamic_cast< Declaration* >( (*i)->acceptMutator( mutator ) );
236 assert( *i );
237 } // if
238 } catch( SemanticError &e ) {
239 errors.append( e );
240 } // try
241 } // for
242 if ( ! errors.isEmpty() ) {
243 throw errors;
244 } // if
245 }
246
247 void box( std::list< Declaration *>& translationUnit ) {
248 LayoutFunctionBuilder layoutBuilder;
249 Pass1 pass1;
250 Pass2 pass2;
251 PolyGenericCalculator polyCalculator;
252 Pass3 pass3;
253
254 layoutBuilder.mutateDeclarationList( translationUnit );
255 mutateTranslationUnit/*All*/( translationUnit, pass1 );
256 mutateTranslationUnit/*All*/( translationUnit, pass2 );
257 mutateTranslationUnit/*All*/( translationUnit, polyCalculator );
258 mutateTranslationUnit/*All*/( translationUnit, pass3 );
259 }
260
261 ////////////////////////////////// LayoutFunctionBuilder ////////////////////////////////////////////
262
263 DeclarationWithType *LayoutFunctionBuilder::mutate( FunctionDecl *functionDecl ) {
264 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
265 mutateAll( functionDecl->get_oldDecls(), *this );
266 ++functionNesting;
267 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
268 --functionNesting;
269 return functionDecl;
270 }
271
272 /// Get a list of type declarations that will affect a layout function
273 std::list< TypeDecl* > takeOtypeOnly( std::list< TypeDecl* > &decls ) {
274 std::list< TypeDecl * > otypeDecls;
275
276 for ( std::list< TypeDecl* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
277 if ( (*decl)->get_kind() == TypeDecl::Any ) {
278 otypeDecls.push_back( *decl );
279 }
280 }
281
282 return otypeDecls;
283 }
284
285 /// Adds parameters for otype layout to a function type
286 void addOtypeParams( FunctionType *layoutFnType, std::list< TypeDecl* > &otypeParams ) {
287 BasicType sizeAlignType( Type::Qualifiers(), BasicType::LongUnsignedInt );
288
289 for ( std::list< TypeDecl* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
290 TypeInstType paramType( Type::Qualifiers(), (*param)->get_name(), *param );
291 std::string paramName = mangleType( &paramType );
292 layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
293 layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
294 }
295 }
296
297 /// Builds a layout function declaration
298 FunctionDecl *buildLayoutFunctionDecl( AggregateDecl *typeDecl, unsigned int functionNesting, FunctionType *layoutFnType ) {
299 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
300 // because each unit generates copies of the default routines for each aggregate.
301 FunctionDecl *layoutDecl = new FunctionDecl(
302 layoutofName( typeDecl ), functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static, LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ), true, false );
303 layoutDecl->fixUniqueId();
304 return layoutDecl;
305 }
306
307 /// Makes a unary operation
308 Expression *makeOp( const std::string &name, Expression *arg ) {
309 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
310 expr->get_args().push_back( arg );
311 return expr;
312 }
313
314 /// Makes a binary operation
315 Expression *makeOp( const std::string &name, Expression *lhs, Expression *rhs ) {
316 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
317 expr->get_args().push_back( lhs );
318 expr->get_args().push_back( rhs );
319 return expr;
320 }
321
322 /// Returns the dereference of a local pointer variable
323 Expression *derefVar( ObjectDecl *var ) {
324 return makeOp( "*?", new VariableExpr( var ) );
325 }
326
327 /// makes an if-statement with a single-expression if-block and no then block
328 Statement *makeCond( Expression *cond, Expression *ifPart ) {
329 return new IfStmt( noLabels, cond, new ExprStmt( noLabels, ifPart ), 0 );
330 }
331
332 /// makes a statement that assigns rhs to lhs if lhs < rhs
333 Statement *makeAssignMax( Expression *lhs, Expression *rhs ) {
334 return makeCond( makeOp( "?<?", lhs, rhs ), makeOp( "?=?", lhs->clone(), rhs->clone() ) );
335 }
336
337 /// makes a statement that aligns lhs to rhs (rhs should be an integer power of two)
338 Statement *makeAlignTo( Expression *lhs, Expression *rhs ) {
339 // check that the lhs is zeroed out to the level of rhs
340 Expression *ifCond = makeOp( "?&?", lhs, makeOp( "?-?", rhs, new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "1" ) ) ) );
341 // if not aligned, increment to alignment
342 Expression *ifExpr = makeOp( "?+=?", lhs->clone(), makeOp( "?-?", rhs->clone(), ifCond->clone() ) );
343 return makeCond( ifCond, ifExpr );
344 }
345
346 /// adds an expression to a compound statement
347 void addExpr( CompoundStmt *stmts, Expression *expr ) {
348 stmts->get_kids().push_back( new ExprStmt( noLabels, expr ) );
349 }
350
351 /// adds a statement to a compound statement
352 void addStmt( CompoundStmt *stmts, Statement *stmt ) {
353 stmts->get_kids().push_back( stmt );
354 }
355
356 Declaration *LayoutFunctionBuilder::mutate( StructDecl *structDecl ) {
357 // do not generate layout function for "empty" tag structs
358 if ( structDecl->get_members().empty() ) return structDecl;
359
360 // get parameters that can change layout, exiting early if none
361 std::list< TypeDecl* > otypeParams = takeOtypeOnly( structDecl->get_parameters() );
362 if ( otypeParams.empty() ) return structDecl;
363
364 // build layout function signature
365 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
366 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
367 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
368
369 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
370 layoutFnType->get_parameters().push_back( sizeParam );
371 ObjectDecl *alignParam = new ObjectDecl( alignofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
372 layoutFnType->get_parameters().push_back( alignParam );
373 ObjectDecl *offsetParam = new ObjectDecl( offsetofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
374 layoutFnType->get_parameters().push_back( offsetParam );
375 addOtypeParams( layoutFnType, otypeParams );
376
377 // build function decl
378 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl, functionNesting, layoutFnType );
379
380 // calculate struct layout in function body
381
382 // initialize size and alignment to 0 and 1 (will have at least one member to re-edit size
383 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "0" ) ) ) );
384 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
385 unsigned long n_members = 0;
386 bool firstMember = true;
387 for ( std::list< Declaration* >::const_iterator member = structDecl->get_members().begin(); member != structDecl->get_members().end(); ++member ) {
388 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
389 assert( dwt );
390 Type *memberType = dwt->get_type();
391
392 if ( firstMember ) {
393 firstMember = false;
394 } else {
395 // make sure all members after the first (automatically aligned at 0) are properly padded for alignment
396 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), new AlignofExpr( memberType->clone() ) ) );
397 }
398
399 // place current size in the current offset index
400 addExpr( layoutDecl->get_statements(), makeOp( "?=?", makeOp( "?[?]", new VariableExpr( offsetParam ), new ConstantExpr( Constant::from_ulong( n_members ) ) ),
401 derefVar( sizeParam ) ) );
402 ++n_members;
403
404 // add member size to current size
405 addExpr( layoutDecl->get_statements(), makeOp( "?+=?", derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
406
407 // take max of member alignment and global alignment
408 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
409 }
410 // make sure the type is end-padded to a multiple of its alignment
411 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
412
413 addDeclarationAfter( layoutDecl );
414 return structDecl;
415 }
416
417 Declaration *LayoutFunctionBuilder::mutate( UnionDecl *unionDecl ) {
418 // do not generate layout function for "empty" tag unions
419 if ( unionDecl->get_members().empty() ) return unionDecl;
420
421 // get parameters that can change layout, exiting early if none
422 std::list< TypeDecl* > otypeParams = takeOtypeOnly( unionDecl->get_parameters() );
423 if ( otypeParams.empty() ) return unionDecl;
424
425 // build layout function signature
426 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
427 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
428 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
429
430 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
431 layoutFnType->get_parameters().push_back( sizeParam );
432 ObjectDecl *alignParam = new ObjectDecl( alignofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
433 layoutFnType->get_parameters().push_back( alignParam );
434 addOtypeParams( layoutFnType, otypeParams );
435
436 // build function decl
437 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl, functionNesting, layoutFnType );
438
439 // calculate union layout in function body
440 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
441 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
442 for ( std::list< Declaration* >::const_iterator member = unionDecl->get_members().begin(); member != unionDecl->get_members().end(); ++member ) {
443 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
444 assert( dwt );
445 Type *memberType = dwt->get_type();
446
447 // take max member size and global size
448 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
449
450 // take max of member alignment and global alignment
451 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
452 }
453 // make sure the type is end-padded to a multiple of its alignment
454 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
455
456 addDeclarationAfter( layoutDecl );
457 return unionDecl;
458 }
459
460 ////////////////////////////////////////// Pass1 ////////////////////////////////////////////////////
461
462 namespace {
463 std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) {
464 std::stringstream name;
465
466 // NOTE: this function previously used isPolyObj, which failed to produce
467 // the correct thing in some situations. It's not clear to me why this wasn't working.
468
469 // if the return type or a parameter type involved polymorphic types, then the adapter will need
470 // to take those polymorphic types as pointers. Therefore, there can be two different functions
471 // with the same mangled name, so we need to further mangle the names.
472 for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) {
473 if ( isPolyType( (*retval)->get_type(), tyVars ) ) {
474 name << "P";
475 } else {
476 name << "M";
477 }
478 }
479 name << "_";
480 std::list< DeclarationWithType *> &paramList = function->get_parameters();
481 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
482 if ( isPolyType( (*arg)->get_type(), tyVars ) ) {
483 name << "P";
484 } else {
485 name << "M";
486 }
487 } // for
488 return name.str();
489 }
490
491 std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) {
492 return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars );
493 }
494
495 std::string makeAdapterName( const std::string &mangleName ) {
496 return "_adapter" + mangleName;
497 }
498
499 Pass1::Pass1() : useRetval( false ), tempNamer( "_temp" ) {}
500
501 /// Returns T if the given declaration is a function with parameter (T*) for some TypeInstType T, NULL otherwise
502 TypeInstType *isTypeInstPtrFn( DeclarationWithType *decl ) {
503 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
504 if ( funType->get_parameters().size() == 1 ) {
505 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
506 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
507 return refType;
508 } // if
509 } // if
510 } // if
511 } // if
512 return 0;
513 }
514
515 /// Returns T if the given declaration is a function with parameters (T*, T) for some TypeInstType T, NULL otherwise
516 TypeInstType *isTypeInstPtrValFn( DeclarationWithType *decl ) {
517 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
518 if ( funType->get_parameters().size() == 2 ) {
519 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
520 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
521 if ( TypeInstType *refType2 = dynamic_cast< TypeInstType *>( funType->get_parameters().back()->get_type() ) ) {
522 if ( refType->get_name() == refType2->get_name() ) {
523 return refType;
524 } // if
525 } // if
526 } // if
527 } // if
528 } // if
529 } // if
530 return 0;
531 }
532
533 /// Returns T if the given declaration is (*?=?)(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
534 TypeInstType *isTypeInstAssignment( DeclarationWithType *decl ) {
535 return decl->get_name() == "?=?" ? isTypeInstPtrValFn( decl ) : 0;
536 }
537
538 /// Returns T if the given declaration is (*?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
539 TypeInstType *isTypeInstCtor( DeclarationWithType *decl ) {
540 return decl->get_name() == "?{}" ? isTypeInstPtrFn( decl ) : 0;
541 }
542
543 /// Returns T if the given declaration is (*?{})(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
544 TypeInstType *isTypeInstCopy( DeclarationWithType *decl ) {
545 return decl->get_name() == "?{}" ? isTypeInstPtrValFn( decl ) : 0;
546 }
547
548 /// Returns T if the given declaration is (*^?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
549 TypeInstType *isTypeInstDtor( DeclarationWithType *decl ) {
550 return decl->get_name() == "^?{}" ? isTypeInstPtrFn( decl ) : 0;
551 }
552
553 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified,
554 /// NULL otherwise
555 Type *isNoCvPtrFn( DeclarationWithType *decl ) {
556 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
557 if ( funType->get_parameters().size() == 1 ) {
558 Type::Qualifiers defaultQualifiers;
559 Type *paramType = funType->get_parameters().front()->get_type();
560 if ( paramType->get_qualifiers() != defaultQualifiers ) return 0;
561
562 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType ) ) {
563 Type *baseType = pointerType->get_base();
564 if ( baseType->get_qualifiers() == defaultQualifiers ) {
565 return baseType;
566 } // if
567 } // if
568 } // if
569 } // if
570 return 0;
571 }
572
573 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified,
574 /// NULL otherwise
575 Type *isNoCvPtrValFn( DeclarationWithType *decl ) {
576 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
577 if ( funType->get_parameters().size() == 2 ) {
578 Type::Qualifiers defaultQualifiers;
579 Type *paramType1 = funType->get_parameters().front()->get_type();
580 if ( paramType1->get_qualifiers() != defaultQualifiers ) return 0;
581 Type *paramType2 = funType->get_parameters().back()->get_type();
582 if ( paramType2->get_qualifiers() != defaultQualifiers ) return 0;
583
584 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType1 ) ) {
585 Type *baseType1 = pointerType->get_base();
586 if ( baseType1->get_qualifiers() != defaultQualifiers ) return 0;
587 SymTab::Indexer dummy;
588 if ( ResolvExpr::typesCompatible( baseType1, paramType2, dummy ) ) {
589 return baseType1;
590 } // if
591 } // if
592 } // if
593 } // if
594 return 0;
595 }
596
597 /// returns T if the given declaration is: (*?=?)(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
598 /// Only picks assignments where neither parameter is cv-qualified
599 Type *isAssignment( DeclarationWithType *decl ) {
600 return decl->get_name() == "?=?" ? isNoCvPtrValFn( decl ) : 0;
601 }
602
603 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise
604 /// Only picks ctors where the parameter is not cv-qualified
605 Type *isCtor( DeclarationWithType *decl ) {
606 return decl->get_name() == "?{}" ? isNoCvPtrFn( decl ) : 0;
607 }
608
609 /// returns T if the given declaration is: (*?{})(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
610 /// Only picks copy constructors where neither parameter is cv-qualified
611 Type *isCopy( DeclarationWithType *decl ) {
612 return decl->get_name() == "?{}" ? isNoCvPtrValFn( decl ) : 0;
613 }
614
615 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise
616 /// Only picks ctors where the parameter is not cv-qualified
617 Type *isDtor( DeclarationWithType *decl ) {
618 return decl->get_name() == "^?{}" ? isNoCvPtrFn( decl ) : 0;
619 }
620
621 void Pass1::findTypeOps( const std::list< TypeDecl *> &forall ) {
622 // what if a nested function uses an assignment operator?
623 // assignOps.clear();
624 for ( std::list< TypeDecl *>::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
625 for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) {
626 std::string typeName;
627 if ( TypeInstType *typeInst = isTypeInstAssignment( *assert ) ) {
628 assignOps[ typeInst->get_name() ] = *assert;
629 } else if ( TypeInstType *typeInst = isTypeInstCtor( *assert ) ) {
630 ctorOps[ typeInst->get_name() ] = *assert;
631 } else if ( TypeInstType *typeInst = isTypeInstCopy( *assert ) ) {
632 copyOps[ typeInst->get_name() ] = *assert;
633 } else if ( TypeInstType *typeInst = isTypeInstDtor( *assert ) ) {
634 dtorOps[ typeInst->get_name() ] = *assert;
635 } // if
636 } // for
637 } // for
638 }
639
640 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) {
641 // if this is a assignment function, put it in the map for this scope
642 if ( Type *paramType = isAssignment( functionDecl ) ) {
643 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
644 scopedAssignOps.insert( paramType, functionDecl );
645 }
646 } else if ( Type *paramType = isCtor( functionDecl ) ) {
647 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
648 scopedCtorOps.insert( paramType, functionDecl );
649 }
650 } else if ( Type *paramType = isCopy( functionDecl ) ) {
651 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
652 scopedCopyOps.insert( paramType, functionDecl );
653 }
654 } else if ( Type *paramType = isDtor( functionDecl ) ) {
655 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
656 scopedDtorOps.insert( paramType, functionDecl );
657 }
658 }
659
660 if ( functionDecl->get_statements() ) { // empty routine body ?
661 doBeginScope();
662 scopeTyVars.beginScope();
663 assignOps.beginScope();
664 ctorOps.beginScope();
665 copyOps.beginScope();
666 dtorOps.beginScope();
667
668 DeclarationWithType *oldRetval = retval;
669 bool oldUseRetval = useRetval;
670
671 // process polymorphic return value
672 retval = 0;
673 if ( isDynRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) {
674 retval = functionDecl->get_functionType()->get_returnVals().front();
675
676 // give names to unnamed return values
677 if ( retval->get_name() == "" ) {
678 retval->set_name( "_retparm" );
679 retval->set_linkage( LinkageSpec::C );
680 } // if
681 } // if
682
683 FunctionType *functionType = functionDecl->get_functionType();
684 makeTyVarMap( functionDecl->get_functionType(), scopeTyVars );
685 findTypeOps( functionDecl->get_functionType()->get_forall() );
686
687 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
688 std::list< FunctionType *> functions;
689 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
690 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
691 findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter );
692 } // for
693 } // for
694 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
695 findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter );
696 } // for
697
698 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
699 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
700 if ( adapters.find( mangleName ) == adapters.end() ) {
701 std::string adapterName = makeAdapterName( mangleName );
702 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) ) );
703 } // if
704 } // for
705
706 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) );
707
708 scopeTyVars.endScope();
709 assignOps.endScope();
710 ctorOps.endScope();
711 copyOps.endScope();
712 dtorOps.endScope();
713 retval = oldRetval;
714 useRetval = oldUseRetval;
715 doEndScope();
716 } // if
717 return functionDecl;
718 }
719
720 TypeDecl *Pass1::mutate( TypeDecl *typeDecl ) {
721 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
722 return Mutator::mutate( typeDecl );
723 }
724
725 Expression *Pass1::mutate( CommaExpr *commaExpr ) {
726 bool oldUseRetval = useRetval;
727 useRetval = false;
728 commaExpr->set_arg1( maybeMutate( commaExpr->get_arg1(), *this ) );
729 useRetval = oldUseRetval;
730 commaExpr->set_arg2( maybeMutate( commaExpr->get_arg2(), *this ) );
731 return commaExpr;
732 }
733
734 Expression *Pass1::mutate( ConditionalExpr *condExpr ) {
735 bool oldUseRetval = useRetval;
736 useRetval = false;
737 condExpr->set_arg1( maybeMutate( condExpr->get_arg1(), *this ) );
738 useRetval = oldUseRetval;
739 condExpr->set_arg2( maybeMutate( condExpr->get_arg2(), *this ) );
740 condExpr->set_arg3( maybeMutate( condExpr->get_arg3(), *this ) );
741 return condExpr;
742
743 }
744
745 void Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) {
746 Type *polyType = isPolyType( parmType, exprTyVars );
747 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
748 std::string typeName = mangleType( polyType );
749 if ( seenTypes.count( typeName ) ) return;
750
751 arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) );
752 arg++;
753 arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) );
754 arg++;
755 if ( dynamic_cast< StructInstType* >( polyType ) ) {
756 if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) {
757 // zero-length arrays are forbidden by C, so don't pass offset for empty struct
758 if ( ! argBaseStructType->get_baseStruct()->get_members().empty() ) {
759 arg = appExpr->get_args().insert( arg, new OffsetPackExpr( argBaseStructType->clone() ) );
760 arg++;
761 }
762 } else {
763 throw SemanticError( "Cannot pass non-struct type for generic struct" );
764 }
765 }
766
767 seenTypes.insert( typeName );
768 }
769 }
770
771 void Pass1::passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
772 // pass size/align for type variables
773 for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) {
774 ResolvExpr::EqvClass eqvClass;
775 assert( env );
776 if ( tyParm->second == TypeDecl::Any ) {
777 Type *concrete = env->lookup( tyParm->first );
778 if ( concrete ) {
779 arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) );
780 arg++;
781 arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) );
782 arg++;
783 } else {
784 // xxx - should this be an assertion?
785 throw SemanticError( "unbound type variable: " + tyParm->first + " in application ", appExpr );
786 } // if
787 } // if
788 } // for
789
790 // add size/align for generic types to parameter list
791 if ( appExpr->get_function()->get_results().empty() ) return;
792 FunctionType *funcType = getFunctionType( appExpr->get_function()->get_results().front() );
793 assert( funcType );
794
795 std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin();
796 std::list< Expression* >::const_iterator fnArg = arg;
797 std::set< std::string > seenTypes; ///< names for generic types we've seen
798
799 // a polymorphic return type may need to be added to the argument list
800 if ( polyRetType ) {
801 Type *concRetType = replaceWithConcrete( appExpr, polyRetType );
802 passArgTypeVars( appExpr, polyRetType, concRetType, arg, exprTyVars, seenTypes );
803 }
804
805 // add type information args for presently unseen types in parameter list
806 for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {
807 VariableExpr *fnArgBase = getBaseVar( *fnArg );
808 if ( ! fnArgBase || fnArgBase->get_results().empty() ) continue;
809 passArgTypeVars( appExpr, (*fnParm)->get_type(), fnArgBase->get_results().front(), arg, exprTyVars, seenTypes );
810 }
811 }
812
813 ObjectDecl *Pass1::makeTemporary( Type *type ) {
814 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, 0 );
815 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
816 return newObj;
817 }
818
819 Expression *Pass1::addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ) {
820 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
821 // if ( useRetval ) {
822 // assert( retval );
823 // arg = appExpr->get_args().insert( arg, new VariableExpr( retval ) );
824 // arg++;
825 // } else {
826
827 // Create temporary to hold return value of polymorphic function and produce that temporary as a result
828 // using a comma expression. Possibly change comma expression into statement expression "{}" for multiple
829 // return values.
830 ObjectDecl *newObj = makeTemporary( retType->clone() );
831 Expression *paramExpr = new VariableExpr( newObj );
832
833 // If the type of the temporary is not polymorphic, box temporary by taking its address;
834 // otherwise the temporary is already boxed and can be used directly.
835 if ( ! isPolyType( newObj->get_type(), scopeTyVars, env ) ) {
836 paramExpr = new AddressExpr( paramExpr );
837 } // if
838 arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call
839 arg++;
840 // Build a comma expression to call the function and emulate a normal return.
841 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) );
842 commaExpr->set_env( appExpr->get_env() );
843 appExpr->set_env( 0 );
844 return commaExpr;
845 // } // if
846 // return appExpr;
847 }
848
849 void Pass1::replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ) {
850 for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) {
851 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
852 assert(paramType && "Aggregate parameters should be type expressions");
853 paramType->set_type( replaceWithConcrete( appExpr, paramType->get_type(), false ) );
854 }
855 }
856
857 Type *Pass1::replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone ) {
858 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) {
859 Type *concrete = env->lookup( typeInst->get_name() );
860 if ( concrete == 0 ) {
861 throw SemanticError( "Unbound type variable " + typeInst->get_name() + " in ", appExpr );
862 } // if
863 return concrete;
864 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) {
865 if ( doClone ) {
866 structType = structType->clone();
867 }
868 replaceParametersWithConcrete( appExpr, structType->get_parameters() );
869 return structType;
870 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) {
871 if ( doClone ) {
872 unionType = unionType->clone();
873 }
874 replaceParametersWithConcrete( appExpr, unionType->get_parameters() );
875 return unionType;
876 }
877 return type;
878 }
879
880 Expression *Pass1::addDynRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *dynType, std::list< Expression *>::iterator &arg ) {
881 assert( env );
882 Type *concrete = replaceWithConcrete( appExpr, dynType );
883 // add out-parameter for return value
884 return addRetParam( appExpr, function, concrete, arg );
885 }
886
887 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
888 Expression *ret = appExpr;
889// if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) {
890 if ( isDynRet( function, tyVars ) ) {
891 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg );
892 } // if
893 std::string mangleName = mangleAdapterName( function, tyVars );
894 std::string adapterName = makeAdapterName( mangleName );
895
896 // cast adaptee to void (*)(), since it may have any type inside a polymorphic function
897 Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) );
898 appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) );
899 appExpr->set_function( new NameExpr( adapterName ) );
900
901 return ret;
902 }
903
904 void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) {
905 assert( ! arg->get_results().empty() );
906 if ( isPolyType( param, exprTyVars ) ) {
907 if ( isPolyType( arg->get_results().front() ) ) {
908 // if the argument's type is polymorphic, we don't need to box again!
909 return;
910 } else if ( arg->get_results().front()->get_isLvalue() ) {
911 // VariableExpr and MemberExpr are lvalues; need to check this isn't coming from the second arg of a comma expression though (not an lvalue)
912 // xxx - need to test that this code is still reachable
913 if ( CommaExpr *commaArg = dynamic_cast< CommaExpr* >( arg ) ) {
914 commaArg->set_arg2( new AddressExpr( commaArg->get_arg2() ) );
915 } else {
916 arg = new AddressExpr( arg );
917 }
918 } else {
919 // use type computed in unification to declare boxed variables
920 Type * newType = param->clone();
921 if ( env ) env->apply( newType );
922 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, newType, 0 );
923 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right???
924 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
925 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
926 assign->get_args().push_back( new VariableExpr( newObj ) );
927 assign->get_args().push_back( arg );
928 stmtsToAdd.push_back( new ExprStmt( noLabels, assign ) );
929 arg = new AddressExpr( new VariableExpr( newObj ) );
930 } // if
931 } // if
932 }
933
934 /// cast parameters to polymorphic functions so that types are replaced with
935 /// void * if they are type parameters in the formal type.
936 /// this gets rid of warnings from gcc.
937 void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) {
938 if ( getFunctionType( formal ) ) {
939 Type * newType = formal->clone();
940 newType = ScrubTyVars::scrub( newType, tyVars );
941 actual = new CastExpr( actual, newType );
942 } // if
943 }
944
945 void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
946 for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->get_parameters().end(); ++param, ++arg ) {
947 assert( arg != appExpr->get_args().end() );
948 addCast( *arg, (*param)->get_type(), exprTyVars );
949 boxParam( (*param)->get_type(), *arg, exprTyVars );
950 } // for
951 }
952
953 void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
954 std::list< Expression *>::iterator cur = arg;
955 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
956 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
957 InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() );
958 assert( inferParam != appExpr->get_inferParams().end() && "NOTE: Explicit casts of polymorphic functions to compatible monomorphic functions are currently unsupported" );
959 Expression *newExpr = inferParam->second.expr->clone();
960 addCast( newExpr, (*assert)->get_type(), tyVars );
961 boxParam( (*assert)->get_type(), newExpr, tyVars );
962 appExpr->get_args().insert( cur, newExpr );
963 } // for
964 } // for
965 }
966
967 void makeRetParm( FunctionType *funcType ) {
968 DeclarationWithType *retParm = funcType->get_returnVals().front();
969
970 // make a new parameter that is a pointer to the type of the old return value
971 retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) );
972 funcType->get_parameters().push_front( retParm );
973
974 // we don't need the return value any more
975 funcType->get_returnVals().clear();
976 }
977
978 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ) {
979 // actually make the adapter type
980 FunctionType *adapter = adaptee->clone();
981// if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) {
982 if ( isDynRet( adapter, tyVars ) ) {
983 makeRetParm( adapter );
984 } // if
985 adapter->get_parameters().push_front( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ) );
986 return adapter;
987 }
988
989 Expression *makeAdapterArg( DeclarationWithType *param, DeclarationWithType *arg, DeclarationWithType *realParam, const TyVarMap &tyVars ) {
990 assert( param );
991 assert( arg );
992 if ( isPolyType( realParam->get_type(), tyVars ) ) {
993 if ( ! isPolyType( arg->get_type() ) ) {
994 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
995 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) );
996 deref->get_results().push_back( arg->get_type()->clone() );
997 return deref;
998 } // if
999 } // if
1000 return new VariableExpr( param );
1001 }
1002
1003 void addAdapterParams( ApplicationExpr *adapteeApp, std::list< DeclarationWithType *>::iterator arg, std::list< DeclarationWithType *>::iterator param, std::list< DeclarationWithType *>::iterator paramEnd, std::list< DeclarationWithType *>::iterator realParam, const TyVarMap &tyVars ) {
1004 UniqueName paramNamer( "_p" );
1005 for ( ; param != paramEnd; ++param, ++arg, ++realParam ) {
1006 if ( (*param)->get_name() == "" ) {
1007 (*param)->set_name( paramNamer.newName() );
1008 (*param)->set_linkage( LinkageSpec::C );
1009 } // if
1010 adapteeApp->get_args().push_back( makeAdapterArg( *param, *arg, *realParam, tyVars ) );
1011 } // for
1012 }
1013
1014 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) {
1015 FunctionType *adapterType = makeAdapterType( adaptee, tyVars );
1016 adapterType = ScrubTyVars::scrub( adapterType, tyVars );
1017 DeclarationWithType *adapteeDecl = adapterType->get_parameters().front();
1018 adapteeDecl->set_name( "_adaptee" );
1019 ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) );
1020 Statement *bodyStmt;
1021
1022 std::list< TypeDecl *>::iterator tyArg = realType->get_forall().begin();
1023 std::list< TypeDecl *>::iterator tyParam = adapterType->get_forall().begin();
1024 std::list< TypeDecl *>::iterator realTyParam = adaptee->get_forall().begin();
1025 for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) {
1026 assert( tyArg != realType->get_forall().end() );
1027 std::list< DeclarationWithType *>::iterator assertArg = (*tyArg)->get_assertions().begin();
1028 std::list< DeclarationWithType *>::iterator assertParam = (*tyParam)->get_assertions().begin();
1029 std::list< DeclarationWithType *>::iterator realAssertParam = (*realTyParam)->get_assertions().begin();
1030 for ( ; assertParam != (*tyParam)->get_assertions().end(); ++assertArg, ++assertParam, ++realAssertParam ) {
1031 assert( assertArg != (*tyArg)->get_assertions().end() );
1032 adapteeApp->get_args().push_back( makeAdapterArg( *assertParam, *assertArg, *realAssertParam, tyVars ) );
1033 } // for
1034 } // for
1035
1036 std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin();
1037 std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin();
1038 std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin();
1039 param++; // skip adaptee parameter in the adapter type
1040 if ( realType->get_returnVals().empty() ) {
1041 // void return
1042 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1043 bodyStmt = new ExprStmt( noLabels, adapteeApp );
1044// } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
1045 } else if ( isDynType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
1046 // return type T
1047 if ( (*param)->get_name() == "" ) {
1048 (*param)->set_name( "_ret" );
1049 (*param)->set_linkage( LinkageSpec::C );
1050 } // if
1051 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
1052 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
1053 deref->get_args().push_back( new CastExpr( new VariableExpr( *param++ ), new PointerType( Type::Qualifiers(), realType->get_returnVals().front()->get_type()->clone() ) ) );
1054 assign->get_args().push_back( deref );
1055 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1056 assign->get_args().push_back( adapteeApp );
1057 bodyStmt = new ExprStmt( noLabels, assign );
1058 } else {
1059 // adapter for a function that returns a monomorphic value
1060 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1061 bodyStmt = new ReturnStmt( noLabels, adapteeApp );
1062 } // if
1063 CompoundStmt *adapterBody = new CompoundStmt( noLabels );
1064 adapterBody->get_kids().push_back( bodyStmt );
1065 std::string adapterName = makeAdapterName( mangleName );
1066 return new FunctionDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, adapterType, adapterBody, false, false );
1067 }
1068
1069 void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) {
1070 // collect a list of function types passed as parameters or implicit parameters (assertions)
1071 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1072 std::list< FunctionType *> functions;
1073 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
1074 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
1075 findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter );
1076 } // for
1077 } // for
1078 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1079 findFunction( (*arg)->get_type(), functions, exprTyVars, needsAdapter );
1080 } // for
1081
1082 // parameter function types for which an appropriate adapter has been generated. we cannot use the types
1083 // after applying substitutions, since two different parameter types may be unified to the same type
1084 std::set< std::string > adaptersDone;
1085
1086 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1087 FunctionType *originalFunction = (*funType)->clone();
1088 FunctionType *realFunction = (*funType)->clone();
1089 std::string mangleName = SymTab::Mangler::mangle( realFunction );
1090
1091 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this
1092 // pre-substitution parameter function type.
1093 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1094 adaptersDone.insert( adaptersDone.begin(), mangleName );
1095
1096 // apply substitution to type variables to figure out what the adapter's type should look like
1097 assert( env );
1098 env->apply( realFunction );
1099 mangleName = SymTab::Mangler::mangle( realFunction );
1100 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars );
1101
1102 typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter;
1103 AdapterIter adapter = adapters.find( mangleName );
1104 if ( adapter == adapters.end() ) {
1105 // adapter has not been created yet in the current scope, so define it
1106 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars );
1107 std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) );
1108 adapter = answer.first;
1109 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) );
1110 } // if
1111 assert( adapter != adapters.end() );
1112
1113 // add the appropriate adapter as a parameter
1114 appExpr->get_args().push_front( new VariableExpr( adapter->second ) );
1115 } // if
1116 } // for
1117 } // passAdapters
1118
1119 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) {
1120 NameExpr *opExpr;
1121 if ( isIncr ) {
1122 opExpr = new NameExpr( "?+=?" );
1123 } else {
1124 opExpr = new NameExpr( "?-=?" );
1125 } // if
1126 UntypedExpr *addAssign = new UntypedExpr( opExpr );
1127 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1128 addAssign->get_args().push_back( address->get_arg() );
1129 } else {
1130 addAssign->get_args().push_back( appExpr->get_args().front() );
1131 } // if
1132 addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) ) ) );
1133 addAssign->get_results().front() = appExpr->get_results().front()->clone();
1134 if ( appExpr->get_env() ) {
1135 addAssign->set_env( appExpr->get_env() );
1136 appExpr->set_env( 0 );
1137 } // if
1138 appExpr->get_args().clear();
1139 delete appExpr;
1140 return addAssign;
1141 }
1142
1143 Expression *Pass1::handleIntrinsics( ApplicationExpr *appExpr ) {
1144 if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->get_function() ) ) {
1145 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic ) {
1146 if ( varExpr->get_var()->get_name() == "?[?]" ) {
1147 assert( ! appExpr->get_results().empty() );
1148 assert( appExpr->get_args().size() == 2 );
1149 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
1150 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
1151 assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers
1152 UntypedExpr *ret = 0;
1153 if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer
1154 ret = new UntypedExpr( new NameExpr( "?+?" ) );
1155 } // if
1156 if ( baseType1 ) {
1157 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1158 multiply->get_args().push_back( appExpr->get_args().back() );
1159 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1160 ret->get_args().push_back( appExpr->get_args().front() );
1161 ret->get_args().push_back( multiply );
1162 } else if ( baseType2 ) {
1163 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1164 multiply->get_args().push_back( appExpr->get_args().front() );
1165 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1166 ret->get_args().push_back( multiply );
1167 ret->get_args().push_back( appExpr->get_args().back() );
1168 } // if
1169 if ( baseType1 || baseType2 ) {
1170 ret->get_results().push_front( appExpr->get_results().front()->clone() );
1171 if ( appExpr->get_env() ) {
1172 ret->set_env( appExpr->get_env() );
1173 appExpr->set_env( 0 );
1174 } // if
1175 appExpr->get_args().clear();
1176 delete appExpr;
1177 return ret;
1178 } // if
1179 } else if ( varExpr->get_var()->get_name() == "*?" ) {
1180 assert( ! appExpr->get_results().empty() );
1181 assert( ! appExpr->get_args().empty() );
1182 if ( isPolyType( appExpr->get_results().front(), scopeTyVars, env ) ) {
1183 Expression *ret = appExpr->get_args().front();
1184 delete ret->get_results().front();
1185 ret->get_results().front() = appExpr->get_results().front()->clone();
1186 if ( appExpr->get_env() ) {
1187 ret->set_env( appExpr->get_env() );
1188 appExpr->set_env( 0 );
1189 } // if
1190 appExpr->get_args().clear();
1191 delete appExpr;
1192 return ret;
1193 } // if
1194 } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) {
1195 assert( ! appExpr->get_results().empty() );
1196 assert( appExpr->get_args().size() == 1 );
1197 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
1198 Type *tempType = appExpr->get_results().front()->clone();
1199 if ( env ) {
1200 env->apply( tempType );
1201 } // if
1202 ObjectDecl *newObj = makeTemporary( tempType );
1203 VariableExpr *tempExpr = new VariableExpr( newObj );
1204 UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) );
1205 assignExpr->get_args().push_back( tempExpr->clone() );
1206 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1207 assignExpr->get_args().push_back( address->get_arg()->clone() );
1208 } else {
1209 assignExpr->get_args().push_back( appExpr->get_args().front()->clone() );
1210 } // if
1211 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) );
1212 return new CommaExpr( firstComma, tempExpr );
1213 } // if
1214 } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) {
1215 assert( ! appExpr->get_results().empty() );
1216 assert( appExpr->get_args().size() == 1 );
1217 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
1218 return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );
1219 } // if
1220 } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) {
1221 assert( ! appExpr->get_results().empty() );
1222 assert( appExpr->get_args().size() == 2 );
1223 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
1224 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
1225 if ( baseType1 && baseType2 ) {
1226 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) );
1227 divide->get_args().push_back( appExpr );
1228 divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1229 divide->get_results().push_front( appExpr->get_results().front()->clone() );
1230 if ( appExpr->get_env() ) {
1231 divide->set_env( appExpr->get_env() );
1232 appExpr->set_env( 0 );
1233 } // if
1234 return divide;
1235 } else if ( baseType1 ) {
1236 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1237 multiply->get_args().push_back( appExpr->get_args().back() );
1238 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1239 appExpr->get_args().back() = multiply;
1240 } else if ( baseType2 ) {
1241 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1242 multiply->get_args().push_back( appExpr->get_args().front() );
1243 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1244 appExpr->get_args().front() = multiply;
1245 } // if
1246 } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) {
1247 assert( ! appExpr->get_results().empty() );
1248 assert( appExpr->get_args().size() == 2 );
1249 Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env );
1250 if ( baseType ) {
1251 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1252 multiply->get_args().push_back( appExpr->get_args().back() );
1253 multiply->get_args().push_back( new SizeofExpr( baseType->clone() ) );
1254 appExpr->get_args().back() = multiply;
1255 } // if
1256 } // if
1257 return appExpr;
1258 } // if
1259 } // if
1260 return 0;
1261 }
1262
1263 Expression *Pass1::mutate( ApplicationExpr *appExpr ) {
1264 // std::cerr << "mutate appExpr: ";
1265 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
1266 // std::cerr << i->first << " ";
1267 // }
1268 // std::cerr << "\n";
1269 bool oldUseRetval = useRetval;
1270 useRetval = false;
1271 appExpr->get_function()->acceptMutator( *this );
1272 mutateAll( appExpr->get_args(), *this );
1273 useRetval = oldUseRetval;
1274
1275 assert( ! appExpr->get_function()->get_results().empty() );
1276 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
1277 assert( pointer );
1278 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
1279 assert( function );
1280
1281 if ( Expression *newExpr = handleIntrinsics( appExpr ) ) {
1282 return newExpr;
1283 } // if
1284
1285 Expression *ret = appExpr;
1286
1287 std::list< Expression *>::iterator arg = appExpr->get_args().begin();
1288 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin();
1289
1290 TyVarMap exprTyVars( (TypeDecl::Kind)-1 );
1291 makeTyVarMap( function, exprTyVars );
1292 ReferenceToType *dynRetType = isDynRet( function, exprTyVars );
1293
1294 if ( dynRetType ) {
1295 ret = addDynRetParam( appExpr, function, dynRetType, arg );
1296 } else if ( needsAdapter( function, scopeTyVars ) ) {
1297 // std::cerr << "needs adapter: ";
1298 // printTyVarMap( std::cerr, scopeTyVars );
1299 // std::cerr << *env << std::endl;
1300 // change the application so it calls the adapter rather than the passed function
1301 ret = applyAdapter( appExpr, function, arg, scopeTyVars );
1302 } // if
1303 arg = appExpr->get_args().begin();
1304
1305 passTypeVars( appExpr, dynRetType, arg, exprTyVars );
1306 addInferredParams( appExpr, function, arg, exprTyVars );
1307
1308 arg = paramBegin;
1309
1310 boxParams( appExpr, function, arg, exprTyVars );
1311 passAdapters( appExpr, function, exprTyVars );
1312
1313 return ret;
1314 }
1315
1316 Expression *Pass1::mutate( UntypedExpr *expr ) {
1317 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
1318 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1319 if ( name->get_name() == "*?" ) {
1320 Expression *ret = expr->get_args().front();
1321 expr->get_args().clear();
1322 delete expr;
1323 return ret->acceptMutator( *this );
1324 } // if
1325 } // if
1326 } // if
1327 return PolyMutator::mutate( expr );
1328 }
1329
1330 Expression *Pass1::mutate( AddressExpr *addrExpr ) {
1331 assert( ! addrExpr->get_arg()->get_results().empty() );
1332
1333 bool needs = false;
1334 if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {
1335 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
1336 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1337 if ( name->get_name() == "*?" ) {
1338 if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {
1339 assert( ! appExpr->get_function()->get_results().empty() );
1340 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
1341 assert( pointer );
1342 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
1343 assert( function );
1344 needs = needsAdapter( function, scopeTyVars );
1345 } // if
1346 } // if
1347 } // if
1348 } // if
1349 } // if
1350 // isPolyType check needs to happen before mutating addrExpr arg, so pull it forward
1351 // out of the if condition.
1352 bool polytype = isPolyType( addrExpr->get_arg()->get_results().front(), scopeTyVars, env );
1353 addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) );
1354 if ( polytype || needs ) {
1355 Expression *ret = addrExpr->get_arg();
1356 delete ret->get_results().front();
1357 ret->get_results().front() = addrExpr->get_results().front()->clone();
1358 addrExpr->set_arg( 0 );
1359 delete addrExpr;
1360 return ret;
1361 } else {
1362 return addrExpr;
1363 } // if
1364 }
1365
1366 /// Wraps a function declaration in a new pointer-to-function variable expression
1367 VariableExpr *wrapFunctionDecl( DeclarationWithType *functionDecl ) {
1368 // line below cloned from FixFunction.cc
1369 // xxx - functionObj is never added to a list of declarations...
1370 ObjectDecl *functionObj = new ObjectDecl( functionDecl->get_name(), functionDecl->get_storageClass(), functionDecl->get_linkage(), 0,
1371 new PointerType( Type::Qualifiers(), functionDecl->get_type()->clone() ), 0 );
1372 functionObj->set_mangleName( functionDecl->get_mangleName() );
1373 functionObj->set_scopeLevel( functionDecl->get_scopeLevel() );
1374 return new VariableExpr( functionObj );
1375 }
1376
1377 /// Finds the operation declaration for a given type in one of the two maps
1378 DeclarationWithType* findOpForType( Type *formalType, const ScopedMap< std::string, DeclarationWithType* >& ops, ResolvExpr::TypeMap< DeclarationWithType >& scopedOps ) {
1379 if ( TypeInstType *formalTypeInstType = dynamic_cast< TypeInstType* >( formalType ) ) {
1380 ScopedMap< std::string, DeclarationWithType *>::const_iterator opIt = ops.find( formalTypeInstType->get_name() );
1381 return opIt == ops.end() ? 0 : opIt->second;
1382 } else {
1383 return scopedOps.find( formalType );
1384 }
1385 }
1386
1387 /// Adds an assertion parameter to the application expression for the actual assertion declaration valued with the assert op
1388 void addAssertionFor( ApplicationExpr *appExpr, DeclarationWithType *actualDecl, DeclarationWithType *assertOp ) {
1389 appExpr->get_inferParams()[ actualDecl->get_uniqueId() ]
1390 = ParamEntry( assertOp->get_uniqueId(), assertOp->get_type()->clone(), actualDecl->get_type()->clone(), wrapFunctionDecl( assertOp ) );
1391 }
1392
1393 Statement * Pass1::mutate( ReturnStmt *returnStmt ) {
1394 if ( retval && returnStmt->get_expr() ) {
1395 assert( ! returnStmt->get_expr()->get_results().empty() );
1396 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
1397 // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) {
1398 // by this point, a cast expr on a polymorphic return value is redundant
1399 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( returnStmt->get_expr() ) ) {
1400 returnStmt->set_expr( castExpr->get_arg() );
1401 returnStmt->get_expr()->set_env( castExpr->get_env() );
1402 castExpr->set_env( 0 );
1403 castExpr->set_arg( 0 );
1404 delete castExpr;
1405 } //while
1406
1407 // find assignment operator for (polymorphic) return type
1408 ApplicationExpr *assignExpr = 0;
1409 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ) ) {
1410 // find assignment operator for type variable
1411 ScopedMap< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() );
1412 if ( assignIter == assignOps.end() ) {
1413 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() );
1414 } // if
1415 assignExpr = new ApplicationExpr( new VariableExpr( assignIter->second ) );
1416 } else if ( ReferenceToType *refType = dynamic_cast< ReferenceToType *>( retval->get_type() ) ) {
1417 // find assignment operator for generic type
1418 DeclarationWithType *functionDecl = scopedAssignOps.find( refType );
1419 if ( ! functionDecl ) {
1420 throw SemanticError( "Attempt to return dtype or ftype generic object in ", returnStmt->get_expr() );
1421 }
1422
1423 // wrap it up in an application expression
1424 assignExpr = new ApplicationExpr( wrapFunctionDecl( functionDecl ) );
1425 assignExpr->set_env( env->clone() );
1426
1427 // find each of its needed secondary assignment operators
1428 std::list< Expression* > &tyParams = refType->get_parameters();
1429 std::list< TypeDecl* > &forallParams = functionDecl->get_type()->get_forall();
1430 std::list< Expression* >::const_iterator tyIt = tyParams.begin();
1431 std::list< TypeDecl* >::const_iterator forallIt = forallParams.begin();
1432 for ( ; tyIt != tyParams.end() && forallIt != forallParams.end(); ++tyIt, ++forallIt ) {
1433 // Add appropriate mapping to assignment expression environment
1434 TypeExpr *formalTypeExpr = dynamic_cast< TypeExpr* >( *tyIt );
1435 assert( formalTypeExpr && "type parameters must be type expressions" );
1436 Type *formalType = formalTypeExpr->get_type();
1437 assignExpr->get_env()->add( (*forallIt)->get_name(), formalType );
1438
1439 // skip non-otype parameters (ftype/dtype)
1440 if ( (*forallIt)->get_kind() != TypeDecl::Any ) continue;
1441
1442 // find otype operators for formal type
1443 DeclarationWithType *assertAssign = findOpForType( formalType, assignOps, scopedAssignOps );
1444 if ( ! assertAssign ) throw SemanticError( "No assignment operation found for ", formalType );
1445
1446 DeclarationWithType *assertCtor = findOpForType( formalType, ctorOps, scopedCtorOps );
1447 if ( ! assertCtor ) throw SemanticError( "No default constructor found for ", formalType );
1448
1449 DeclarationWithType *assertCopy = findOpForType( formalType, copyOps, scopedCopyOps );
1450 if ( ! assertCopy ) throw SemanticError( "No copy constructor found for ", formalType );
1451
1452 DeclarationWithType *assertDtor = findOpForType( formalType, dtorOps, scopedDtorOps );
1453 if ( ! assertDtor ) throw SemanticError( "No destructor found for ", formalType );
1454
1455 // add inferred parameters for otype operators to assignment expression
1456 // NOTE: Code here assumes that first four assertions are assign op, ctor, copy ctor, dtor, in that order
1457 std::list< DeclarationWithType* > &asserts = (*forallIt)->get_assertions();
1458 assert( asserts.size() >= 4 && "Type param needs otype operator assertions" );
1459
1460 std::list< DeclarationWithType* >::iterator actualIt = asserts.begin();
1461 addAssertionFor( assignExpr, *actualIt, assertAssign );
1462 ++actualIt;
1463 addAssertionFor( assignExpr, *actualIt, assertCtor );
1464 ++actualIt;
1465 addAssertionFor( assignExpr, *actualIt, assertCopy );
1466 ++actualIt;
1467 addAssertionFor( assignExpr, *actualIt, assertDtor );
1468
1469 }
1470 }
1471 assert( assignExpr );
1472
1473 // replace return statement with appropriate assignment to out parameter
1474 Expression *retParm = new NameExpr( retval->get_name() );
1475 retParm->get_results().push_back( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
1476 assignExpr->get_args().push_back( retParm );
1477 assignExpr->get_args().push_back( returnStmt->get_expr() );
1478 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) );
1479 // } else {
1480 // useRetval = true;
1481 // stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( returnStmt->get_expr() ) ) );
1482 // useRetval = false;
1483 // } // if
1484 returnStmt->set_expr( 0 );
1485 } else {
1486 returnStmt->set_expr( mutateExpression( returnStmt->get_expr() ) );
1487 } // if
1488 return returnStmt;
1489 }
1490
1491 Type * Pass1::mutate( PointerType *pointerType ) {
1492 scopeTyVars.beginScope();
1493 makeTyVarMap( pointerType, scopeTyVars );
1494
1495 Type *ret = Mutator::mutate( pointerType );
1496
1497 scopeTyVars.endScope();
1498 return ret;
1499 }
1500
1501 Type * Pass1::mutate( FunctionType *functionType ) {
1502 scopeTyVars.beginScope();
1503 makeTyVarMap( functionType, scopeTyVars );
1504
1505 Type *ret = Mutator::mutate( functionType );
1506
1507 scopeTyVars.endScope();
1508 return ret;
1509 }
1510
1511 void Pass1::doBeginScope() {
1512 adapters.beginScope();
1513 scopedAssignOps.beginScope();
1514 scopedCtorOps.beginScope();
1515 scopedCopyOps.beginScope();
1516 scopedDtorOps.beginScope();
1517 }
1518
1519 void Pass1::doEndScope() {
1520 adapters.endScope();
1521 scopedAssignOps.endScope();
1522 scopedCtorOps.endScope();
1523 scopedCopyOps.endScope();
1524 scopedDtorOps.endScope();
1525 }
1526
1527////////////////////////////////////////// Pass2 ////////////////////////////////////////////////////
1528
1529 void Pass2::addAdapters( FunctionType *functionType ) {
1530 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1531 std::list< FunctionType *> functions;
1532 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1533 Type *orig = (*arg)->get_type();
1534 findAndReplaceFunction( orig, functions, scopeTyVars, needsAdapter );
1535 (*arg)->set_type( orig );
1536 }
1537 std::set< std::string > adaptersDone;
1538 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1539 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
1540 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1541 std::string adapterName = makeAdapterName( mangleName );
1542 paramList.push_front( new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) );
1543 adaptersDone.insert( adaptersDone.begin(), mangleName );
1544 }
1545 }
1546// deleteAll( functions );
1547 }
1548
1549 template< typename DeclClass >
1550 DeclClass * Pass2::handleDecl( DeclClass *decl, Type *type ) {
1551 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1552
1553 return ret;
1554 }
1555
1556 DeclarationWithType * Pass2::mutate( FunctionDecl *functionDecl ) {
1557 return handleDecl( functionDecl, functionDecl->get_functionType() );
1558 }
1559
1560 ObjectDecl * Pass2::mutate( ObjectDecl *objectDecl ) {
1561 return handleDecl( objectDecl, objectDecl->get_type() );
1562 }
1563
1564 TypeDecl * Pass2::mutate( TypeDecl *typeDecl ) {
1565 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1566 if ( typeDecl->get_base() ) {
1567 return handleDecl( typeDecl, typeDecl->get_base() );
1568 } else {
1569 return Mutator::mutate( typeDecl );
1570 }
1571 }
1572
1573 TypedefDecl * Pass2::mutate( TypedefDecl *typedefDecl ) {
1574 return handleDecl( typedefDecl, typedefDecl->get_base() );
1575 }
1576
1577 Type * Pass2::mutate( PointerType *pointerType ) {
1578 scopeTyVars.beginScope();
1579 makeTyVarMap( pointerType, scopeTyVars );
1580
1581 Type *ret = Mutator::mutate( pointerType );
1582
1583 scopeTyVars.endScope();
1584 return ret;
1585 }
1586
1587 Type *Pass2::mutate( FunctionType *funcType ) {
1588 scopeTyVars.beginScope();
1589 makeTyVarMap( funcType, scopeTyVars );
1590
1591 // move polymorphic return type to parameter list
1592 if ( isDynRet( funcType ) ) {
1593 DeclarationWithType *ret = funcType->get_returnVals().front();
1594 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) );
1595 funcType->get_parameters().push_front( ret );
1596 funcType->get_returnVals().pop_front();
1597 }
1598
1599 // add size/align and assertions for type parameters to parameter list
1600 std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin();
1601 std::list< DeclarationWithType *> inferredParams;
1602 ObjectDecl newObj( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 );
1603 ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0,
1604 new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 );
1605 for ( std::list< TypeDecl *>::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
1606 ObjectDecl *sizeParm, *alignParm;
1607 // add all size and alignment parameters to parameter list
1608 if ( (*tyParm)->get_kind() == TypeDecl::Any ) {
1609 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm );
1610 std::string parmName = mangleType( &parmType );
1611
1612 sizeParm = newObj.clone();
1613 sizeParm->set_name( sizeofName( parmName ) );
1614 last = funcType->get_parameters().insert( last, sizeParm );
1615 ++last;
1616
1617 alignParm = newObj.clone();
1618 alignParm->set_name( alignofName( parmName ) );
1619 last = funcType->get_parameters().insert( last, alignParm );
1620 ++last;
1621 }
1622 // move all assertions into parameter list
1623 for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) {
1624// *assert = (*assert)->acceptMutator( *this );
1625 inferredParams.push_back( *assert );
1626 }
1627 (*tyParm)->get_assertions().clear();
1628 }
1629
1630 // add size/align for generic parameter types to parameter list
1631 std::set< std::string > seenTypes; // sizeofName for generic types we've seen
1632 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) {
1633 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1634 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1635 std::string typeName = mangleType( polyType );
1636 if ( seenTypes.count( typeName ) ) continue;
1637
1638 ObjectDecl *sizeParm, *alignParm, *offsetParm;
1639 sizeParm = newObj.clone();
1640 sizeParm->set_name( sizeofName( typeName ) );
1641 last = funcType->get_parameters().insert( last, sizeParm );
1642 ++last;
1643
1644 alignParm = newObj.clone();
1645 alignParm->set_name( alignofName( typeName ) );
1646 last = funcType->get_parameters().insert( last, alignParm );
1647 ++last;
1648
1649 if ( StructInstType *polyBaseStruct = dynamic_cast< StructInstType* >( polyType ) ) {
1650 // NOTE zero-length arrays are illegal in C, so empty structs have no offset array
1651 if ( ! polyBaseStruct->get_baseStruct()->get_members().empty() ) {
1652 offsetParm = newPtr.clone();
1653 offsetParm->set_name( offsetofName( typeName ) );
1654 last = funcType->get_parameters().insert( last, offsetParm );
1655 ++last;
1656 }
1657 }
1658
1659 seenTypes.insert( typeName );
1660 }
1661 }
1662
1663 // splice assertion parameters into parameter list
1664 funcType->get_parameters().splice( last, inferredParams );
1665 addAdapters( funcType );
1666 mutateAll( funcType->get_returnVals(), *this );
1667 mutateAll( funcType->get_parameters(), *this );
1668
1669 scopeTyVars.endScope();
1670 return funcType;
1671 }
1672
1673////////////////////////////////////////// PolyGenericCalculator ////////////////////////////////////////////////////
1674
1675 void PolyGenericCalculator::beginTypeScope( Type *ty ) {
1676 scopeTyVars.beginScope();
1677 makeTyVarMap( ty, scopeTyVars );
1678 }
1679
1680 void PolyGenericCalculator::endTypeScope() {
1681 scopeTyVars.endScope();
1682 }
1683
1684 template< typename DeclClass >
1685 DeclClass * PolyGenericCalculator::handleDecl( DeclClass *decl, Type *type ) {
1686 beginTypeScope( type );
1687 // knownLayouts.beginScope();
1688 // knownOffsets.beginScope();
1689
1690 DeclClass *ret = static_cast< DeclClass *>( Parent::mutate( decl ) );
1691
1692 // knownOffsets.endScope();
1693 // knownLayouts.endScope();
1694 endTypeScope();
1695 return ret;
1696 }
1697
1698 ObjectDecl * PolyGenericCalculator::mutate( ObjectDecl *objectDecl ) {
1699 return handleDecl( objectDecl, objectDecl->get_type() );
1700 }
1701
1702 DeclarationWithType * PolyGenericCalculator::mutate( FunctionDecl *functionDecl ) {
1703 knownLayouts.beginScope();
1704 knownOffsets.beginScope();
1705
1706 DeclarationWithType * decl = handleDecl( functionDecl, functionDecl->get_functionType() );
1707 knownOffsets.endScope();
1708 knownLayouts.endScope();
1709 return decl;
1710 }
1711
1712 TypedefDecl * PolyGenericCalculator::mutate( TypedefDecl *typedefDecl ) {
1713 return handleDecl( typedefDecl, typedefDecl->get_base() );
1714 }
1715
1716 TypeDecl * PolyGenericCalculator::mutate( TypeDecl *typeDecl ) {
1717 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1718 return Parent::mutate( typeDecl );
1719 }
1720
1721 Type * PolyGenericCalculator::mutate( PointerType *pointerType ) {
1722 beginTypeScope( pointerType );
1723
1724 Type *ret = Parent::mutate( pointerType );
1725
1726 endTypeScope();
1727 return ret;
1728 }
1729
1730 Type * PolyGenericCalculator::mutate( FunctionType *funcType ) {
1731 beginTypeScope( funcType );
1732
1733 // make sure that any type information passed into the function is accounted for
1734 for ( std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); fnParm != funcType->get_parameters().end(); ++fnParm ) {
1735 // condition here duplicates that in Pass2::mutate( FunctionType* )
1736 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1737 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1738 knownLayouts.insert( mangleType( polyType ) );
1739 }
1740 }
1741
1742 Type *ret = Parent::mutate( funcType );
1743
1744 endTypeScope();
1745 return ret;
1746 }
1747
1748 Statement *PolyGenericCalculator::mutate( DeclStmt *declStmt ) {
1749 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) {
1750 if ( findGeneric( objectDecl->get_type() ) ) {
1751 // change initialization of a polymorphic value object
1752 // to allocate storage with alloca
1753 Type *declType = objectDecl->get_type();
1754 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) );
1755 alloc->get_args().push_back( new NameExpr( sizeofName( mangleType( declType ) ) ) );
1756
1757 delete objectDecl->get_init();
1758
1759 std::list<Expression*> designators;
1760 objectDecl->set_init( new SingleInit( alloc, designators, false ) ); // not constructed
1761 }
1762 }
1763 return Parent::mutate( declStmt );
1764 }
1765
1766 /// Finds the member in the base list that matches the given declaration; returns its index, or -1 if not present
1767 long findMember( DeclarationWithType *memberDecl, std::list< Declaration* > &baseDecls ) {
1768 long i = 0;
1769 for(std::list< Declaration* >::const_iterator decl = baseDecls.begin(); decl != baseDecls.end(); ++decl, ++i ) {
1770 if ( memberDecl->get_name() != (*decl)->get_name() ) continue;
1771
1772 if ( DeclarationWithType *declWithType = dynamic_cast< DeclarationWithType* >( *decl ) ) {
1773 if ( memberDecl->get_mangleName().empty() || declWithType->get_mangleName().empty()
1774 || memberDecl->get_mangleName() == declWithType->get_mangleName() ) return i;
1775 else continue;
1776 } else return i;
1777 }
1778 return -1;
1779 }
1780
1781 /// Returns an index expression into the offset array for a type
1782 Expression *makeOffsetIndex( Type *objectType, long i ) {
1783 std::stringstream offset_namer;
1784 offset_namer << i;
1785 ConstantExpr *fieldIndex = new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), offset_namer.str() ) );
1786 UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) );
1787 fieldOffset->get_args().push_back( new NameExpr( offsetofName( mangleType( objectType ) ) ) );
1788 fieldOffset->get_args().push_back( fieldIndex );
1789 return fieldOffset;
1790 }
1791
1792 /// Returns an expression dereferenced n times
1793 Expression *makeDerefdVar( Expression *derefdVar, long n ) {
1794 for ( int i = 1; i < n; ++i ) {
1795 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1796 derefExpr->get_args().push_back( derefdVar );
1797 // xxx - should set results on derefExpr
1798 derefdVar = derefExpr;
1799 }
1800 return derefdVar;
1801 }
1802
1803 Expression *PolyGenericCalculator::mutate( MemberExpr *memberExpr ) {
1804 // mutate, exiting early if no longer MemberExpr
1805 Expression *expr = Parent::mutate( memberExpr );
1806 memberExpr = dynamic_cast< MemberExpr* >( expr );
1807 if ( ! memberExpr ) return expr;
1808
1809 // get declaration for base struct, exiting early if not found
1810 int varDepth;
1811 VariableExpr *varExpr = getBaseVar( memberExpr->get_aggregate(), &varDepth );
1812 if ( ! varExpr ) return memberExpr;
1813 ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1814 if ( ! objectDecl ) return memberExpr;
1815
1816 // only mutate member expressions for polymorphic types
1817 int tyDepth;
1818 Type *objectType = hasPolyBase( objectDecl->get_type(), scopeTyVars, &tyDepth );
1819 if ( ! objectType ) return memberExpr;
1820 findGeneric( objectType ); // ensure layout for this type is available
1821
1822 // replace member expression with dynamically-computed layout expression
1823 Expression *newMemberExpr = 0;
1824 if ( StructInstType *structType = dynamic_cast< StructInstType* >( objectType ) ) {
1825 // look up offset index
1826 long i = findMember( memberExpr->get_member(), structType->get_baseStruct()->get_members() );
1827 if ( i == -1 ) return memberExpr;
1828
1829 // replace member expression with pointer to base plus offset
1830 UntypedExpr *fieldLoc = new UntypedExpr( new NameExpr( "?+?" ) );
1831 fieldLoc->get_args().push_back( makeDerefdVar( varExpr->clone(), varDepth ) );
1832 fieldLoc->get_args().push_back( makeOffsetIndex( objectType, i ) );
1833 newMemberExpr = fieldLoc;
1834 } else if ( dynamic_cast< UnionInstType* >( objectType ) ) {
1835 // union members are all at offset zero, so build appropriately-dereferenced variable
1836 newMemberExpr = makeDerefdVar( varExpr->clone(), varDepth );
1837 } else return memberExpr;
1838 assert( newMemberExpr );
1839
1840 Type *memberType = memberExpr->get_member()->get_type();
1841 if ( ! isPolyType( memberType, scopeTyVars ) ) {
1842 // Not all members of a polymorphic type are themselves of polymorphic type; in this case the member expression should be wrapped and dereferenced to form an lvalue
1843 CastExpr *ptrCastExpr = new CastExpr( newMemberExpr, new PointerType( Type::Qualifiers(), memberType->clone() ) );
1844 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1845 derefExpr->get_args().push_back( ptrCastExpr );
1846 newMemberExpr = derefExpr;
1847 }
1848
1849 delete memberExpr;
1850 return newMemberExpr;
1851 }
1852
1853 ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) {
1854 ObjectDecl *newObj = new ObjectDecl( name, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, init );
1855 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
1856 return newObj;
1857 }
1858
1859 void PolyGenericCalculator::addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ) {
1860 for ( std::list< Type* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
1861 if ( findGeneric( *param ) ) {
1862 // push size/align vars for a generic parameter back
1863 std::string paramName = mangleType( *param );
1864 layoutCall->get_args().push_back( new NameExpr( sizeofName( paramName ) ) );
1865 layoutCall->get_args().push_back( new NameExpr( alignofName( paramName ) ) );
1866 } else {
1867 layoutCall->get_args().push_back( new SizeofExpr( (*param)->clone() ) );
1868 layoutCall->get_args().push_back( new AlignofExpr( (*param)->clone() ) );
1869 }
1870 }
1871 }
1872
1873 /// returns true if any of the otype parameters have a dynamic layout and puts all otype parameters in the output list
1874 bool findGenericParams( std::list< TypeDecl* > &baseParams, std::list< Expression* > &typeParams, std::list< Type* > &out ) {
1875 bool hasDynamicLayout = false;
1876
1877 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
1878 std::list< Expression* >::const_iterator typeParam = typeParams.begin();
1879 for ( ; baseParam != baseParams.end() && typeParam != typeParams.end(); ++baseParam, ++typeParam ) {
1880 // skip non-otype parameters
1881 if ( (*baseParam)->get_kind() != TypeDecl::Any ) continue;
1882 TypeExpr *typeExpr = dynamic_cast< TypeExpr* >( *typeParam );
1883 assert( typeExpr && "all otype parameters should be type expressions" );
1884
1885 Type *type = typeExpr->get_type();
1886 out.push_back( type );
1887 if ( isPolyType( type ) ) hasDynamicLayout = true;
1888 }
1889 assert( baseParam == baseParams.end() && typeParam == typeParams.end() );
1890
1891 return hasDynamicLayout;
1892 }
1893
1894 bool PolyGenericCalculator::findGeneric( Type *ty ) {
1895 ty = replaceTypeInst( ty, env );
1896
1897 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) {
1898 if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() ) {
1899 // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set
1900 return true;
1901 }
1902 return false;
1903 } else if ( StructInstType *structTy = dynamic_cast< StructInstType* >( ty ) ) {
1904 // check if this type already has a layout generated for it
1905 std::string typeName = mangleType( ty );
1906 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
1907
1908 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
1909 std::list< Type* > otypeParams;
1910 if ( ! findGenericParams( *structTy->get_baseParameters(), structTy->get_parameters(), otypeParams ) ) return false;
1911
1912 // insert local variables for layout and generate call to layout function
1913 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
1914 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1915
1916 int n_members = structTy->get_baseStruct()->get_members().size();
1917 if ( n_members == 0 ) {
1918 // all empty structs have the same layout - size 1, align 1
1919 makeVar( sizeofName( typeName ), layoutType, new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
1920 makeVar( alignofName( typeName ), layoutType->clone(), new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
1921 // NOTE zero-length arrays are forbidden in C, so empty structs have no offsetof array
1922 } else {
1923 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
1924 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
1925 ObjectDecl *offsetVar = makeVar( offsetofName( typeName ), new ArrayType( Type::Qualifiers(), layoutType->clone(), new ConstantExpr( Constant::from_int( n_members ) ), false, false ) );
1926
1927 // generate call to layout function
1928 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( structTy->get_baseStruct() ) ) );
1929 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
1930 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
1931 layoutCall->get_args().push_back( new VariableExpr( offsetVar ) );
1932 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
1933
1934 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
1935 }
1936
1937 return true;
1938 } else if ( UnionInstType *unionTy = dynamic_cast< UnionInstType* >( ty ) ) {
1939 // check if this type already has a layout generated for it
1940 std::string typeName = mangleType( ty );
1941 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
1942
1943 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
1944 std::list< Type* > otypeParams;
1945 if ( ! findGenericParams( *unionTy->get_baseParameters(), unionTy->get_parameters(), otypeParams ) ) return false;
1946
1947 // insert local variables for layout and generate call to layout function
1948 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
1949 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1950
1951 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
1952 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
1953
1954 // generate call to layout function
1955 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( unionTy->get_baseUnion() ) ) );
1956 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
1957 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
1958 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
1959
1960 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
1961
1962 return true;
1963 }
1964
1965 return false;
1966 }
1967
1968 Expression *PolyGenericCalculator::mutate( SizeofExpr *sizeofExpr ) {
1969 Type *ty = sizeofExpr->get_type();
1970 if ( findGeneric( ty ) ) {
1971 Expression *ret = new NameExpr( sizeofName( mangleType( ty ) ) );
1972 delete sizeofExpr;
1973 return ret;
1974 }
1975 return sizeofExpr;
1976 }
1977
1978 Expression *PolyGenericCalculator::mutate( AlignofExpr *alignofExpr ) {
1979 Type *ty = alignofExpr->get_type();
1980 if ( findGeneric( ty ) ) {
1981 Expression *ret = new NameExpr( alignofName( mangleType( ty ) ) );
1982 delete alignofExpr;
1983 return ret;
1984 }
1985 return alignofExpr;
1986 }
1987
1988 Expression *PolyGenericCalculator::mutate( OffsetofExpr *offsetofExpr ) {
1989 // mutate, exiting early if no longer OffsetofExpr
1990 Expression *expr = Parent::mutate( offsetofExpr );
1991 offsetofExpr = dynamic_cast< OffsetofExpr* >( expr );
1992 if ( ! offsetofExpr ) return expr;
1993
1994 // only mutate expressions for polymorphic structs/unions
1995 Type *ty = offsetofExpr->get_type();
1996 if ( ! findGeneric( ty ) ) return offsetofExpr;
1997
1998 if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) {
1999 // replace offsetof expression by index into offset array
2000 long i = findMember( offsetofExpr->get_member(), structType->get_baseStruct()->get_members() );
2001 if ( i == -1 ) return offsetofExpr;
2002
2003 Expression *offsetInd = makeOffsetIndex( ty, i );
2004 delete offsetofExpr;
2005 return offsetInd;
2006 } else if ( dynamic_cast< UnionInstType* >( ty ) ) {
2007 // all union members are at offset zero
2008 delete offsetofExpr;
2009 return new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "0" ) );
2010 } else return offsetofExpr;
2011 }
2012
2013 Expression *PolyGenericCalculator::mutate( OffsetPackExpr *offsetPackExpr ) {
2014 StructInstType *ty = offsetPackExpr->get_type();
2015
2016 Expression *ret = 0;
2017 if ( findGeneric( ty ) ) {
2018 // pull offset back from generated type information
2019 ret = new NameExpr( offsetofName( mangleType( ty ) ) );
2020 } else {
2021 std::string offsetName = offsetofName( mangleType( ty ) );
2022 if ( knownOffsets.find( offsetName ) != knownOffsets.end() ) {
2023 // use the already-generated offsets for this type
2024 ret = new NameExpr( offsetName );
2025 } else {
2026 knownOffsets.insert( offsetName );
2027
2028 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members();
2029 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2030
2031 // build initializer list for offset array
2032 std::list< Initializer* > inits;
2033 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) {
2034 DeclarationWithType *memberDecl;
2035 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) {
2036 memberDecl = origMember->clone();
2037 } else {
2038 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 );
2039 }
2040 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) );
2041 }
2042
2043 // build the offset array and replace the pack with a reference to it
2044 ObjectDecl *offsetArray = makeVar( offsetName, new ArrayType( Type::Qualifiers(), offsetType, new ConstantExpr( Constant::from_ulong( baseMembers.size() ) ), false, false ),
2045 new ListInit( inits ) );
2046 ret = new VariableExpr( offsetArray );
2047 }
2048 }
2049
2050 delete offsetPackExpr;
2051 return ret;
2052 }
2053
2054 void PolyGenericCalculator::doBeginScope() {
2055 knownLayouts.beginScope();
2056 knownOffsets.beginScope();
2057 }
2058
2059 void PolyGenericCalculator::doEndScope() {
2060 knownLayouts.endScope();
2061 knownOffsets.endScope();
2062 }
2063
2064////////////////////////////////////////// Pass3 ////////////////////////////////////////////////////
2065
2066 template< typename DeclClass >
2067 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) {
2068 scopeTyVars.beginScope();
2069 makeTyVarMap( type, scopeTyVars );
2070
2071 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
2072 ScrubTyVars::scrub( decl, scopeTyVars );
2073
2074 scopeTyVars.endScope();
2075 return ret;
2076 }
2077
2078 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) {
2079 return handleDecl( objectDecl, objectDecl->get_type() );
2080 }
2081
2082 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) {
2083 return handleDecl( functionDecl, functionDecl->get_functionType() );
2084 }
2085
2086 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) {
2087 return handleDecl( typedefDecl, typedefDecl->get_base() );
2088 }
2089
2090 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) {
2091// Initializer *init = 0;
2092// std::list< Expression *> designators;
2093// scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2094// if ( typeDecl->get_base() ) {
2095// init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators );
2096// }
2097// return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init );
2098
2099 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2100 return Mutator::mutate( typeDecl );
2101 }
2102
2103 Type * Pass3::mutate( PointerType *pointerType ) {
2104 scopeTyVars.beginScope();
2105 makeTyVarMap( pointerType, scopeTyVars );
2106
2107 Type *ret = Mutator::mutate( pointerType );
2108
2109 scopeTyVars.endScope();
2110 return ret;
2111 }
2112
2113 Type * Pass3::mutate( FunctionType *functionType ) {
2114 scopeTyVars.beginScope();
2115 makeTyVarMap( functionType, scopeTyVars );
2116
2117 Type *ret = Mutator::mutate( functionType );
2118
2119 scopeTyVars.endScope();
2120 return ret;
2121 }
2122 } // anonymous namespace
2123} // namespace GenPoly
2124
2125// Local Variables: //
2126// tab-width: 4 //
2127// mode: c++ //
2128// compile-command: "make install" //
2129// End: //
Note: See TracBrowser for help on using the repository browser.