source: src/GenPoly/Box.cc@ e47f529

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay gc_noraii jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since e47f529 was 1cced28, checked in by Aaron Moss <a3moss@…>, 10 years ago

box arguments to generic parameters

  • Property mode set to 100644
File size: 50.3 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Rob Schluntz
12// Last Modified On : Fri Dec 18 14:53:08 2015
13// Update Count : 217
14//
15
16#include <set>
17#include <stack>
18#include <string>
19#include <iterator>
20#include <algorithm>
21#include <cassert>
22
23#include "Box.h"
24#include "PolyMutator.h"
25#include "FindFunction.h"
26#include "ScrubTyVars.h"
27
28#include "Parser/ParseNode.h"
29
30#include "SynTree/Constant.h"
31#include "SynTree/Type.h"
32#include "SynTree/Expression.h"
33#include "SynTree/Initializer.h"
34#include "SynTree/Statement.h"
35#include "SynTree/Mutator.h"
36
37#include "ResolvExpr/TypeEnvironment.h"
38
39#include "SymTab/Mangler.h"
40
41#include "SemanticError.h"
42#include "UniqueName.h"
43#include "utility.h"
44
45#include <ext/functional> // temporary
46
47namespace GenPoly {
48 namespace {
49 const std::list<Label> noLabels;
50
51 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars );
52
53 /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call
54 class Pass1 : public PolyMutator {
55 public:
56 Pass1();
57 virtual Expression *mutate( ApplicationExpr *appExpr );
58 virtual Expression *mutate( AddressExpr *addrExpr );
59 virtual Expression *mutate( UntypedExpr *expr );
60 virtual DeclarationWithType* mutate( FunctionDecl *functionDecl );
61 virtual TypeDecl *mutate( TypeDecl *typeDecl );
62 virtual Expression *mutate( CommaExpr *commaExpr );
63 virtual Expression *mutate( ConditionalExpr *condExpr );
64 virtual Statement * mutate( ReturnStmt *returnStmt );
65 virtual Type *mutate( PointerType *pointerType );
66 virtual Type * mutate( FunctionType *functionType );
67
68 virtual void doBeginScope();
69 virtual void doEndScope();
70 private:
71 void passTypeVars( ApplicationExpr *appExpr, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
72 Expression *addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg );
73 Expression *addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, std::string typeName, std::list< Expression *>::iterator &arg );
74 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
75 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars );
76 void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
77 void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars );
78 void findAssignOps( const std::list< TypeDecl *> &forall );
79 void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars );
80 FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars );
81 Expression *handleIntrinsics( ApplicationExpr *appExpr );
82 ObjectDecl *makeTemporary( Type *type );
83
84 typedef std::map< std::string, DeclarationWithType *> AdapterMap;
85 std::map< std::string, DeclarationWithType *> assignOps;
86 std::stack< AdapterMap > adapters;
87 DeclarationWithType *retval;
88 bool useRetval;
89 UniqueName tempNamer;
90 };
91
92 /// Moves polymorphic returns in function types to pointer-type parameters, adds type size and assertion parameters to parameter lists as well
93 class Pass2 : public PolyMutator {
94 public:
95 template< typename DeclClass >
96 DeclClass *handleDecl( DeclClass *decl, Type *type );
97 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
98 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
99 virtual TypeDecl *mutate( TypeDecl *typeDecl );
100 virtual TypedefDecl *mutate( TypedefDecl *typedefDecl );
101 virtual Type *mutate( PointerType *pointerType );
102 virtual Type *mutate( FunctionType *funcType );
103 private:
104 void addAdapters( FunctionType *functionType );
105
106 std::map< UniqueId, std::string > adapterName;
107 };
108
109 /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, and sizeof expressions of polymorphic types with the proper variable
110 class Pass3 : public PolyMutator {
111 public:
112 template< typename DeclClass >
113 DeclClass *handleDecl( DeclClass *decl, Type *type );
114 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
115 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
116 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
117 virtual TypeDecl *mutate( TypeDecl *objectDecl );
118 virtual Statement *mutate( DeclStmt *declStmt );
119 virtual Type *mutate( PointerType *pointerType );
120 virtual Type *mutate( FunctionType *funcType );
121 private:
122 };
123
124 } // anonymous namespace
125
126 void printAllNotBuiltin( const std::list< Declaration *>& translationUnit, std::ostream &os ) {
127 for ( std::list< Declaration *>::const_iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
128 if ( ! LinkageSpec::isBuiltin( (*i)->get_linkage() ) ) {
129 (*i)->print( os );
130 os << std::endl;
131 } // if
132 } // for
133 }
134
135 void box( std::list< Declaration *>& translationUnit ) {
136 Pass1 pass1;
137 Pass2 pass2;
138 Pass3 pass3;
139 mutateAll( translationUnit, pass1 );
140 mutateAll( translationUnit, pass2 );
141 mutateAll( translationUnit, pass3 );
142 }
143
144 ////////////////////////////////////////// Pass1 ////////////////////////////////////////////////////
145
146 namespace {
147 std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) {
148 std::stringstream name;
149
150 // NOTE: this function previously used isPolyObj, which failed to produce
151 // the correct thing in some situations. It's not clear to me why this wasn't working.
152
153 // if the return type or a parameter type involved polymorphic types, then the adapter will need
154 // to take those polymorphic types as pointers. Therefore, there can be two different functions
155 // with the same mangled name, so we need to further mangle the names.
156 for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) {
157 if ( isPolyType( (*retval)->get_type(), tyVars ) ) {
158 name << "P";
159 } else {
160 name << "M";
161 }
162 }
163 name << "_";
164 std::list< DeclarationWithType *> &paramList = function->get_parameters();
165 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
166 if ( isPolyType( (*arg)->get_type(), tyVars ) ) {
167 name << "P";
168 } else {
169 name << "M";
170 }
171 } // for
172 return name.str();
173 }
174
175 std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) {
176 return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars );
177 }
178
179 std::string makeAdapterName( const std::string &mangleName ) {
180 return "_adapter" + mangleName;
181 }
182
183 Pass1::Pass1() : useRetval( false ), tempNamer( "_temp" ) {
184 adapters.push(AdapterMap());
185 }
186
187 // returns true if the given declaration is: (*?=?)(T *, T) for some T (return not checked, but maybe should be)
188 bool checkAssignment( DeclarationWithType *decl, std::string &name ) {
189 if ( decl->get_name() == "?=?" ) {
190 if ( PointerType *ptrType = dynamic_cast< PointerType *>( decl->get_type() ) ) {
191 if ( FunctionType *funType = dynamic_cast< FunctionType *>( ptrType->get_base() ) ) {
192 if ( funType->get_parameters().size() == 2 ) {
193 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
194 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
195 if ( TypeInstType *typeInst2 = dynamic_cast< TypeInstType *>( funType->get_parameters().back()->get_type() ) ) {
196 if ( typeInst->get_name() == typeInst2->get_name() ) {
197 name = typeInst->get_name();
198 return true;
199 } // if
200 } // if
201 } // if
202 } // if
203 } // if
204 } // if
205 } // if
206 } // if
207 return false;
208 }
209
210 void Pass1::findAssignOps( const std::list< TypeDecl *> &forall ) {
211 // what if a nested function uses an assignment operator?
212 // assignOps.clear();
213 for ( std::list< TypeDecl *>::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
214 for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) {
215 std::string typeName;
216 if ( checkAssignment( *assert, typeName ) ) {
217 assignOps[ typeName ] = *assert;
218 } // if
219 } // for
220 } // for
221 }
222
223 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) {
224 if ( functionDecl->get_statements() ) { // empty routine body ?
225 doBeginScope();
226 TyVarMap oldtyVars = scopeTyVars;
227 std::map< std::string, DeclarationWithType *> oldassignOps = assignOps;
228 DeclarationWithType *oldRetval = retval;
229 bool oldUseRetval = useRetval;
230
231 // process polymorphic return value
232 retval = 0;
233 std::string typeName;
234 if ( isPolyRet( functionDecl->get_functionType(), typeName ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) {
235 retval = functionDecl->get_functionType()->get_returnVals().front();
236
237 // give names to unnamed return values
238 if ( retval->get_name() == "" ) {
239 retval->set_name( "_retparm" );
240 retval->set_linkage( LinkageSpec::C );
241 } // if
242 } // if
243
244 FunctionType *functionType = functionDecl->get_functionType();
245 makeTyVarMap( functionDecl->get_functionType(), scopeTyVars );
246 findAssignOps( functionDecl->get_functionType()->get_forall() );
247
248 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
249 std::list< FunctionType *> functions;
250 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
251 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
252 findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter );
253 } // for
254 } // for
255 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
256 findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter );
257 } // for
258 AdapterMap & adapters = Pass1::adapters.top();
259 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
260 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
261 if ( adapters.find( mangleName ) == adapters.end() ) {
262 std::string adapterName = makeAdapterName( mangleName );
263 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) ) );
264 } // if
265 } // for
266
267 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) );
268
269 scopeTyVars = oldtyVars;
270 assignOps = oldassignOps;
271 // std::cerr << "end FunctionDecl: ";
272 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
273 // std::cerr << i->first << " ";
274 // }
275 // std::cerr << "\n";
276 retval = oldRetval;
277 useRetval = oldUseRetval;
278 doEndScope();
279 } // if
280 return functionDecl;
281 }
282
283 TypeDecl *Pass1::mutate( TypeDecl *typeDecl ) {
284 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
285 return Mutator::mutate( typeDecl );
286 }
287
288 Expression *Pass1::mutate( CommaExpr *commaExpr ) {
289 bool oldUseRetval = useRetval;
290 useRetval = false;
291 commaExpr->set_arg1( maybeMutate( commaExpr->get_arg1(), *this ) );
292 useRetval = oldUseRetval;
293 commaExpr->set_arg2( maybeMutate( commaExpr->get_arg2(), *this ) );
294 return commaExpr;
295 }
296
297 Expression *Pass1::mutate( ConditionalExpr *condExpr ) {
298 bool oldUseRetval = useRetval;
299 useRetval = false;
300 condExpr->set_arg1( maybeMutate( condExpr->get_arg1(), *this ) );
301 useRetval = oldUseRetval;
302 condExpr->set_arg2( maybeMutate( condExpr->get_arg2(), *this ) );
303 condExpr->set_arg3( maybeMutate( condExpr->get_arg3(), *this ) );
304 return condExpr;
305
306 }
307
308 void Pass1::passTypeVars( ApplicationExpr *appExpr, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
309 // pass size/align for type variables
310 for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) {
311 ResolvExpr::EqvClass eqvClass;
312 assert( env );
313 if ( tyParm->second == TypeDecl::Any ) {
314 Type *concrete = env->lookup( tyParm->first );
315 if ( concrete ) {
316 arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) );
317 arg++;
318 arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) );
319 arg++;
320 } else {
321 throw SemanticError( "unbound type variable in application ", appExpr );
322 } // if
323 } // if
324 } // for
325
326 // add size/align for generic types to parameter list
327 //assert( ! appExpr->get_function()->get_results().empty() );
328 if ( appExpr->get_function()->get_results().empty() ) return;
329 FunctionType *funcType = getFunctionType( appExpr->get_function()->get_results().front() );
330 assert( funcType );
331
332 std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin();
333 std::list< Expression* >::const_iterator fnArg = arg;
334 std::set< std::string > seenTypes; //< names for generic types we've seen
335 for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {
336 Type *parmType = (*fnParm)->get_type();
337 if ( ! dynamic_cast< TypeInstType* >( parmType ) && isPolyType( parmType, exprTyVars ) ) {
338 std::string sizeName = sizeofName( parmType );
339 if ( seenTypes.count( sizeName ) ) continue;
340
341 assert( ! (*fnArg)->get_results().empty() );
342 Type *argType = (*fnArg)->get_results().front();
343 arg = appExpr->get_args().insert( arg, new SizeofExpr( argType->clone() ) );
344 arg++;
345 arg = appExpr->get_args().insert( arg, new AlignofExpr( argType->clone() ) );
346 arg++;
347
348 seenTypes.insert( sizeName );
349 }
350 }
351 }
352
353 ObjectDecl *Pass1::makeTemporary( Type *type ) {
354 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, 0 );
355 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
356 return newObj;
357 }
358
359 Expression *Pass1::addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ) {
360 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
361 // if ( useRetval ) {
362 // assert( retval );
363 // arg = appExpr->get_args().insert( arg, new VariableExpr( retval ) );
364 // arg++;
365 // } else {
366
367 // Create temporary to hold return value of polymorphic function and produce that temporary as a result
368 // using a comma expression. Possibly change comma expression into statement expression "{}" for multiple
369 // return values.
370 ObjectDecl *newObj = makeTemporary( retType->clone() );
371 Expression *paramExpr = new VariableExpr( newObj );
372 // If the type of the temporary is not polymorphic, box temporary by taking its address; otherwise the
373 // temporary is already boxed and can be used directly.
374 if ( ! isPolyType( newObj->get_type(), scopeTyVars, env ) ) {
375 paramExpr = new AddressExpr( paramExpr );
376 } // if
377 arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call
378 arg++;
379 // Build a comma expression to call the function and emulate a normal return.
380 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) );
381 commaExpr->set_env( appExpr->get_env() );
382 appExpr->set_env( 0 );
383 return commaExpr;
384 // } // if
385 // return appExpr;
386 }
387
388 Expression *Pass1::addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, std::string typeName, std::list< Expression *>::iterator &arg ) {
389 ResolvExpr::EqvClass eqvClass;
390 assert( env );
391 Type *concrete = env->lookup( typeName );
392 if ( concrete == 0 ) {
393 throw SemanticError( "Unbound type variable " + typeName + " in ", appExpr );
394 } // if
395 return addRetParam( appExpr, function, concrete, arg );
396 }
397
398 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
399 Expression *ret = appExpr;
400 if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) {
401 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg );
402 } // if
403 std::string mangleName = mangleAdapterName( function, tyVars );
404 std::string adapterName = makeAdapterName( mangleName );
405
406 appExpr->get_args().push_front( appExpr->get_function() );
407 appExpr->set_function( new NameExpr( adapterName ) );
408
409 return ret;
410 }
411
412 void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) {
413 assert( ! arg->get_results().empty() );
414 if ( isPolyType( param, exprTyVars ) ) {
415 if ( dynamic_cast< TypeInstType *>( arg->get_results().front() ) ) {
416 // if the argument's type is a type parameter, we don't need to box again!
417 return;
418 } else if ( arg->get_results().front()->get_isLvalue() ) {
419 // VariableExpr and MemberExpr are lvalues
420 arg = new AddressExpr( arg );
421 } else {
422 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, arg->get_results().front()->clone(), 0 );
423 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right???
424 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
425 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
426 assign->get_args().push_back( new VariableExpr( newObj ) );
427 assign->get_args().push_back( arg );
428 stmtsToAdd.push_back( new ExprStmt( noLabels, assign ) );
429 arg = new AddressExpr( new VariableExpr( newObj ) );
430 } // if
431 } // if
432 }
433
434 void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) {
435 Type *newType = formal->clone();
436 std::list< FunctionType *> functions;
437 // instead of functions needing adapters, this really ought to look for
438 // any function mentioning a polymorphic type
439 findAndReplaceFunction( newType, functions, tyVars, needsAdapter );
440 if ( ! functions.empty() ) {
441 actual = new CastExpr( actual, newType );
442 } else {
443 delete newType;
444 } // if
445 }
446
447 void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
448 for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->get_parameters().end(); ++param, ++arg ) {
449 assert( arg != appExpr->get_args().end() );
450 addCast( *arg, (*param)->get_type(), exprTyVars );
451 boxParam( (*param)->get_type(), *arg, exprTyVars );
452 } // for
453 }
454
455 void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
456 std::list< Expression *>::iterator cur = arg;
457 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
458 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
459 InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() );
460 assert( inferParam != appExpr->get_inferParams().end() && "NOTE: Explicit casts of polymorphic functions to compatible monomorphic functions are currently unsupported" );
461 Expression *newExpr = inferParam->second.expr->clone();
462 addCast( newExpr, (*assert)->get_type(), tyVars );
463 boxParam( (*assert)->get_type(), newExpr, tyVars );
464 appExpr->get_args().insert( cur, newExpr );
465 } // for
466 } // for
467 }
468
469 void makeRetParm( FunctionType *funcType ) {
470 DeclarationWithType *retParm = funcType->get_returnVals().front();
471
472 // make a new parameter that is a pointer to the type of the old return value
473 retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) );
474 funcType->get_parameters().push_front( retParm );
475
476 // we don't need the return value any more
477 funcType->get_returnVals().clear();
478 }
479
480 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ) {
481 // actually make the adapter type
482 FunctionType *adapter = adaptee->clone();
483 if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) {
484 makeRetParm( adapter );
485 } // if
486 adapter->get_parameters().push_front( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ) );
487 return adapter;
488 }
489
490 Expression *makeAdapterArg( DeclarationWithType *param, DeclarationWithType *arg, DeclarationWithType *realParam, const TyVarMap &tyVars ) {
491 assert( param );
492 assert( arg );
493 if ( isPolyType( realParam->get_type(), tyVars ) ) {
494// if ( dynamic_cast< PointerType *>( arg->get_type() ) ) {
495// return new CastExpr( new VariableExpr( param ), arg->get_type()->clone() );
496// } else {
497 if ( dynamic_cast<TypeInstType *>(arg->get_type()) == NULL ) {
498 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
499 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) );
500 deref->get_results().push_back( arg->get_type()->clone() );
501 return deref;
502 } // if
503// }
504 } // if
505 return new VariableExpr( param );
506 }
507
508 void addAdapterParams( ApplicationExpr *adapteeApp, std::list< DeclarationWithType *>::iterator arg, std::list< DeclarationWithType *>::iterator param, std::list< DeclarationWithType *>::iterator paramEnd, std::list< DeclarationWithType *>::iterator realParam, const TyVarMap &tyVars ) {
509 UniqueName paramNamer( "_p" );
510 for ( ; param != paramEnd; ++param, ++arg, ++realParam ) {
511 if ( (*param)->get_name() == "" ) {
512 (*param)->set_name( paramNamer.newName() );
513 (*param)->set_linkage( LinkageSpec::C );
514 } // if
515 adapteeApp->get_args().push_back( makeAdapterArg( *param, *arg, *realParam, tyVars ) );
516 } // for
517 }
518
519
520
521 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) {
522 FunctionType *adapterType = makeAdapterType( adaptee, tyVars );
523 adapterType = ScrubTyVars::scrub( adapterType, tyVars );
524 DeclarationWithType *adapteeDecl = adapterType->get_parameters().front();
525 adapteeDecl->set_name( "_adaptee" );
526 ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) );
527 Statement *bodyStmt;
528
529 std::list< TypeDecl *>::iterator tyArg = realType->get_forall().begin();
530 std::list< TypeDecl *>::iterator tyParam = adapterType->get_forall().begin();
531 std::list< TypeDecl *>::iterator realTyParam = adaptee->get_forall().begin();
532 for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) {
533 assert( tyArg != realType->get_forall().end() );
534 std::list< DeclarationWithType *>::iterator assertArg = (*tyArg)->get_assertions().begin();
535 std::list< DeclarationWithType *>::iterator assertParam = (*tyParam)->get_assertions().begin();
536 std::list< DeclarationWithType *>::iterator realAssertParam = (*realTyParam)->get_assertions().begin();
537 for ( ; assertParam != (*tyParam)->get_assertions().end(); ++assertArg, ++assertParam, ++realAssertParam ) {
538 assert( assertArg != (*tyArg)->get_assertions().end() );
539 adapteeApp->get_args().push_back( makeAdapterArg( *assertParam, *assertArg, *realAssertParam, tyVars ) );
540 } // for
541 } // for
542
543 std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin();
544 std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin();
545 std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin();
546 param++; // skip adaptee parameter
547 if ( realType->get_returnVals().empty() ) {
548 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
549 bodyStmt = new ExprStmt( noLabels, adapteeApp );
550 } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
551 if ( (*param)->get_name() == "" ) {
552 (*param)->set_name( "_ret" );
553 (*param)->set_linkage( LinkageSpec::C );
554 } // if
555 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
556 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
557 deref->get_args().push_back( new CastExpr( new VariableExpr( *param++ ), new PointerType( Type::Qualifiers(), realType->get_returnVals().front()->get_type()->clone() ) ) );
558 assign->get_args().push_back( deref );
559 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
560 assign->get_args().push_back( adapteeApp );
561 bodyStmt = new ExprStmt( noLabels, assign );
562 } else {
563 // adapter for a function that returns a monomorphic value
564 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
565 bodyStmt = new ReturnStmt( noLabels, adapteeApp );
566 } // if
567 CompoundStmt *adapterBody = new CompoundStmt( noLabels );
568 adapterBody->get_kids().push_back( bodyStmt );
569 std::string adapterName = makeAdapterName( mangleName );
570 return new FunctionDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, adapterType, adapterBody, false, false );
571 }
572
573 void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) {
574 // collect a list of function types passed as parameters or implicit parameters (assertions)
575 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
576 std::list< FunctionType *> functions;
577 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
578 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
579 findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter );
580 } // for
581 } // for
582 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
583 findFunction( (*arg)->get_type(), functions, exprTyVars, needsAdapter );
584 } // for
585
586 // parameter function types for which an appropriate adapter has been generated. we cannot use the types
587 // after applying substitutions, since two different parameter types may be unified to the same type
588 std::set< std::string > adaptersDone;
589
590 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
591 FunctionType *originalFunction = (*funType)->clone();
592 FunctionType *realFunction = (*funType)->clone();
593 std::string mangleName = SymTab::Mangler::mangle( realFunction );
594
595 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this
596 // pre-substitution parameter function type.
597 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
598 adaptersDone.insert( adaptersDone.begin(), mangleName );
599
600 // apply substitution to type variables to figure out what the adapter's type should look like
601 assert( env );
602 env->apply( realFunction );
603 mangleName = SymTab::Mangler::mangle( realFunction );
604 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars );
605
606 AdapterMap & adapters = Pass1::adapters.top();
607 AdapterMap::iterator adapter = adapters.find( mangleName );
608 if ( adapter == adapters.end() ) {
609 // adapter has not been created yet in the current scope, so define it
610 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars );
611 adapter = adapters.insert( adapters.begin(), std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) );
612 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) );
613 } // if
614 assert( adapter != adapters.end() );
615
616 // add the appropriate adapter as a parameter
617 appExpr->get_args().push_front( new VariableExpr( adapter->second ) );
618 } // if
619 } // for
620 } // passAdapters
621
622 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) {
623 NameExpr *opExpr;
624 if ( isIncr ) {
625 opExpr = new NameExpr( "?+=?" );
626 } else {
627 opExpr = new NameExpr( "?-=?" );
628 } // if
629 UntypedExpr *addAssign = new UntypedExpr( opExpr );
630 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
631 addAssign->get_args().push_back( address->get_arg() );
632 } else {
633 addAssign->get_args().push_back( appExpr->get_args().front() );
634 } // if
635 addAssign->get_args().push_back( new NameExpr( sizeofName( polyType ) ) );
636 addAssign->get_results().front() = appExpr->get_results().front()->clone();
637 if ( appExpr->get_env() ) {
638 addAssign->set_env( appExpr->get_env() );
639 appExpr->set_env( 0 );
640 } // if
641 appExpr->get_args().clear();
642 delete appExpr;
643 return addAssign;
644 }
645
646 Expression *Pass1::handleIntrinsics( ApplicationExpr *appExpr ) {
647 if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->get_function() ) ) {
648 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic ) {
649 if ( varExpr->get_var()->get_name() == "?[?]" ) {
650 assert( ! appExpr->get_results().empty() );
651 assert( appExpr->get_args().size() == 2 );
652 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
653 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
654 assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers
655 UntypedExpr *ret = 0;
656 if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer
657 ret = new UntypedExpr( new NameExpr( "?+?" ) );
658 } // if
659 if ( baseType1 ) {
660 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
661 multiply->get_args().push_back( appExpr->get_args().back() );
662 multiply->get_args().push_back( new NameExpr( sizeofName( baseType1 ) ) );
663 ret->get_args().push_back( appExpr->get_args().front() );
664 ret->get_args().push_back( multiply );
665 } else if ( baseType2 ) {
666 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
667 multiply->get_args().push_back( appExpr->get_args().front() );
668 multiply->get_args().push_back( new NameExpr( sizeofName( baseType2 ) ) );
669 ret->get_args().push_back( multiply );
670 ret->get_args().push_back( appExpr->get_args().back() );
671 } // if
672 if ( baseType1 || baseType2 ) {
673 ret->get_results().push_front( appExpr->get_results().front()->clone() );
674 if ( appExpr->get_env() ) {
675 ret->set_env( appExpr->get_env() );
676 appExpr->set_env( 0 );
677 } // if
678 appExpr->get_args().clear();
679 delete appExpr;
680 return ret;
681 } // if
682 } else if ( varExpr->get_var()->get_name() == "*?" ) {
683 assert( ! appExpr->get_results().empty() );
684 assert( ! appExpr->get_args().empty() );
685 if ( isPolyType( appExpr->get_results().front(), scopeTyVars, env ) ) {
686 Expression *ret = appExpr->get_args().front();
687 delete ret->get_results().front();
688 ret->get_results().front() = appExpr->get_results().front()->clone();
689 if ( appExpr->get_env() ) {
690 ret->set_env( appExpr->get_env() );
691 appExpr->set_env( 0 );
692 } // if
693 appExpr->get_args().clear();
694 delete appExpr;
695 return ret;
696 } // if
697 } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) {
698 assert( ! appExpr->get_results().empty() );
699 assert( appExpr->get_args().size() == 1 );
700 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
701 Type *tempType = appExpr->get_results().front()->clone();
702 if ( env ) {
703 env->apply( tempType );
704 } // if
705 ObjectDecl *newObj = makeTemporary( tempType );
706 VariableExpr *tempExpr = new VariableExpr( newObj );
707 UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) );
708 assignExpr->get_args().push_back( tempExpr->clone() );
709 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
710 assignExpr->get_args().push_back( address->get_arg()->clone() );
711 } else {
712 assignExpr->get_args().push_back( appExpr->get_args().front()->clone() );
713 } // if
714 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) );
715 return new CommaExpr( firstComma, tempExpr );
716 } // if
717 } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) {
718 assert( ! appExpr->get_results().empty() );
719 assert( appExpr->get_args().size() == 1 );
720 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
721 return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );
722 } // if
723 } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) {
724 assert( ! appExpr->get_results().empty() );
725 assert( appExpr->get_args().size() == 2 );
726 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
727 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
728 if ( baseType1 && baseType2 ) {
729 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) );
730 divide->get_args().push_back( appExpr );
731 divide->get_args().push_back( new NameExpr( sizeofName( baseType1 ) ) );
732 divide->get_results().push_front( appExpr->get_results().front()->clone() );
733 if ( appExpr->get_env() ) {
734 divide->set_env( appExpr->get_env() );
735 appExpr->set_env( 0 );
736 } // if
737 return divide;
738 } else if ( baseType1 ) {
739 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
740 multiply->get_args().push_back( appExpr->get_args().back() );
741 multiply->get_args().push_back( new NameExpr( sizeofName( baseType1 ) ) );
742 appExpr->get_args().back() = multiply;
743 } else if ( baseType2 ) {
744 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
745 multiply->get_args().push_back( appExpr->get_args().front() );
746 multiply->get_args().push_back( new NameExpr( sizeofName( baseType2 ) ) );
747 appExpr->get_args().front() = multiply;
748 } // if
749 } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) {
750 assert( ! appExpr->get_results().empty() );
751 assert( appExpr->get_args().size() == 2 );
752 Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env );
753 if ( baseType ) {
754 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
755 multiply->get_args().push_back( appExpr->get_args().back() );
756 multiply->get_args().push_back( new NameExpr( sizeofName( baseType ) ) );
757 appExpr->get_args().back() = multiply;
758 } // if
759 } // if
760 return appExpr;
761 } // if
762 } // if
763 return 0;
764 }
765
766 Expression *Pass1::mutate( ApplicationExpr *appExpr ) {
767 // std::cerr << "mutate appExpr: ";
768 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
769 // std::cerr << i->first << " ";
770 // }
771 // std::cerr << "\n";
772 bool oldUseRetval = useRetval;
773 useRetval = false;
774 appExpr->get_function()->acceptMutator( *this );
775 mutateAll( appExpr->get_args(), *this );
776 useRetval = oldUseRetval;
777
778 assert( ! appExpr->get_function()->get_results().empty() );
779 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
780 assert( pointer );
781 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
782 assert( function );
783
784 if ( Expression *newExpr = handleIntrinsics( appExpr ) ) {
785 return newExpr;
786 } // if
787
788 Expression *ret = appExpr;
789
790 std::list< Expression *>::iterator arg = appExpr->get_args().begin();
791 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin();
792
793 std::string typeName;
794 if ( isPolyRet( function, typeName ) ) {
795 ret = addPolyRetParam( appExpr, function, typeName, arg );
796 } else if ( needsAdapter( function, scopeTyVars ) ) {
797 // std::cerr << "needs adapter: ";
798 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
799 // std::cerr << i->first << " ";
800 // }
801 // std::cerr << "\n";
802 // change the application so it calls the adapter rather than the passed function
803 ret = applyAdapter( appExpr, function, arg, scopeTyVars );
804 } // if
805 arg = appExpr->get_args().begin();
806
807 TyVarMap exprTyVars;
808 makeTyVarMap( function, exprTyVars );
809
810 passTypeVars( appExpr, arg, exprTyVars );
811 addInferredParams( appExpr, function, arg, exprTyVars );
812
813 arg = paramBegin;
814
815 boxParams( appExpr, function, arg, exprTyVars );
816
817 passAdapters( appExpr, function, exprTyVars );
818
819 return ret;
820 }
821
822 Expression *Pass1::mutate( UntypedExpr *expr ) {
823 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
824 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
825 if ( name->get_name() == "*?" ) {
826 Expression *ret = expr->get_args().front();
827 expr->get_args().clear();
828 delete expr;
829 return ret->acceptMutator( *this );
830 } // if
831 } // if
832 } // if
833 return PolyMutator::mutate( expr );
834 }
835
836 Expression *Pass1::mutate( AddressExpr *addrExpr ) {
837 assert( ! addrExpr->get_arg()->get_results().empty() );
838
839 bool needs = false;
840 if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {
841 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
842 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
843 if ( name->get_name() == "*?" ) {
844 if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {
845 assert( ! appExpr->get_function()->get_results().empty() );
846 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
847 assert( pointer );
848 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
849 assert( function );
850 needs = needsAdapter( function, scopeTyVars );
851 } // if
852 } // if
853 } // if
854 } // if
855 } // if
856 addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) );
857 if ( isPolyType( addrExpr->get_arg()->get_results().front(), scopeTyVars, env ) || needs ) {
858 Expression *ret = addrExpr->get_arg();
859 delete ret->get_results().front();
860 ret->get_results().front() = addrExpr->get_results().front()->clone();
861 addrExpr->set_arg( 0 );
862 delete addrExpr;
863 return ret;
864 } else {
865 return addrExpr;
866 } // if
867 }
868
869 Statement * Pass1::mutate( ReturnStmt *returnStmt ) {
870 if ( retval && returnStmt->get_expr() ) {
871 assert( ! returnStmt->get_expr()->get_results().empty() );
872 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
873 // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) {
874 // by this point, a cast expr on a polymorphic return value is redundant
875 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( returnStmt->get_expr() ) ) {
876 returnStmt->set_expr( castExpr->get_arg() );
877 returnStmt->get_expr()->set_env( castExpr->get_env() );
878 castExpr->set_env( 0 );
879 castExpr->set_arg( 0 );
880 delete castExpr;
881 } //while
882 TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() );
883 assert( typeInst );
884 std::map< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() );
885 if ( assignIter == assignOps.end() ) {
886 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() );
887 } // if
888 ApplicationExpr *assignExpr = new ApplicationExpr( new VariableExpr( assignIter->second ) );
889 Expression *retParm = new NameExpr( retval->get_name() );
890 retParm->get_results().push_back( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
891 assignExpr->get_args().push_back( retParm );
892 assignExpr->get_args().push_back( returnStmt->get_expr() );
893 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) );
894 // } else {
895 // useRetval = true;
896 // stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( returnStmt->get_expr() ) ) );
897 // useRetval = false;
898 // } // if
899 returnStmt->set_expr( 0 );
900 } else {
901 returnStmt->set_expr( mutateExpression( returnStmt->get_expr() ) );
902 } // if
903 return returnStmt;
904 }
905
906 Type * Pass1::mutate( PointerType *pointerType ) {
907 TyVarMap oldtyVars = scopeTyVars;
908 makeTyVarMap( pointerType, scopeTyVars );
909
910 Type *ret = Mutator::mutate( pointerType );
911
912 scopeTyVars = oldtyVars;
913 return ret;
914 }
915
916 Type * Pass1::mutate( FunctionType *functionType ) {
917 TyVarMap oldtyVars = scopeTyVars;
918 makeTyVarMap( functionType, scopeTyVars );
919
920 Type *ret = Mutator::mutate( functionType );
921
922 scopeTyVars = oldtyVars;
923 return ret;
924 }
925
926 void Pass1::doBeginScope() {
927 // push a copy of the current map
928 adapters.push(adapters.top());
929 }
930
931 void Pass1::doEndScope() {
932 adapters.pop();
933 }
934
935////////////////////////////////////////// Pass2 ////////////////////////////////////////////////////
936
937 void Pass2::addAdapters( FunctionType *functionType ) {
938 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
939 std::list< FunctionType *> functions;
940 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
941 Type *orig = (*arg)->get_type();
942 findAndReplaceFunction( orig, functions, scopeTyVars, needsAdapter );
943 (*arg)->set_type( orig );
944 }
945 std::set< std::string > adaptersDone;
946 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
947 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
948 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
949 std::string adapterName = makeAdapterName( mangleName );
950 paramList.push_front( new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) );
951 adaptersDone.insert( adaptersDone.begin(), mangleName );
952 }
953 }
954// deleteAll( functions );
955 }
956
957 template< typename DeclClass >
958 DeclClass * Pass2::handleDecl( DeclClass *decl, Type *type ) {
959 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
960
961 return ret;
962 }
963
964 DeclarationWithType * Pass2::mutate( FunctionDecl *functionDecl ) {
965 return handleDecl( functionDecl, functionDecl->get_functionType() );
966 }
967
968 ObjectDecl * Pass2::mutate( ObjectDecl *objectDecl ) {
969 return handleDecl( objectDecl, objectDecl->get_type() );
970 }
971
972 TypeDecl * Pass2::mutate( TypeDecl *typeDecl ) {
973 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
974 if ( typeDecl->get_base() ) {
975 return handleDecl( typeDecl, typeDecl->get_base() );
976 } else {
977 return Mutator::mutate( typeDecl );
978 }
979 }
980
981 TypedefDecl * Pass2::mutate( TypedefDecl *typedefDecl ) {
982 return handleDecl( typedefDecl, typedefDecl->get_base() );
983 }
984
985 Type * Pass2::mutate( PointerType *pointerType ) {
986 TyVarMap oldtyVars = scopeTyVars;
987 makeTyVarMap( pointerType, scopeTyVars );
988
989 Type *ret = Mutator::mutate( pointerType );
990
991 scopeTyVars = oldtyVars;
992 return ret;
993 }
994
995 Type *Pass2::mutate( FunctionType *funcType ) {
996 TyVarMap oldtyVars = scopeTyVars;
997 makeTyVarMap( funcType, scopeTyVars );
998
999 // move polymorphic return type to parameter list
1000 std::string typeName;
1001 if ( isPolyRet( funcType, typeName ) ) {
1002 DeclarationWithType *ret = funcType->get_returnVals().front();
1003 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) );
1004 funcType->get_parameters().push_front( ret );
1005 funcType->get_returnVals().pop_front();
1006 }
1007
1008 // add size/align and assertions for type parameters to parameter list
1009 std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin();
1010 std::list< DeclarationWithType *> inferredParams;
1011 ObjectDecl newObj( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 );
1012// ObjectDecl *newFunPtr = new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 );
1013 for ( std::list< TypeDecl *>::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
1014 ObjectDecl *sizeParm, *alignParm;
1015 // add all size and alignment parameters to parameter list
1016 if ( (*tyParm)->get_kind() == TypeDecl::Any ) {
1017 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm );
1018
1019 sizeParm = newObj.clone();
1020 sizeParm->set_name( sizeofName( &parmType ) );
1021 last = funcType->get_parameters().insert( last, sizeParm );
1022 ++last;
1023
1024 alignParm = newObj.clone();
1025 alignParm->set_name( alignofName( &parmType ) );
1026 last = funcType->get_parameters().insert( last, alignParm );
1027 ++last;
1028 }
1029 // move all assertions into parameter list
1030 for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) {
1031// *assert = (*assert)->acceptMutator( *this );
1032 inferredParams.push_back( *assert );
1033 }
1034 (*tyParm)->get_assertions().clear();
1035 }
1036
1037 // add size/align for generic types to parameter list
1038 std::set< std::string > seenTypes; //< sizeofName for generic types we've seen
1039 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) {
1040 Type *parmType = (*fnParm)->get_type();
1041 if ( ! dynamic_cast< TypeInstType* >( parmType ) && isPolyType( parmType, scopeTyVars ) ) {
1042 std::string sizeName = sizeofName( parmType );
1043 if ( seenTypes.count( sizeName ) ) continue;
1044
1045 ObjectDecl *sizeParm, *alignParm;
1046 sizeParm = newObj.clone();
1047 sizeParm->set_name( sizeName );
1048 last = funcType->get_parameters().insert( last, sizeParm );
1049 ++last;
1050
1051 alignParm = newObj.clone();
1052 alignParm->set_name( alignofName( parmType ) );
1053 last = funcType->get_parameters().insert( last, alignParm );
1054 ++last;
1055
1056 seenTypes.insert( sizeName );
1057 }
1058 }
1059
1060 // splice assertion parameters into parameter list
1061 funcType->get_parameters().splice( last, inferredParams );
1062 addAdapters( funcType );
1063 mutateAll( funcType->get_returnVals(), *this );
1064 mutateAll( funcType->get_parameters(), *this );
1065
1066 scopeTyVars = oldtyVars;
1067 return funcType;
1068 }
1069
1070////////////////////////////////////////// Pass3 ////////////////////////////////////////////////////
1071
1072 template< typename DeclClass >
1073 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) {
1074 TyVarMap oldtyVars = scopeTyVars;
1075 makeTyVarMap( type, scopeTyVars );
1076
1077 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1078 ScrubTyVars::scrub( decl, scopeTyVars );
1079
1080 scopeTyVars = oldtyVars;
1081 return ret;
1082 }
1083
1084 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) {
1085 return handleDecl( objectDecl, objectDecl->get_type() );
1086 }
1087
1088 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) {
1089 return handleDecl( functionDecl, functionDecl->get_functionType() );
1090 }
1091
1092 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) {
1093 return handleDecl( typedefDecl, typedefDecl->get_base() );
1094 }
1095
1096 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) {
1097// Initializer *init = 0;
1098// std::list< Expression *> designators;
1099// scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1100// if ( typeDecl->get_base() ) {
1101// init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators );
1102// }
1103// return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init );
1104
1105 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1106 return Mutator::mutate( typeDecl );
1107 }
1108
1109 Type * Pass3::mutate( PointerType *pointerType ) {
1110 TyVarMap oldtyVars = scopeTyVars;
1111 makeTyVarMap( pointerType, scopeTyVars );
1112
1113 Type *ret = Mutator::mutate( pointerType );
1114
1115 scopeTyVars = oldtyVars;
1116 return ret;
1117 }
1118
1119 Type * Pass3::mutate( FunctionType *functionType ) {
1120 TyVarMap oldtyVars = scopeTyVars;
1121 makeTyVarMap( functionType, scopeTyVars );
1122
1123 Type *ret = Mutator::mutate( functionType );
1124
1125 scopeTyVars = oldtyVars;
1126 return ret;
1127 }
1128
1129 Statement *Pass3::mutate( DeclStmt *declStmt ) {
1130 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) {
1131 if ( isPolyType( objectDecl->get_type(), scopeTyVars ) ) {
1132 // change initialization of a polymorphic value object
1133 // to allocate storage with alloca
1134 Type *declType = objectDecl->get_type();
1135 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) );
1136 alloc->get_args().push_back( new NameExpr( sizeofName( declType ) ) );
1137
1138 delete objectDecl->get_init();
1139
1140 std::list<Expression*> designators;
1141 objectDecl->set_init( new SingleInit( alloc, designators ) );
1142 }
1143 }
1144 return Mutator::mutate( declStmt );
1145 }
1146 } // anonymous namespace
1147} // namespace GenPoly
1148
1149// Local Variables: //
1150// tab-width: 4 //
1151// mode: c++ //
1152// compile-command: "make install" //
1153// End: //
Note: See TracBrowser for help on using the repository browser.