source: src/GenPoly/Box.cc@ 888cbe4

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay gc_noraii jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 888cbe4 was c2ad3c9, checked in by Aaron Moss <a3moss@…>, 9 years ago

fix explicit cast error for returning polymorphic types, also potential infinite loop in findGeneric

  • Property mode set to 100644
File size: 109.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Rob Schluntz
12// Last Modified On : Fri May 13 14:51:21 2016
13// Update Count : 295
14//
15
16#include <algorithm>
17#include <iterator>
18#include <list>
19#include <map>
20#include <set>
21#include <stack>
22#include <string>
23#include <utility>
24#include <vector>
25#include <cassert>
26
27#include "Box.h"
28#include "DeclMutator.h"
29#include "PolyMutator.h"
30#include "FindFunction.h"
31#include "ScopedMap.h"
32#include "ScopedSet.h"
33#include "ScrubTyVars.h"
34
35#include "Parser/ParseNode.h"
36
37#include "SynTree/Constant.h"
38#include "SynTree/Declaration.h"
39#include "SynTree/Expression.h"
40#include "SynTree/Initializer.h"
41#include "SynTree/Mutator.h"
42#include "SynTree/Statement.h"
43#include "SynTree/Type.h"
44#include "SynTree/TypeSubstitution.h"
45
46#include "ResolvExpr/TypeEnvironment.h"
47#include "ResolvExpr/TypeMap.h"
48#include "ResolvExpr/typeops.h"
49
50#include "SymTab/Indexer.h"
51#include "SymTab/Mangler.h"
52
53#include "Common/SemanticError.h"
54#include "Common/UniqueName.h"
55#include "Common/utility.h"
56
57#include <ext/functional> // temporary
58
59namespace GenPoly {
60 namespace {
61 const std::list<Label> noLabels;
62
63 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars );
64
65 /// Abstracts type equality for a list of parameter types
66 struct TypeList {
67 TypeList() : params() {}
68 TypeList( const std::list< Type* > &_params ) : params() { cloneAll(_params, params); }
69 TypeList( std::list< Type* > &&_params ) : params( _params ) {}
70
71 TypeList( const TypeList &that ) : params() { cloneAll(that.params, params); }
72 TypeList( TypeList &&that ) : params( std::move( that.params ) ) {}
73
74 /// Extracts types from a list of TypeExpr*
75 TypeList( const std::list< TypeExpr* >& _params ) : params() {
76 for ( std::list< TypeExpr* >::const_iterator param = _params.begin(); param != _params.end(); ++param ) {
77 params.push_back( (*param)->get_type()->clone() );
78 }
79 }
80
81 TypeList& operator= ( const TypeList &that ) {
82 deleteAll( params );
83
84 params.clear();
85 cloneAll( that.params, params );
86
87 return *this;
88 }
89
90 TypeList& operator= ( TypeList &&that ) {
91 deleteAll( params );
92
93 params = std::move( that.params );
94
95 return *this;
96 }
97
98 ~TypeList() { deleteAll( params ); }
99
100 bool operator== ( const TypeList& that ) const {
101 if ( params.size() != that.params.size() ) return false;
102
103 SymTab::Indexer dummy;
104 for ( std::list< Type* >::const_iterator it = params.begin(), jt = that.params.begin(); it != params.end(); ++it, ++jt ) {
105 if ( ! ResolvExpr::typesCompatible( *it, *jt, dummy ) ) return false;
106 }
107 return true;
108 }
109
110 std::list< Type* > params; ///< Instantiation parameters
111 };
112
113 /// Maps a key and a TypeList to the some value, accounting for scope
114 template< typename Key, typename Value >
115 class InstantiationMap {
116 /// Wraps value for a specific (Key, TypeList) combination
117 typedef std::pair< TypeList, Value* > Instantiation;
118 /// List of TypeLists paired with their appropriate values
119 typedef std::vector< Instantiation > ValueList;
120 /// Underlying map type; maps keys to a linear list of corresponding TypeLists and values
121 typedef ScopedMap< Key*, ValueList > InnerMap;
122
123 InnerMap instantiations; ///< instantiations
124
125 public:
126 /// Starts a new scope
127 void beginScope() { instantiations.beginScope(); }
128
129 /// Ends a scope
130 void endScope() { instantiations.endScope(); }
131
132 /// Gets the value for the (key, typeList) pair, returns NULL on none such.
133 Value *lookup( Key *key, const std::list< TypeExpr* >& params ) const {
134 TypeList typeList( params );
135
136 // scan scopes for matches to the key
137 for ( typename InnerMap::const_iterator insts = instantiations.find( key ); insts != instantiations.end(); insts = instantiations.findNext( insts, key ) ) {
138 for ( typename ValueList::const_reverse_iterator inst = insts->second.rbegin(); inst != insts->second.rend(); ++inst ) {
139 if ( inst->first == typeList ) return inst->second;
140 }
141 }
142 // no matching instantiations found
143 return 0;
144 }
145
146 /// Adds a value for a (key, typeList) pair to the current scope
147 void insert( Key *key, const std::list< TypeExpr* > &params, Value *value ) {
148 instantiations[ key ].push_back( Instantiation( TypeList( params ), value ) );
149 }
150 };
151
152 /// Adds layout-generation functions to polymorphic types
153 class LayoutFunctionBuilder : public DeclMutator {
154 unsigned int functionNesting; // current level of nested functions
155 public:
156 LayoutFunctionBuilder() : functionNesting( 0 ) {}
157
158 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
159 virtual Declaration *mutate( StructDecl *structDecl );
160 virtual Declaration *mutate( UnionDecl *unionDecl );
161 };
162
163 /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call
164 class Pass1 : public PolyMutator {
165 public:
166 Pass1();
167 virtual Expression *mutate( ApplicationExpr *appExpr );
168 virtual Expression *mutate( AddressExpr *addrExpr );
169 virtual Expression *mutate( UntypedExpr *expr );
170 virtual DeclarationWithType* mutate( FunctionDecl *functionDecl );
171 virtual TypeDecl *mutate( TypeDecl *typeDecl );
172 virtual Expression *mutate( CommaExpr *commaExpr );
173 virtual Expression *mutate( ConditionalExpr *condExpr );
174 virtual Statement * mutate( ReturnStmt *returnStmt );
175 virtual Type *mutate( PointerType *pointerType );
176 virtual Type * mutate( FunctionType *functionType );
177
178 virtual void doBeginScope();
179 virtual void doEndScope();
180 private:
181 /// Pass the extra type parameters from polymorphic generic arguments or return types into a function application
182 void passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes );
183 /// passes extra type parameters into a polymorphic function application
184 void passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
185 /// wraps a function application with a new temporary for the out-parameter return value
186 Expression *addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg );
187 /// Replaces all the type parameters of a generic type with their concrete equivalents under the current environment
188 void replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params );
189 /// Replaces a polymorphic type with its concrete equivalant under the current environment (returns itself if concrete).
190 /// If `doClone` is set to false, will not clone interior types
191 Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true );
192 /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value
193 Expression *addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg );
194 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
195 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars );
196 void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
197 void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars );
198 /// Stores assignment operators from assertion list in local map of assignment operations
199 void findTypeOps( const std::list< TypeDecl *> &forall );
200 void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars );
201 FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars );
202 /// Replaces intrinsic operator functions with their arithmetic desugaring
203 Expression *handleIntrinsics( ApplicationExpr *appExpr );
204 /// Inserts a new temporary variable into the current scope with an auto-generated name
205 ObjectDecl *makeTemporary( Type *type );
206
207 ScopedMap< std::string, DeclarationWithType* > assignOps; ///< Currently known type variable assignment operators
208 ScopedMap< std::string, DeclarationWithType* > ctorOps; ///< Currently known type variable constructors
209 ScopedMap< std::string, DeclarationWithType* > copyOps; ///< Currently known type variable copy constructors
210 ScopedMap< std::string, DeclarationWithType* > dtorOps; ///< Currently known type variable destructors
211 ResolvExpr::TypeMap< DeclarationWithType > scopedAssignOps; ///< Currently known assignment operators
212 ResolvExpr::TypeMap< DeclarationWithType > scopedCtorOps; ///< Currently known assignment operators
213 ResolvExpr::TypeMap< DeclarationWithType > scopedCopyOps; ///< Currently known assignment operators
214 ResolvExpr::TypeMap< DeclarationWithType > scopedDtorOps; ///< Currently known assignment operators
215 ScopedMap< std::string, DeclarationWithType* > adapters; ///< Set of adapter functions in the current scope
216
217 DeclarationWithType *retval;
218 bool useRetval;
219 UniqueName tempNamer;
220 };
221
222 /// * Moves polymorphic returns in function types to pointer-type parameters
223 /// * adds type size and assertion parameters to parameter lists
224 class Pass2 : public PolyMutator {
225 public:
226 template< typename DeclClass >
227 DeclClass *handleDecl( DeclClass *decl, Type *type );
228 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
229 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
230 virtual TypeDecl *mutate( TypeDecl *typeDecl );
231 virtual TypedefDecl *mutate( TypedefDecl *typedefDecl );
232 virtual Type *mutate( PointerType *pointerType );
233 virtual Type *mutate( FunctionType *funcType );
234
235 private:
236 void addAdapters( FunctionType *functionType );
237
238 std::map< UniqueId, std::string > adapterName;
239 };
240
241 /// Mutator pass that replaces concrete instantiations of generic types with actual struct declarations, scoped appropriately
242 class GenericInstantiator : public DeclMutator {
243 /// Map of (generic type, parameter list) pairs to concrete type instantiations
244 InstantiationMap< AggregateDecl, AggregateDecl > instantiations;
245 /// Namer for concrete types
246 UniqueName typeNamer;
247
248 public:
249 GenericInstantiator() : DeclMutator(), instantiations(), typeNamer("_conc_") {}
250
251 virtual Type* mutate( StructInstType *inst );
252 virtual Type* mutate( UnionInstType *inst );
253
254 // virtual Expression* mutate( MemberExpr *memberExpr );
255
256 virtual void doBeginScope();
257 virtual void doEndScope();
258 private:
259 /// Wrap instantiation lookup for structs
260 StructDecl* lookup( StructInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (StructDecl*)instantiations.lookup( inst->get_baseStruct(), typeSubs ); }
261 /// Wrap instantiation lookup for unions
262 UnionDecl* lookup( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (UnionDecl*)instantiations.lookup( inst->get_baseUnion(), typeSubs ); }
263 /// Wrap instantiation insertion for structs
264 void insert( StructInstType *inst, const std::list< TypeExpr* > &typeSubs, StructDecl *decl ) { instantiations.insert( inst->get_baseStruct(), typeSubs, decl ); }
265 /// Wrap instantiation insertion for unions
266 void insert( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs, UnionDecl *decl ) { instantiations.insert( inst->get_baseUnion(), typeSubs, decl ); }
267 };
268
269 /// Replaces member and size/align/offsetof expressions on polymorphic generic types with calculated expressions.
270 /// * Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference
271 /// * Calculates polymorphic offsetof expressions from offset array
272 /// * Inserts dynamic calculation of polymorphic type layouts where needed
273 class PolyGenericCalculator : public PolyMutator {
274 public:
275 template< typename DeclClass >
276 DeclClass *handleDecl( DeclClass *decl, Type *type );
277 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
278 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
279 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
280 virtual TypeDecl *mutate( TypeDecl *objectDecl );
281 virtual Statement *mutate( DeclStmt *declStmt );
282 virtual Type *mutate( PointerType *pointerType );
283 virtual Type *mutate( FunctionType *funcType );
284 virtual Expression *mutate( MemberExpr *memberExpr );
285 virtual Expression *mutate( SizeofExpr *sizeofExpr );
286 virtual Expression *mutate( AlignofExpr *alignofExpr );
287 virtual Expression *mutate( OffsetofExpr *offsetofExpr );
288 virtual Expression *mutate( OffsetPackExpr *offsetPackExpr );
289
290 virtual void doBeginScope();
291 virtual void doEndScope();
292
293 private:
294 /// Makes a new variable in the current scope with the given name, type & optional initializer
295 ObjectDecl *makeVar( const std::string &name, Type *type, Initializer *init = 0 );
296 /// returns true if the type has a dynamic layout; such a layout will be stored in appropriately-named local variables when the function returns
297 bool findGeneric( Type *ty );
298 /// adds type parameters to the layout call; will generate the appropriate parameters if needed
299 void addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams );
300
301 /// Enters a new scope for type-variables, adding the type variables from ty
302 void beginTypeScope( Type *ty );
303 /// Exits the type-variable scope
304 void endTypeScope();
305
306 ScopedSet< std::string > knownLayouts; ///< Set of generic type layouts known in the current scope, indexed by sizeofName
307 ScopedSet< std::string > knownOffsets; ///< Set of non-generic types for which the offset array exists in the current scope, indexed by offsetofName
308 };
309
310 /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, and sizeof expressions of polymorphic types with the proper variable
311 class Pass3 : public PolyMutator {
312 public:
313 template< typename DeclClass >
314 DeclClass *handleDecl( DeclClass *decl, Type *type );
315 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
316 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
317 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
318 virtual TypeDecl *mutate( TypeDecl *objectDecl );
319 virtual Type *mutate( PointerType *pointerType );
320 virtual Type *mutate( FunctionType *funcType );
321 private:
322 };
323
324 } // anonymous namespace
325
326 /// version of mutateAll with special handling for translation unit so you can check the end of the prelude when debugging
327 template< typename MutatorType >
328 inline void mutateTranslationUnit( std::list< Declaration* > &translationUnit, MutatorType &mutator ) {
329 bool seenIntrinsic = false;
330 SemanticError errors;
331 for ( typename std::list< Declaration* >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
332 try {
333 if ( *i ) {
334 if ( (*i)->get_linkage() == LinkageSpec::Intrinsic ) {
335 seenIntrinsic = true;
336 } else if ( seenIntrinsic ) {
337 seenIntrinsic = false; // break on this line when debugging for end of prelude
338 }
339
340 *i = dynamic_cast< Declaration* >( (*i)->acceptMutator( mutator ) );
341 assert( *i );
342 } // if
343 } catch( SemanticError &e ) {
344 errors.append( e );
345 } // try
346 } // for
347 if ( ! errors.isEmpty() ) {
348 throw errors;
349 } // if
350 }
351
352 void box( std::list< Declaration *>& translationUnit ) {
353 LayoutFunctionBuilder layoutBuilder;
354 Pass1 pass1;
355 Pass2 pass2;
356 GenericInstantiator instantiator;
357 PolyGenericCalculator polyCalculator;
358 Pass3 pass3;
359
360 layoutBuilder.mutateDeclarationList( translationUnit );
361 mutateTranslationUnit/*All*/( translationUnit, pass1 );
362 mutateTranslationUnit/*All*/( translationUnit, pass2 );
363 instantiator.mutateDeclarationList( translationUnit );
364 mutateTranslationUnit/*All*/( translationUnit, polyCalculator );
365 mutateTranslationUnit/*All*/( translationUnit, pass3 );
366 }
367
368 ////////////////////////////////// LayoutFunctionBuilder ////////////////////////////////////////////
369
370 DeclarationWithType *LayoutFunctionBuilder::mutate( FunctionDecl *functionDecl ) {
371 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
372 mutateAll( functionDecl->get_oldDecls(), *this );
373 ++functionNesting;
374 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
375 --functionNesting;
376 return functionDecl;
377 }
378
379 /// Get a list of type declarations that will affect a layout function
380 std::list< TypeDecl* > takeOtypeOnly( std::list< TypeDecl* > &decls ) {
381 std::list< TypeDecl * > otypeDecls;
382
383 for ( std::list< TypeDecl* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
384 if ( (*decl)->get_kind() == TypeDecl::Any ) {
385 otypeDecls.push_back( *decl );
386 }
387 }
388
389 return otypeDecls;
390 }
391
392 /// Adds parameters for otype layout to a function type
393 void addOtypeParams( FunctionType *layoutFnType, std::list< TypeDecl* > &otypeParams ) {
394 BasicType sizeAlignType( Type::Qualifiers(), BasicType::LongUnsignedInt );
395
396 for ( std::list< TypeDecl* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
397 TypeInstType paramType( Type::Qualifiers(), (*param)->get_name(), *param );
398 std::string paramName = mangleType( &paramType );
399 layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
400 layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
401 }
402 }
403
404 /// Builds a layout function declaration
405 FunctionDecl *buildLayoutFunctionDecl( AggregateDecl *typeDecl, unsigned int functionNesting, FunctionType *layoutFnType ) {
406 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
407 // because each unit generates copies of the default routines for each aggregate.
408 FunctionDecl *layoutDecl = new FunctionDecl(
409 layoutofName( typeDecl ), functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static, LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ), true, false );
410 layoutDecl->fixUniqueId();
411 return layoutDecl;
412 }
413
414 /// Makes a unary operation
415 Expression *makeOp( const std::string &name, Expression *arg ) {
416 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
417 expr->get_args().push_back( arg );
418 return expr;
419 }
420
421 /// Makes a binary operation
422 Expression *makeOp( const std::string &name, Expression *lhs, Expression *rhs ) {
423 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
424 expr->get_args().push_back( lhs );
425 expr->get_args().push_back( rhs );
426 return expr;
427 }
428
429 /// Returns the dereference of a local pointer variable
430 Expression *derefVar( ObjectDecl *var ) {
431 return makeOp( "*?", new VariableExpr( var ) );
432 }
433
434 /// makes an if-statement with a single-expression if-block and no then block
435 Statement *makeCond( Expression *cond, Expression *ifPart ) {
436 return new IfStmt( noLabels, cond, new ExprStmt( noLabels, ifPart ), 0 );
437 }
438
439 /// makes a statement that assigns rhs to lhs if lhs < rhs
440 Statement *makeAssignMax( Expression *lhs, Expression *rhs ) {
441 return makeCond( makeOp( "?<?", lhs, rhs ), makeOp( "?=?", lhs->clone(), rhs->clone() ) );
442 }
443
444 /// makes a statement that aligns lhs to rhs (rhs should be an integer power of two)
445 Statement *makeAlignTo( Expression *lhs, Expression *rhs ) {
446 // check that the lhs is zeroed out to the level of rhs
447 Expression *ifCond = makeOp( "?&?", lhs, makeOp( "?-?", rhs, new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "1" ) ) ) );
448 // if not aligned, increment to alignment
449 Expression *ifExpr = makeOp( "?+=?", lhs->clone(), makeOp( "?-?", rhs->clone(), ifCond->clone() ) );
450 return makeCond( ifCond, ifExpr );
451 }
452
453 /// adds an expression to a compound statement
454 void addExpr( CompoundStmt *stmts, Expression *expr ) {
455 stmts->get_kids().push_back( new ExprStmt( noLabels, expr ) );
456 }
457
458 /// adds a statement to a compound statement
459 void addStmt( CompoundStmt *stmts, Statement *stmt ) {
460 stmts->get_kids().push_back( stmt );
461 }
462
463 Declaration *LayoutFunctionBuilder::mutate( StructDecl *structDecl ) {
464 // do not generate layout function for "empty" tag structs
465 if ( structDecl->get_members().empty() ) return structDecl;
466
467 // get parameters that can change layout, exiting early if none
468 std::list< TypeDecl* > otypeParams = takeOtypeOnly( structDecl->get_parameters() );
469 if ( otypeParams.empty() ) return structDecl;
470
471 // build layout function signature
472 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
473 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
474 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
475
476 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
477 layoutFnType->get_parameters().push_back( sizeParam );
478 ObjectDecl *alignParam = new ObjectDecl( alignofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
479 layoutFnType->get_parameters().push_back( alignParam );
480 ObjectDecl *offsetParam = new ObjectDecl( offsetofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
481 layoutFnType->get_parameters().push_back( offsetParam );
482 addOtypeParams( layoutFnType, otypeParams );
483
484 // build function decl
485 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl, functionNesting, layoutFnType );
486
487 // calculate struct layout in function body
488
489 // initialize size and alignment to 0 and 1 (will have at least one member to re-edit size
490 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "0" ) ) ) );
491 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
492 unsigned long n_members = 0;
493 bool firstMember = true;
494 for ( std::list< Declaration* >::const_iterator member = structDecl->get_members().begin(); member != structDecl->get_members().end(); ++member ) {
495 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
496 assert( dwt );
497 Type *memberType = dwt->get_type();
498
499 if ( firstMember ) {
500 firstMember = false;
501 } else {
502 // make sure all members after the first (automatically aligned at 0) are properly padded for alignment
503 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), new AlignofExpr( memberType->clone() ) ) );
504 }
505
506 // place current size in the current offset index
507 addExpr( layoutDecl->get_statements(), makeOp( "?=?", makeOp( "?[?]", new VariableExpr( offsetParam ), new ConstantExpr( Constant::from_ulong( n_members ) ) ),
508 derefVar( sizeParam ) ) );
509 ++n_members;
510
511 // add member size to current size
512 addExpr( layoutDecl->get_statements(), makeOp( "?+=?", derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
513
514 // take max of member alignment and global alignment
515 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
516 }
517 // make sure the type is end-padded to a multiple of its alignment
518 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
519
520 addDeclarationAfter( layoutDecl );
521 return structDecl;
522 }
523
524 Declaration *LayoutFunctionBuilder::mutate( UnionDecl *unionDecl ) {
525 // do not generate layout function for "empty" tag unions
526 if ( unionDecl->get_members().empty() ) return unionDecl;
527
528 // get parameters that can change layout, exiting early if none
529 std::list< TypeDecl* > otypeParams = takeOtypeOnly( unionDecl->get_parameters() );
530 if ( otypeParams.empty() ) return unionDecl;
531
532 // build layout function signature
533 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
534 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
535 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
536
537 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
538 layoutFnType->get_parameters().push_back( sizeParam );
539 ObjectDecl *alignParam = new ObjectDecl( alignofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
540 layoutFnType->get_parameters().push_back( alignParam );
541 addOtypeParams( layoutFnType, otypeParams );
542
543 // build function decl
544 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl, functionNesting, layoutFnType );
545
546 // calculate union layout in function body
547 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
548 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
549 for ( std::list< Declaration* >::const_iterator member = unionDecl->get_members().begin(); member != unionDecl->get_members().end(); ++member ) {
550 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
551 assert( dwt );
552 Type *memberType = dwt->get_type();
553
554 // take max member size and global size
555 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
556
557 // take max of member alignment and global alignment
558 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
559 }
560 // make sure the type is end-padded to a multiple of its alignment
561 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
562
563 addDeclarationAfter( layoutDecl );
564 return unionDecl;
565 }
566
567 ////////////////////////////////////////// Pass1 ////////////////////////////////////////////////////
568
569 namespace {
570 std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) {
571 std::stringstream name;
572
573 // NOTE: this function previously used isPolyObj, which failed to produce
574 // the correct thing in some situations. It's not clear to me why this wasn't working.
575
576 // if the return type or a parameter type involved polymorphic types, then the adapter will need
577 // to take those polymorphic types as pointers. Therefore, there can be two different functions
578 // with the same mangled name, so we need to further mangle the names.
579 for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) {
580 if ( isPolyType( (*retval)->get_type(), tyVars ) ) {
581 name << "P";
582 } else {
583 name << "M";
584 }
585 }
586 name << "_";
587 std::list< DeclarationWithType *> &paramList = function->get_parameters();
588 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
589 if ( isPolyType( (*arg)->get_type(), tyVars ) ) {
590 name << "P";
591 } else {
592 name << "M";
593 }
594 } // for
595 return name.str();
596 }
597
598 std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) {
599 return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars );
600 }
601
602 std::string makeAdapterName( const std::string &mangleName ) {
603 return "_adapter" + mangleName;
604 }
605
606 Pass1::Pass1() : useRetval( false ), tempNamer( "_temp" ) {}
607
608 /// Returns T if the given declaration is a function with parameter (T*) for some TypeInstType T, NULL otherwise
609 TypeInstType *isTypeInstPtrFn( DeclarationWithType *decl ) {
610 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
611 if ( funType->get_parameters().size() == 1 ) {
612 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
613 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
614 return refType;
615 } // if
616 } // if
617 } // if
618 } // if
619 return 0;
620 }
621
622 /// Returns T if the given declaration is a function with parameters (T*, T) for some TypeInstType T, NULL otherwise
623 TypeInstType *isTypeInstPtrValFn( DeclarationWithType *decl ) {
624 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
625 if ( funType->get_parameters().size() == 2 ) {
626 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
627 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
628 if ( TypeInstType *refType2 = dynamic_cast< TypeInstType *>( funType->get_parameters().back()->get_type() ) ) {
629 if ( refType->get_name() == refType2->get_name() ) {
630 return refType;
631 } // if
632 } // if
633 } // if
634 } // if
635 } // if
636 } // if
637 return 0;
638 }
639
640 /// Returns T if the given declaration is (*?=?)(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
641 TypeInstType *isTypeInstAssignment( DeclarationWithType *decl ) {
642 return decl->get_name() == "?=?" ? isTypeInstPtrValFn( decl ) : 0;
643 }
644
645 /// Returns T if the given declaration is (*?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
646 TypeInstType *isTypeInstCtor( DeclarationWithType *decl ) {
647 return decl->get_name() == "?{}" ? isTypeInstPtrFn( decl ) : 0;
648 }
649
650 /// Returns T if the given declaration is (*?{})(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
651 TypeInstType *isTypeInstCopy( DeclarationWithType *decl ) {
652 return decl->get_name() == "?{}" ? isTypeInstPtrValFn( decl ) : 0;
653 }
654
655 /// Returns T if the given declaration is (*^?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
656 TypeInstType *isTypeInstDtor( DeclarationWithType *decl ) {
657 return decl->get_name() == "^?{}" ? isTypeInstPtrFn( decl ) : 0;
658 }
659
660 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified,
661 /// NULL otherwise
662 Type *isNoCvPtrFn( DeclarationWithType *decl ) {
663 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
664 if ( funType->get_parameters().size() == 1 ) {
665 Type::Qualifiers defaultQualifiers;
666 Type *paramType = funType->get_parameters().front()->get_type();
667 if ( paramType->get_qualifiers() != defaultQualifiers ) return 0;
668
669 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType ) ) {
670 Type *baseType = pointerType->get_base();
671 if ( baseType->get_qualifiers() == defaultQualifiers ) {
672 return baseType;
673 } // if
674 } // if
675 } // if
676 } // if
677 return 0;
678 }
679
680 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified,
681 /// NULL otherwise
682 Type *isNoCvPtrValFn( DeclarationWithType *decl ) {
683 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
684 if ( funType->get_parameters().size() == 2 ) {
685 Type::Qualifiers defaultQualifiers;
686 Type *paramType1 = funType->get_parameters().front()->get_type();
687 if ( paramType1->get_qualifiers() != defaultQualifiers ) return 0;
688 Type *paramType2 = funType->get_parameters().back()->get_type();
689 if ( paramType2->get_qualifiers() != defaultQualifiers ) return 0;
690
691 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType1 ) ) {
692 Type *baseType1 = pointerType->get_base();
693 if ( baseType1->get_qualifiers() != defaultQualifiers ) return 0;
694 SymTab::Indexer dummy;
695 if ( ResolvExpr::typesCompatible( baseType1, paramType2, dummy ) ) {
696 return baseType1;
697 } // if
698 } // if
699 } // if
700 } // if
701 return 0;
702 }
703
704 /// returns T if the given declaration is: (*?=?)(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
705 /// Only picks assignments where neither parameter is cv-qualified
706 Type *isAssignment( DeclarationWithType *decl ) {
707 return decl->get_name() == "?=?" ? isNoCvPtrValFn( decl ) : 0;
708 }
709
710 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise
711 /// Only picks ctors where the parameter is not cv-qualified
712 Type *isCtor( DeclarationWithType *decl ) {
713 return decl->get_name() == "?{}" ? isNoCvPtrFn( decl ) : 0;
714 }
715
716 /// returns T if the given declaration is: (*?{})(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
717 /// Only picks copy constructors where neither parameter is cv-qualified
718 Type *isCopy( DeclarationWithType *decl ) {
719 return decl->get_name() == "?{}" ? isNoCvPtrValFn( decl ) : 0;
720 }
721
722 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise
723 /// Only picks ctors where the parameter is not cv-qualified
724 Type *isDtor( DeclarationWithType *decl ) {
725 return decl->get_name() == "^?{}" ? isNoCvPtrFn( decl ) : 0;
726 }
727
728 void Pass1::findTypeOps( const std::list< TypeDecl *> &forall ) {
729 // what if a nested function uses an assignment operator?
730 // assignOps.clear();
731 for ( std::list< TypeDecl *>::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
732 for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) {
733 std::string typeName;
734 if ( TypeInstType *typeInst = isTypeInstAssignment( *assert ) ) {
735 assignOps[ typeInst->get_name() ] = *assert;
736 } else if ( TypeInstType *typeInst = isTypeInstCtor( *assert ) ) {
737 ctorOps[ typeInst->get_name() ] = *assert;
738 } else if ( TypeInstType *typeInst = isTypeInstCopy( *assert ) ) {
739 copyOps[ typeInst->get_name() ] = *assert;
740 } else if ( TypeInstType *typeInst = isTypeInstDtor( *assert ) ) {
741 dtorOps[ typeInst->get_name() ] = *assert;
742 } // if
743 } // for
744 } // for
745 }
746
747 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) {
748 // if this is a assignment function, put it in the map for this scope
749 if ( Type *paramType = isAssignment( functionDecl ) ) {
750 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
751 scopedAssignOps.insert( paramType, functionDecl );
752 }
753 } else if ( Type *paramType = isCtor( functionDecl ) ) {
754 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
755 scopedCtorOps.insert( paramType, functionDecl );
756 }
757 } else if ( Type *paramType = isCopy( functionDecl ) ) {
758 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
759 scopedCopyOps.insert( paramType, functionDecl );
760 }
761 } else if ( Type *paramType = isDtor( functionDecl ) ) {
762 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
763 scopedDtorOps.insert( paramType, functionDecl );
764 }
765 }
766
767 if ( functionDecl->get_statements() ) { // empty routine body ?
768 doBeginScope();
769 scopeTyVars.beginScope();
770 assignOps.beginScope();
771 ctorOps.beginScope();
772 copyOps.beginScope();
773 dtorOps.beginScope();
774
775 DeclarationWithType *oldRetval = retval;
776 bool oldUseRetval = useRetval;
777
778 // process polymorphic return value
779 retval = 0;
780 if ( isPolyRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) {
781 retval = functionDecl->get_functionType()->get_returnVals().front();
782
783 // give names to unnamed return values
784 if ( retval->get_name() == "" ) {
785 retval->set_name( "_retparm" );
786 retval->set_linkage( LinkageSpec::C );
787 } // if
788 } // if
789
790 FunctionType *functionType = functionDecl->get_functionType();
791 makeTyVarMap( functionDecl->get_functionType(), scopeTyVars );
792 findTypeOps( functionDecl->get_functionType()->get_forall() );
793
794 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
795 std::list< FunctionType *> functions;
796 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
797 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
798 findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter );
799 } // for
800 } // for
801 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
802 findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter );
803 } // for
804
805 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
806 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
807 if ( adapters.find( mangleName ) == adapters.end() ) {
808 std::string adapterName = makeAdapterName( mangleName );
809 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) ) );
810 } // if
811 } // for
812
813 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) );
814
815 scopeTyVars.endScope();
816 assignOps.endScope();
817 ctorOps.endScope();
818 copyOps.endScope();
819 dtorOps.endScope();
820 retval = oldRetval;
821 useRetval = oldUseRetval;
822 doEndScope();
823 } // if
824 return functionDecl;
825 }
826
827 TypeDecl *Pass1::mutate( TypeDecl *typeDecl ) {
828 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
829 return Mutator::mutate( typeDecl );
830 }
831
832 Expression *Pass1::mutate( CommaExpr *commaExpr ) {
833 bool oldUseRetval = useRetval;
834 useRetval = false;
835 commaExpr->set_arg1( maybeMutate( commaExpr->get_arg1(), *this ) );
836 useRetval = oldUseRetval;
837 commaExpr->set_arg2( maybeMutate( commaExpr->get_arg2(), *this ) );
838 return commaExpr;
839 }
840
841 Expression *Pass1::mutate( ConditionalExpr *condExpr ) {
842 bool oldUseRetval = useRetval;
843 useRetval = false;
844 condExpr->set_arg1( maybeMutate( condExpr->get_arg1(), *this ) );
845 useRetval = oldUseRetval;
846 condExpr->set_arg2( maybeMutate( condExpr->get_arg2(), *this ) );
847 condExpr->set_arg3( maybeMutate( condExpr->get_arg3(), *this ) );
848 return condExpr;
849
850 }
851
852 void Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) {
853 Type *polyType = isPolyType( parmType, exprTyVars );
854 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
855 std::string typeName = mangleType( polyType );
856 if ( seenTypes.count( typeName ) ) return;
857
858 arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) );
859 arg++;
860 arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) );
861 arg++;
862 if ( dynamic_cast< StructInstType* >( polyType ) ) {
863 if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) {
864 // zero-length arrays are forbidden by C, so don't pass offset for empty struct
865 if ( ! argBaseStructType->get_baseStruct()->get_members().empty() ) {
866 arg = appExpr->get_args().insert( arg, new OffsetPackExpr( argBaseStructType->clone() ) );
867 arg++;
868 }
869 } else {
870 throw SemanticError( "Cannot pass non-struct type for generic struct" );
871 }
872 }
873
874 seenTypes.insert( typeName );
875 }
876 }
877
878 void Pass1::passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
879 // pass size/align for type variables
880 for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) {
881 ResolvExpr::EqvClass eqvClass;
882 assert( env );
883 if ( tyParm->second == TypeDecl::Any ) {
884 Type *concrete = env->lookup( tyParm->first );
885 if ( concrete ) {
886 arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) );
887 arg++;
888 arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) );
889 arg++;
890 } else {
891 /// xxx - should this be an assertion?
892 throw SemanticError( "unbound type variable: " + tyParm->first + " in application ", appExpr );
893 } // if
894 } // if
895 } // for
896
897 // add size/align for generic types to parameter list
898 if ( appExpr->get_function()->get_results().empty() ) return;
899 FunctionType *funcType = getFunctionType( appExpr->get_function()->get_results().front() );
900 assert( funcType );
901
902 std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin();
903 std::list< Expression* >::const_iterator fnArg = arg;
904 std::set< std::string > seenTypes; //< names for generic types we've seen
905
906 // a polymorphic return type may need to be added to the argument list
907 if ( polyRetType ) {
908 Type *concRetType = replaceWithConcrete( appExpr, polyRetType );
909 passArgTypeVars( appExpr, polyRetType, concRetType, arg, exprTyVars, seenTypes );
910 }
911
912 // add type information args for presently unseen types in parameter list
913 for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {
914 VariableExpr *fnArgBase = getBaseVar( *fnArg );
915 if ( ! fnArgBase || fnArgBase->get_results().empty() ) continue;
916 passArgTypeVars( appExpr, (*fnParm)->get_type(), fnArgBase->get_results().front(), arg, exprTyVars, seenTypes );
917 }
918 }
919
920 ObjectDecl *Pass1::makeTemporary( Type *type ) {
921 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, 0 );
922 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
923 return newObj;
924 }
925
926 Expression *Pass1::addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ) {
927 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
928 // if ( useRetval ) {
929 // assert( retval );
930 // arg = appExpr->get_args().insert( arg, new VariableExpr( retval ) );
931 // arg++;
932 // } else {
933
934 // Create temporary to hold return value of polymorphic function and produce that temporary as a result
935 // using a comma expression. Possibly change comma expression into statement expression "{}" for multiple
936 // return values.
937 ObjectDecl *newObj = makeTemporary( retType->clone() );
938 Expression *paramExpr = new VariableExpr( newObj );
939
940 // If the type of the temporary is not polymorphic, box temporary by taking its address;
941 // otherwise the temporary is already boxed and can be used directly.
942 if ( ! isPolyType( newObj->get_type(), scopeTyVars, env ) ) {
943 paramExpr = new AddressExpr( paramExpr );
944 } // if
945 arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call
946 arg++;
947 // Build a comma expression to call the function and emulate a normal return.
948 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) );
949 commaExpr->set_env( appExpr->get_env() );
950 appExpr->set_env( 0 );
951 return commaExpr;
952 // } // if
953 // return appExpr;
954 }
955
956 void Pass1::replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ) {
957 for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) {
958 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
959 assert(paramType && "Aggregate parameters should be type expressions");
960 paramType->set_type( replaceWithConcrete( appExpr, paramType->get_type(), false ) );
961 }
962 }
963
964 Type *Pass1::replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone ) {
965 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) {
966 Type *concrete = env->lookup( typeInst->get_name() );
967 if ( concrete == 0 ) {
968 throw SemanticError( "Unbound type variable " + typeInst->get_name() + " in ", appExpr );
969 } // if
970 return concrete;
971 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) {
972 if ( doClone ) {
973 structType = structType->clone();
974 }
975 replaceParametersWithConcrete( appExpr, structType->get_parameters() );
976 return structType;
977 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) {
978 if ( doClone ) {
979 unionType = unionType->clone();
980 }
981 replaceParametersWithConcrete( appExpr, unionType->get_parameters() );
982 return unionType;
983 }
984 return type;
985 }
986
987 Expression *Pass1::addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg ) {
988 assert( env );
989 Type *concrete = replaceWithConcrete( appExpr, polyType );
990 // add out-parameter for return value
991 return addRetParam( appExpr, function, concrete, arg );
992 }
993
994 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
995 Expression *ret = appExpr;
996 if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) {
997 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg );
998 } // if
999 std::string mangleName = mangleAdapterName( function, tyVars );
1000 std::string adapterName = makeAdapterName( mangleName );
1001
1002 // cast adaptee to void (*)(), since it may have any type inside a polymorphic function
1003 Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) );
1004 appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) );
1005 appExpr->set_function( new NameExpr( adapterName ) );
1006
1007 return ret;
1008 }
1009
1010 void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) {
1011 assert( ! arg->get_results().empty() );
1012 if ( isPolyType( param, exprTyVars ) ) {
1013 if ( isPolyType( arg->get_results().front() ) ) {
1014 // if the argument's type is polymorphic, we don't need to box again!
1015 return;
1016 } else if ( arg->get_results().front()->get_isLvalue() ) {
1017 // VariableExpr and MemberExpr are lvalues; need to check this isn't coming from the second arg of a comma expression though (not an lvalue)
1018 // xxx - need to test that this code is still reachable
1019 if ( CommaExpr *commaArg = dynamic_cast< CommaExpr* >( arg ) ) {
1020 commaArg->set_arg2( new AddressExpr( commaArg->get_arg2() ) );
1021 } else {
1022 arg = new AddressExpr( arg );
1023 }
1024 } else {
1025 // use type computed in unification to declare boxed variables
1026 Type * newType = param->clone();
1027 if ( env ) env->apply( newType );
1028 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, newType, 0 );
1029 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right???
1030 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
1031 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
1032 assign->get_args().push_back( new VariableExpr( newObj ) );
1033 assign->get_args().push_back( arg );
1034 stmtsToAdd.push_back( new ExprStmt( noLabels, assign ) );
1035 arg = new AddressExpr( new VariableExpr( newObj ) );
1036 } // if
1037 } // if
1038 }
1039
1040 /// cast parameters to polymorphic functions so that types are replaced with
1041 /// void * if they are type parameters in the formal type.
1042 /// this gets rid of warnings from gcc.
1043 void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) {
1044 Type * newType = formal->clone();
1045 if ( getFunctionType( newType ) ) {
1046 newType = ScrubTyVars::scrub( newType, tyVars );
1047 actual = new CastExpr( actual, newType );
1048 } // if
1049 }
1050
1051 void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
1052 for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->get_parameters().end(); ++param, ++arg ) {
1053 assert( arg != appExpr->get_args().end() );
1054 addCast( *arg, (*param)->get_type(), exprTyVars );
1055 boxParam( (*param)->get_type(), *arg, exprTyVars );
1056 } // for
1057 }
1058
1059 void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
1060 std::list< Expression *>::iterator cur = arg;
1061 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
1062 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
1063 InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() );
1064 assert( inferParam != appExpr->get_inferParams().end() && "NOTE: Explicit casts of polymorphic functions to compatible monomorphic functions are currently unsupported" );
1065 Expression *newExpr = inferParam->second.expr->clone();
1066 addCast( newExpr, (*assert)->get_type(), tyVars );
1067 boxParam( (*assert)->get_type(), newExpr, tyVars );
1068 appExpr->get_args().insert( cur, newExpr );
1069 } // for
1070 } // for
1071 }
1072
1073 void makeRetParm( FunctionType *funcType ) {
1074 DeclarationWithType *retParm = funcType->get_returnVals().front();
1075
1076 // make a new parameter that is a pointer to the type of the old return value
1077 retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) );
1078 funcType->get_parameters().push_front( retParm );
1079
1080 // we don't need the return value any more
1081 funcType->get_returnVals().clear();
1082 }
1083
1084 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ) {
1085 // actually make the adapter type
1086 FunctionType *adapter = adaptee->clone();
1087 if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) {
1088 makeRetParm( adapter );
1089 } // if
1090 adapter->get_parameters().push_front( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ) );
1091 return adapter;
1092 }
1093
1094 Expression *makeAdapterArg( DeclarationWithType *param, DeclarationWithType *arg, DeclarationWithType *realParam, const TyVarMap &tyVars ) {
1095 assert( param );
1096 assert( arg );
1097 if ( isPolyType( realParam->get_type(), tyVars ) ) {
1098 if ( ! isPolyType( arg->get_type() ) ) {
1099 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
1100 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) );
1101 deref->get_results().push_back( arg->get_type()->clone() );
1102 return deref;
1103 } // if
1104 } // if
1105 return new VariableExpr( param );
1106 }
1107
1108 void addAdapterParams( ApplicationExpr *adapteeApp, std::list< DeclarationWithType *>::iterator arg, std::list< DeclarationWithType *>::iterator param, std::list< DeclarationWithType *>::iterator paramEnd, std::list< DeclarationWithType *>::iterator realParam, const TyVarMap &tyVars ) {
1109 UniqueName paramNamer( "_p" );
1110 for ( ; param != paramEnd; ++param, ++arg, ++realParam ) {
1111 if ( (*param)->get_name() == "" ) {
1112 (*param)->set_name( paramNamer.newName() );
1113 (*param)->set_linkage( LinkageSpec::C );
1114 } // if
1115 adapteeApp->get_args().push_back( makeAdapterArg( *param, *arg, *realParam, tyVars ) );
1116 } // for
1117 }
1118
1119 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) {
1120 FunctionType *adapterType = makeAdapterType( adaptee, tyVars );
1121 adapterType = ScrubTyVars::scrub( adapterType, tyVars );
1122 DeclarationWithType *adapteeDecl = adapterType->get_parameters().front();
1123 adapteeDecl->set_name( "_adaptee" );
1124 ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) );
1125 Statement *bodyStmt;
1126
1127 std::list< TypeDecl *>::iterator tyArg = realType->get_forall().begin();
1128 std::list< TypeDecl *>::iterator tyParam = adapterType->get_forall().begin();
1129 std::list< TypeDecl *>::iterator realTyParam = adaptee->get_forall().begin();
1130 for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) {
1131 assert( tyArg != realType->get_forall().end() );
1132 std::list< DeclarationWithType *>::iterator assertArg = (*tyArg)->get_assertions().begin();
1133 std::list< DeclarationWithType *>::iterator assertParam = (*tyParam)->get_assertions().begin();
1134 std::list< DeclarationWithType *>::iterator realAssertParam = (*realTyParam)->get_assertions().begin();
1135 for ( ; assertParam != (*tyParam)->get_assertions().end(); ++assertArg, ++assertParam, ++realAssertParam ) {
1136 assert( assertArg != (*tyArg)->get_assertions().end() );
1137 adapteeApp->get_args().push_back( makeAdapterArg( *assertParam, *assertArg, *realAssertParam, tyVars ) );
1138 } // for
1139 } // for
1140
1141 std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin();
1142 std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin();
1143 std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin();
1144 param++; // skip adaptee parameter in the adapter type
1145 if ( realType->get_returnVals().empty() ) {
1146 // void return
1147 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1148 bodyStmt = new ExprStmt( noLabels, adapteeApp );
1149 } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
1150 // return type T
1151 if ( (*param)->get_name() == "" ) {
1152 (*param)->set_name( "_ret" );
1153 (*param)->set_linkage( LinkageSpec::C );
1154 } // if
1155 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
1156 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
1157 deref->get_args().push_back( new CastExpr( new VariableExpr( *param++ ), new PointerType( Type::Qualifiers(), realType->get_returnVals().front()->get_type()->clone() ) ) );
1158 assign->get_args().push_back( deref );
1159 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1160 assign->get_args().push_back( adapteeApp );
1161 bodyStmt = new ExprStmt( noLabels, assign );
1162 } else {
1163 // adapter for a function that returns a monomorphic value
1164 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1165 bodyStmt = new ReturnStmt( noLabels, adapteeApp );
1166 } // if
1167 CompoundStmt *adapterBody = new CompoundStmt( noLabels );
1168 adapterBody->get_kids().push_back( bodyStmt );
1169 std::string adapterName = makeAdapterName( mangleName );
1170 return new FunctionDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, adapterType, adapterBody, false, false );
1171 }
1172
1173 void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) {
1174 // collect a list of function types passed as parameters or implicit parameters (assertions)
1175 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1176 std::list< FunctionType *> functions;
1177 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
1178 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
1179 findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter );
1180 } // for
1181 } // for
1182 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1183 findFunction( (*arg)->get_type(), functions, exprTyVars, needsAdapter );
1184 } // for
1185
1186 // parameter function types for which an appropriate adapter has been generated. we cannot use the types
1187 // after applying substitutions, since two different parameter types may be unified to the same type
1188 std::set< std::string > adaptersDone;
1189
1190 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1191 FunctionType *originalFunction = (*funType)->clone();
1192 FunctionType *realFunction = (*funType)->clone();
1193 std::string mangleName = SymTab::Mangler::mangle( realFunction );
1194
1195 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this
1196 // pre-substitution parameter function type.
1197 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1198 adaptersDone.insert( adaptersDone.begin(), mangleName );
1199
1200 // apply substitution to type variables to figure out what the adapter's type should look like
1201 assert( env );
1202 env->apply( realFunction );
1203 mangleName = SymTab::Mangler::mangle( realFunction );
1204 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars );
1205
1206 typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter;
1207 AdapterIter adapter = adapters.find( mangleName );
1208 if ( adapter == adapters.end() ) {
1209 // adapter has not been created yet in the current scope, so define it
1210 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars );
1211 std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) );
1212 adapter = answer.first;
1213 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) );
1214 } // if
1215 assert( adapter != adapters.end() );
1216
1217 // add the appropriate adapter as a parameter
1218 appExpr->get_args().push_front( new VariableExpr( adapter->second ) );
1219 } // if
1220 } // for
1221 } // passAdapters
1222
1223 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) {
1224 NameExpr *opExpr;
1225 if ( isIncr ) {
1226 opExpr = new NameExpr( "?+=?" );
1227 } else {
1228 opExpr = new NameExpr( "?-=?" );
1229 } // if
1230 UntypedExpr *addAssign = new UntypedExpr( opExpr );
1231 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1232 addAssign->get_args().push_back( address->get_arg() );
1233 } else {
1234 addAssign->get_args().push_back( appExpr->get_args().front() );
1235 } // if
1236 addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) ) ) );
1237 addAssign->get_results().front() = appExpr->get_results().front()->clone();
1238 if ( appExpr->get_env() ) {
1239 addAssign->set_env( appExpr->get_env() );
1240 appExpr->set_env( 0 );
1241 } // if
1242 appExpr->get_args().clear();
1243 delete appExpr;
1244 return addAssign;
1245 }
1246
1247 Expression *Pass1::handleIntrinsics( ApplicationExpr *appExpr ) {
1248 if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->get_function() ) ) {
1249 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic ) {
1250 if ( varExpr->get_var()->get_name() == "?[?]" ) {
1251 assert( ! appExpr->get_results().empty() );
1252 assert( appExpr->get_args().size() == 2 );
1253 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
1254 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
1255 assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers
1256 UntypedExpr *ret = 0;
1257 if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer
1258 ret = new UntypedExpr( new NameExpr( "?+?" ) );
1259 } // if
1260 if ( baseType1 ) {
1261 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1262 multiply->get_args().push_back( appExpr->get_args().back() );
1263 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1264 ret->get_args().push_back( appExpr->get_args().front() );
1265 ret->get_args().push_back( multiply );
1266 } else if ( baseType2 ) {
1267 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1268 multiply->get_args().push_back( appExpr->get_args().front() );
1269 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1270 ret->get_args().push_back( multiply );
1271 ret->get_args().push_back( appExpr->get_args().back() );
1272 } // if
1273 if ( baseType1 || baseType2 ) {
1274 ret->get_results().push_front( appExpr->get_results().front()->clone() );
1275 if ( appExpr->get_env() ) {
1276 ret->set_env( appExpr->get_env() );
1277 appExpr->set_env( 0 );
1278 } // if
1279 appExpr->get_args().clear();
1280 delete appExpr;
1281 return ret;
1282 } // if
1283 } else if ( varExpr->get_var()->get_name() == "*?" ) {
1284 assert( ! appExpr->get_results().empty() );
1285 assert( ! appExpr->get_args().empty() );
1286 if ( isPolyType( appExpr->get_results().front(), scopeTyVars, env ) ) {
1287 Expression *ret = appExpr->get_args().front();
1288 delete ret->get_results().front();
1289 ret->get_results().front() = appExpr->get_results().front()->clone();
1290 if ( appExpr->get_env() ) {
1291 ret->set_env( appExpr->get_env() );
1292 appExpr->set_env( 0 );
1293 } // if
1294 appExpr->get_args().clear();
1295 delete appExpr;
1296 return ret;
1297 } // if
1298 } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) {
1299 assert( ! appExpr->get_results().empty() );
1300 assert( appExpr->get_args().size() == 1 );
1301 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
1302 Type *tempType = appExpr->get_results().front()->clone();
1303 if ( env ) {
1304 env->apply( tempType );
1305 } // if
1306 ObjectDecl *newObj = makeTemporary( tempType );
1307 VariableExpr *tempExpr = new VariableExpr( newObj );
1308 UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) );
1309 assignExpr->get_args().push_back( tempExpr->clone() );
1310 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1311 assignExpr->get_args().push_back( address->get_arg()->clone() );
1312 } else {
1313 assignExpr->get_args().push_back( appExpr->get_args().front()->clone() );
1314 } // if
1315 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) );
1316 return new CommaExpr( firstComma, tempExpr );
1317 } // if
1318 } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) {
1319 assert( ! appExpr->get_results().empty() );
1320 assert( appExpr->get_args().size() == 1 );
1321 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
1322 return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );
1323 } // if
1324 } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) {
1325 assert( ! appExpr->get_results().empty() );
1326 assert( appExpr->get_args().size() == 2 );
1327 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
1328 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
1329 if ( baseType1 && baseType2 ) {
1330 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) );
1331 divide->get_args().push_back( appExpr );
1332 divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1333 divide->get_results().push_front( appExpr->get_results().front()->clone() );
1334 if ( appExpr->get_env() ) {
1335 divide->set_env( appExpr->get_env() );
1336 appExpr->set_env( 0 );
1337 } // if
1338 return divide;
1339 } else if ( baseType1 ) {
1340 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1341 multiply->get_args().push_back( appExpr->get_args().back() );
1342 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1343 appExpr->get_args().back() = multiply;
1344 } else if ( baseType2 ) {
1345 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1346 multiply->get_args().push_back( appExpr->get_args().front() );
1347 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1348 appExpr->get_args().front() = multiply;
1349 } // if
1350 } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) {
1351 assert( ! appExpr->get_results().empty() );
1352 assert( appExpr->get_args().size() == 2 );
1353 Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env );
1354 if ( baseType ) {
1355 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1356 multiply->get_args().push_back( appExpr->get_args().back() );
1357 multiply->get_args().push_back( new SizeofExpr( baseType->clone() ) );
1358 appExpr->get_args().back() = multiply;
1359 } // if
1360 } // if
1361 return appExpr;
1362 } // if
1363 } // if
1364 return 0;
1365 }
1366
1367 Expression *Pass1::mutate( ApplicationExpr *appExpr ) {
1368 // std::cerr << "mutate appExpr: ";
1369 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
1370 // std::cerr << i->first << " ";
1371 // }
1372 // std::cerr << "\n";
1373 bool oldUseRetval = useRetval;
1374 useRetval = false;
1375 appExpr->get_function()->acceptMutator( *this );
1376 mutateAll( appExpr->get_args(), *this );
1377 useRetval = oldUseRetval;
1378
1379 assert( ! appExpr->get_function()->get_results().empty() );
1380 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
1381 assert( pointer );
1382 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
1383 assert( function );
1384
1385 if ( Expression *newExpr = handleIntrinsics( appExpr ) ) {
1386 return newExpr;
1387 } // if
1388
1389 Expression *ret = appExpr;
1390
1391 std::list< Expression *>::iterator arg = appExpr->get_args().begin();
1392 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin();
1393
1394 TyVarMap exprTyVars( (TypeDecl::Kind)-1 );
1395 makeTyVarMap( function, exprTyVars );
1396 ReferenceToType *polyRetType = isPolyRet( function );
1397
1398 if ( polyRetType ) {
1399 ret = addPolyRetParam( appExpr, function, polyRetType, arg );
1400 } else if ( needsAdapter( function, scopeTyVars ) ) {
1401 // std::cerr << "needs adapter: ";
1402 // printTyVarMap( std::cerr, scopeTyVars );
1403 // std::cerr << *env << std::endl;
1404 // change the application so it calls the adapter rather than the passed function
1405 ret = applyAdapter( appExpr, function, arg, scopeTyVars );
1406 } // if
1407 arg = appExpr->get_args().begin();
1408
1409 passTypeVars( appExpr, polyRetType, arg, exprTyVars );
1410 addInferredParams( appExpr, function, arg, exprTyVars );
1411
1412 arg = paramBegin;
1413
1414 boxParams( appExpr, function, arg, exprTyVars );
1415 passAdapters( appExpr, function, exprTyVars );
1416
1417 return ret;
1418 }
1419
1420 Expression *Pass1::mutate( UntypedExpr *expr ) {
1421 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
1422 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1423 if ( name->get_name() == "*?" ) {
1424 Expression *ret = expr->get_args().front();
1425 expr->get_args().clear();
1426 delete expr;
1427 return ret->acceptMutator( *this );
1428 } // if
1429 } // if
1430 } // if
1431 return PolyMutator::mutate( expr );
1432 }
1433
1434 Expression *Pass1::mutate( AddressExpr *addrExpr ) {
1435 assert( ! addrExpr->get_arg()->get_results().empty() );
1436
1437 bool needs = false;
1438 if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {
1439 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
1440 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1441 if ( name->get_name() == "*?" ) {
1442 if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {
1443 assert( ! appExpr->get_function()->get_results().empty() );
1444 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
1445 assert( pointer );
1446 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
1447 assert( function );
1448 needs = needsAdapter( function, scopeTyVars );
1449 } // if
1450 } // if
1451 } // if
1452 } // if
1453 } // if
1454 // isPolyType check needs to happen before mutating addrExpr arg, so pull it forward
1455 // out of the if condition.
1456 bool polytype = isPolyType( addrExpr->get_arg()->get_results().front(), scopeTyVars, env );
1457 addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) );
1458 if ( polytype || needs ) {
1459 Expression *ret = addrExpr->get_arg();
1460 delete ret->get_results().front();
1461 ret->get_results().front() = addrExpr->get_results().front()->clone();
1462 addrExpr->set_arg( 0 );
1463 delete addrExpr;
1464 return ret;
1465 } else {
1466 return addrExpr;
1467 } // if
1468 }
1469
1470 /// Wraps a function declaration in a new pointer-to-function variable expression
1471 VariableExpr *wrapFunctionDecl( DeclarationWithType *functionDecl ) {
1472 // line below cloned from FixFunction.cc
1473 ObjectDecl *functionObj = new ObjectDecl( functionDecl->get_name(), functionDecl->get_storageClass(), functionDecl->get_linkage(), 0,
1474 new PointerType( Type::Qualifiers(), functionDecl->get_type()->clone() ), 0 );
1475 functionObj->set_mangleName( functionDecl->get_mangleName() );
1476 return new VariableExpr( functionObj );
1477 }
1478
1479 /// Finds the operation declaration for a given type in one of the two maps
1480 DeclarationWithType* findOpForType( Type *formalType, const ScopedMap< std::string, DeclarationWithType* >& ops, ResolvExpr::TypeMap< DeclarationWithType >& scopedOps ) {
1481 if ( TypeInstType *formalTypeInstType = dynamic_cast< TypeInstType* >( formalType ) ) {
1482 ScopedMap< std::string, DeclarationWithType *>::const_iterator opIt = ops.find( formalTypeInstType->get_name() );
1483 return opIt == ops.end() ? 0 : opIt->second;
1484 } else {
1485 return scopedOps.find( formalType );
1486 }
1487 }
1488
1489 /// Adds an assertion parameter to the application expression for the actual assertion declaration valued with the assert op
1490 void addAssertionFor( ApplicationExpr *appExpr, DeclarationWithType *actualDecl, DeclarationWithType *assertOp ) {
1491 appExpr->get_inferParams()[ actualDecl->get_uniqueId() ]
1492 = ParamEntry( assertOp->get_uniqueId(), assertOp->get_type()->clone(), actualDecl->get_type()->clone(), wrapFunctionDecl( assertOp ) );
1493 }
1494
1495 Statement * Pass1::mutate( ReturnStmt *returnStmt ) {
1496 if ( retval && returnStmt->get_expr() ) {
1497 assert( ! returnStmt->get_expr()->get_results().empty() );
1498 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
1499 // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) {
1500 // by this point, a cast expr on a polymorphic return value is redundant
1501 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( returnStmt->get_expr() ) ) {
1502 returnStmt->set_expr( castExpr->get_arg() );
1503 returnStmt->get_expr()->set_env( castExpr->get_env() );
1504 castExpr->set_env( 0 );
1505 castExpr->set_arg( 0 );
1506 delete castExpr;
1507 } //while
1508
1509 // find assignment operator for (polymorphic) return type
1510 ApplicationExpr *assignExpr = 0;
1511 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ) ) {
1512 // find assignment operator for type variable
1513 ScopedMap< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() );
1514 if ( assignIter == assignOps.end() ) {
1515 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() );
1516 } // if
1517 assignExpr = new ApplicationExpr( new VariableExpr( assignIter->second ) );
1518 } else if ( ReferenceToType *refType = dynamic_cast< ReferenceToType *>( retval->get_type() ) ) {
1519 // find assignment operator for generic type
1520 DeclarationWithType *functionDecl = scopedAssignOps.find( refType );
1521 if ( ! functionDecl ) {
1522 throw SemanticError( "Attempt to return dtype or ftype generic object in ", returnStmt->get_expr() );
1523 }
1524
1525 // wrap it up in an application expression
1526 assignExpr = new ApplicationExpr( wrapFunctionDecl( functionDecl ) );
1527 assignExpr->set_env( env->clone() );
1528
1529 // find each of its needed secondary assignment operators
1530 std::list< Expression* > &tyParams = refType->get_parameters();
1531 std::list< TypeDecl* > &forallParams = functionDecl->get_type()->get_forall();
1532 std::list< Expression* >::const_iterator tyIt = tyParams.begin();
1533 std::list< TypeDecl* >::const_iterator forallIt = forallParams.begin();
1534 for ( ; tyIt != tyParams.end() && forallIt != forallParams.end(); ++tyIt, ++forallIt ) {
1535 // Add appropriate mapping to assignment expression environment
1536 TypeExpr *formalTypeExpr = dynamic_cast< TypeExpr* >( *tyIt );
1537 assert( formalTypeExpr && "type parameters must be type expressions" );
1538 Type *formalType = formalTypeExpr->get_type();
1539 assignExpr->get_env()->add( (*forallIt)->get_name(), formalType );
1540
1541 // skip non-otype parameters (ftype/dtype)
1542 if ( (*forallIt)->get_kind() != TypeDecl::Any ) continue;
1543
1544 // find otype operators for formal type
1545 DeclarationWithType *assertAssign = findOpForType( formalType, assignOps, scopedAssignOps );
1546 if ( ! assertAssign ) throw SemanticError( "No assignment operation found for ", formalType );
1547
1548 DeclarationWithType *assertCtor = findOpForType( formalType, ctorOps, scopedCtorOps );
1549 if ( ! assertCtor ) throw SemanticError( "No default constructor found for ", formalType );
1550
1551 DeclarationWithType *assertCopy = findOpForType( formalType, copyOps, scopedCopyOps );
1552 if ( ! assertCopy ) throw SemanticError( "No copy constructor found for ", formalType );
1553
1554 DeclarationWithType *assertDtor = findOpForType( formalType, dtorOps, scopedDtorOps );
1555 if ( ! assertDtor ) throw SemanticError( "No destructor found for ", formalType );
1556
1557 // add inferred parameters for otype operators to assignment expression
1558 // NOTE: Code here assumes that first four assertions are assign op, ctor, copy ctor, dtor, in that order
1559 std::list< DeclarationWithType* > &asserts = (*forallIt)->get_assertions();
1560 assert( asserts.size() >= 4 && "Type param needs otype operator assertions" );
1561
1562 std::list< DeclarationWithType* >::iterator actualIt = asserts.begin();
1563 addAssertionFor( assignExpr, *actualIt, assertAssign );
1564 ++actualIt;
1565 addAssertionFor( assignExpr, *actualIt, assertCtor );
1566 ++actualIt;
1567 addAssertionFor( assignExpr, *actualIt, assertCopy );
1568 ++actualIt;
1569 addAssertionFor( assignExpr, *actualIt, assertDtor );
1570
1571 //DeclarationWithType *actualDecl = asserts.front();
1572 //assignExpr->get_inferParams()[ actualDecl->get_uniqueId() ]
1573 // = ParamEntry( assertAssign->get_uniqueId(), assertAssign->get_type()->clone(), actualDecl->get_type()->clone(), wrapFunctionDecl( assertAssign ) );
1574 }
1575 }
1576 assert( assignExpr );
1577
1578 // replace return statement with appropriate assignment to out parameter
1579 Expression *retParm = new NameExpr( retval->get_name() );
1580 retParm->get_results().push_back( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
1581 assignExpr->get_args().push_back( retParm );
1582 assignExpr->get_args().push_back( returnStmt->get_expr() );
1583 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) );
1584 // } else {
1585 // useRetval = true;
1586 // stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( returnStmt->get_expr() ) ) );
1587 // useRetval = false;
1588 // } // if
1589 returnStmt->set_expr( 0 );
1590 } else {
1591 returnStmt->set_expr( mutateExpression( returnStmt->get_expr() ) );
1592 } // if
1593 return returnStmt;
1594 }
1595
1596 Type * Pass1::mutate( PointerType *pointerType ) {
1597 scopeTyVars.beginScope();
1598 makeTyVarMap( pointerType, scopeTyVars );
1599
1600 Type *ret = Mutator::mutate( pointerType );
1601
1602 scopeTyVars.endScope();
1603 return ret;
1604 }
1605
1606 Type * Pass1::mutate( FunctionType *functionType ) {
1607 scopeTyVars.beginScope();
1608 makeTyVarMap( functionType, scopeTyVars );
1609
1610 Type *ret = Mutator::mutate( functionType );
1611
1612 scopeTyVars.endScope();
1613 return ret;
1614 }
1615
1616 void Pass1::doBeginScope() {
1617 adapters.beginScope();
1618 scopedAssignOps.beginScope();
1619 scopedCtorOps.beginScope();
1620 scopedCopyOps.beginScope();
1621 scopedDtorOps.beginScope();
1622 }
1623
1624 void Pass1::doEndScope() {
1625 adapters.endScope();
1626 scopedAssignOps.endScope();
1627 scopedCtorOps.endScope();
1628 scopedCopyOps.endScope();
1629 scopedDtorOps.endScope();
1630 }
1631
1632////////////////////////////////////////// Pass2 ////////////////////////////////////////////////////
1633
1634 void Pass2::addAdapters( FunctionType *functionType ) {
1635 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1636 std::list< FunctionType *> functions;
1637 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1638 Type *orig = (*arg)->get_type();
1639 findAndReplaceFunction( orig, functions, scopeTyVars, needsAdapter );
1640 (*arg)->set_type( orig );
1641 }
1642 std::set< std::string > adaptersDone;
1643 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1644 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
1645 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1646 std::string adapterName = makeAdapterName( mangleName );
1647 paramList.push_front( new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) );
1648 adaptersDone.insert( adaptersDone.begin(), mangleName );
1649 }
1650 }
1651// deleteAll( functions );
1652 }
1653
1654 template< typename DeclClass >
1655 DeclClass * Pass2::handleDecl( DeclClass *decl, Type *type ) {
1656 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1657
1658 return ret;
1659 }
1660
1661 DeclarationWithType * Pass2::mutate( FunctionDecl *functionDecl ) {
1662 return handleDecl( functionDecl, functionDecl->get_functionType() );
1663 }
1664
1665 ObjectDecl * Pass2::mutate( ObjectDecl *objectDecl ) {
1666 return handleDecl( objectDecl, objectDecl->get_type() );
1667 }
1668
1669 TypeDecl * Pass2::mutate( TypeDecl *typeDecl ) {
1670 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1671 if ( typeDecl->get_base() ) {
1672 return handleDecl( typeDecl, typeDecl->get_base() );
1673 } else {
1674 return Mutator::mutate( typeDecl );
1675 }
1676 }
1677
1678 TypedefDecl * Pass2::mutate( TypedefDecl *typedefDecl ) {
1679 return handleDecl( typedefDecl, typedefDecl->get_base() );
1680 }
1681
1682 Type * Pass2::mutate( PointerType *pointerType ) {
1683 scopeTyVars.beginScope();
1684 makeTyVarMap( pointerType, scopeTyVars );
1685
1686 Type *ret = Mutator::mutate( pointerType );
1687
1688 scopeTyVars.endScope();
1689 return ret;
1690 }
1691
1692 Type *Pass2::mutate( FunctionType *funcType ) {
1693 scopeTyVars.beginScope();
1694 makeTyVarMap( funcType, scopeTyVars );
1695
1696 // move polymorphic return type to parameter list
1697 if ( isPolyRet( funcType ) ) {
1698 DeclarationWithType *ret = funcType->get_returnVals().front();
1699 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) );
1700 funcType->get_parameters().push_front( ret );
1701 funcType->get_returnVals().pop_front();
1702 }
1703
1704 // add size/align and assertions for type parameters to parameter list
1705 std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin();
1706 std::list< DeclarationWithType *> inferredParams;
1707 ObjectDecl newObj( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 );
1708 ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0,
1709 new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 );
1710 for ( std::list< TypeDecl *>::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
1711 ObjectDecl *sizeParm, *alignParm;
1712 // add all size and alignment parameters to parameter list
1713 if ( (*tyParm)->get_kind() == TypeDecl::Any ) {
1714 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm );
1715 std::string parmName = mangleType( &parmType );
1716
1717 sizeParm = newObj.clone();
1718 sizeParm->set_name( sizeofName( parmName ) );
1719 last = funcType->get_parameters().insert( last, sizeParm );
1720 ++last;
1721
1722 alignParm = newObj.clone();
1723 alignParm->set_name( alignofName( parmName ) );
1724 last = funcType->get_parameters().insert( last, alignParm );
1725 ++last;
1726 }
1727 // move all assertions into parameter list
1728 for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) {
1729// *assert = (*assert)->acceptMutator( *this );
1730 inferredParams.push_back( *assert );
1731 }
1732 (*tyParm)->get_assertions().clear();
1733 }
1734
1735 // add size/align for generic parameter types to parameter list
1736 std::set< std::string > seenTypes; // sizeofName for generic types we've seen
1737 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) {
1738 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1739 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1740 std::string typeName = mangleType( polyType );
1741 if ( seenTypes.count( typeName ) ) continue;
1742
1743 ObjectDecl *sizeParm, *alignParm, *offsetParm;
1744 sizeParm = newObj.clone();
1745 sizeParm->set_name( sizeofName( typeName ) );
1746 last = funcType->get_parameters().insert( last, sizeParm );
1747 ++last;
1748
1749 alignParm = newObj.clone();
1750 alignParm->set_name( alignofName( typeName ) );
1751 last = funcType->get_parameters().insert( last, alignParm );
1752 ++last;
1753
1754 if ( StructInstType *polyBaseStruct = dynamic_cast< StructInstType* >( polyType ) ) {
1755 // NOTE zero-length arrays are illegal in C, so empty structs have no offset array
1756 if ( ! polyBaseStruct->get_baseStruct()->get_members().empty() ) {
1757 offsetParm = newPtr.clone();
1758 offsetParm->set_name( offsetofName( typeName ) );
1759 last = funcType->get_parameters().insert( last, offsetParm );
1760 ++last;
1761 }
1762 }
1763
1764 seenTypes.insert( typeName );
1765 }
1766 }
1767
1768 // splice assertion parameters into parameter list
1769 funcType->get_parameters().splice( last, inferredParams );
1770 addAdapters( funcType );
1771 mutateAll( funcType->get_returnVals(), *this );
1772 mutateAll( funcType->get_parameters(), *this );
1773
1774 scopeTyVars.endScope();
1775 return funcType;
1776 }
1777
1778//////////////////////////////////////// GenericInstantiator //////////////////////////////////////////////////
1779
1780 /// Makes substitutions of params into baseParams; returns true if all parameters substituted for a concrete type
1781 bool makeSubstitutions( const std::list< TypeDecl* >& baseParams, const std::list< Expression* >& params, std::list< TypeExpr* >& out ) {
1782 bool allConcrete = true; // will finish the substitution list even if they're not all concrete
1783
1784 // substitute concrete types for given parameters, and incomplete types for placeholders
1785 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
1786 std::list< Expression* >::const_iterator param = params.begin();
1787 for ( ; baseParam != baseParams.end() && param != params.end(); ++baseParam, ++param ) {
1788 // switch ( (*baseParam)->get_kind() ) {
1789 // case TypeDecl::Any: { // any type is a valid substitution here; complete types can be used to instantiate generics
1790 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
1791 assert(paramType && "Aggregate parameters should be type expressions");
1792 out.push_back( paramType->clone() );
1793 // check that the substituted type isn't a type variable itself
1794 if ( dynamic_cast< TypeInstType* >( paramType->get_type() ) ) {
1795 allConcrete = false;
1796 }
1797 // break;
1798 // }
1799 // case TypeDecl::Dtype: // dtype can be consistently replaced with void [only pointers, which become void*]
1800 // out.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) );
1801 // break;
1802 // case TypeDecl::Ftype: // pointer-to-ftype can be consistently replaced with void (*)(void) [similar to dtype]
1803 // out.push_back( new TypeExpr( new FunctionType( Type::Qualifiers(), false ) ) );
1804 // break;
1805 // }
1806 }
1807
1808 // if any parameters left over, not done
1809 if ( baseParam != baseParams.end() ) return false;
1810 // // if not enough parameters given, substitute remaining incomplete types for placeholders
1811 // for ( ; baseParam != baseParams.end(); ++baseParam ) {
1812 // switch ( (*baseParam)->get_kind() ) {
1813 // case TypeDecl::Any: // no more substitutions here, fail early
1814 // return false;
1815 // case TypeDecl::Dtype: // dtype can be consistently replaced with void [only pointers, which become void*]
1816 // out.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) );
1817 // break;
1818 // case TypeDecl::Ftype: // pointer-to-ftype can be consistently replaced with void (*)(void) [similar to dtype]
1819 // out.push_back( new TypeExpr( new FunctionType( Type::Qualifiers(), false ) ) );
1820 // break;
1821 // }
1822 // }
1823
1824 return allConcrete;
1825 }
1826
1827 /// Substitutes types of members of in according to baseParams => typeSubs, appending the result to out
1828 void substituteMembers( const std::list< Declaration* >& in, const std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs,
1829 std::list< Declaration* >& out ) {
1830 // substitute types into new members
1831 TypeSubstitution subs( baseParams.begin(), baseParams.end(), typeSubs.begin() );
1832 for ( std::list< Declaration* >::const_iterator member = in.begin(); member != in.end(); ++member ) {
1833 Declaration *newMember = (*member)->clone();
1834 subs.apply(newMember);
1835 out.push_back( newMember );
1836 }
1837 }
1838
1839 Type* GenericInstantiator::mutate( StructInstType *inst ) {
1840 // mutate subtypes
1841 Type *mutated = Mutator::mutate( inst );
1842 inst = dynamic_cast< StructInstType* >( mutated );
1843 if ( ! inst ) return mutated;
1844
1845 // exit early if no need for further mutation
1846 if ( inst->get_parameters().empty() ) return inst;
1847 assert( inst->get_baseParameters() && "Base struct has parameters" );
1848
1849 // check if type can be concretely instantiated; put substitutions into typeSubs
1850 std::list< TypeExpr* > typeSubs;
1851 if ( ! makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ) ) {
1852 deleteAll( typeSubs );
1853 return inst;
1854 }
1855
1856 // make concrete instantiation of generic type
1857 StructDecl *concDecl = lookup( inst, typeSubs );
1858 if ( ! concDecl ) {
1859 // set concDecl to new type, insert type declaration into statements to add
1860 concDecl = new StructDecl( typeNamer.newName( inst->get_name() ) );
1861 substituteMembers( inst->get_baseStruct()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() );
1862 DeclMutator::addDeclaration( concDecl );
1863 insert( inst, typeSubs, concDecl );
1864 }
1865 StructInstType *newInst = new StructInstType( inst->get_qualifiers(), concDecl->get_name() );
1866 newInst->set_baseStruct( concDecl );
1867
1868 deleteAll( typeSubs );
1869 delete inst;
1870 return newInst;
1871 }
1872
1873 Type* GenericInstantiator::mutate( UnionInstType *inst ) {
1874 // mutate subtypes
1875 Type *mutated = Mutator::mutate( inst );
1876 inst = dynamic_cast< UnionInstType* >( mutated );
1877 if ( ! inst ) return mutated;
1878
1879 // exit early if no need for further mutation
1880 if ( inst->get_parameters().empty() ) return inst;
1881 assert( inst->get_baseParameters() && "Base union has parameters" );
1882
1883 // check if type can be concretely instantiated; put substitutions into typeSubs
1884 std::list< TypeExpr* > typeSubs;
1885 if ( ! makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ) ) {
1886 deleteAll( typeSubs );
1887 return inst;
1888 }
1889
1890 // make concrete instantiation of generic type
1891 UnionDecl *concDecl = lookup( inst, typeSubs );
1892 if ( ! concDecl ) {
1893 // set concDecl to new type, insert type declaration into statements to add
1894 concDecl = new UnionDecl( typeNamer.newName( inst->get_name() ) );
1895 substituteMembers( inst->get_baseUnion()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() );
1896 DeclMutator::addDeclaration( concDecl );
1897 insert( inst, typeSubs, concDecl );
1898 }
1899 UnionInstType *newInst = new UnionInstType( inst->get_qualifiers(), concDecl->get_name() );
1900 newInst->set_baseUnion( concDecl );
1901
1902 deleteAll( typeSubs );
1903 delete inst;
1904 return newInst;
1905 }
1906
1907 // /// Gets the base struct or union declaration for a member expression; NULL if not applicable
1908 // AggregateDecl* getMemberBaseDecl( MemberExpr *memberExpr ) {
1909 // // get variable for member aggregate
1910 // VariableExpr *varExpr = dynamic_cast< VariableExpr* >( memberExpr->get_aggregate() );
1911 // if ( ! varExpr ) return NULL;
1912 //
1913 // // get object for variable
1914 // ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1915 // if ( ! objectDecl ) return NULL;
1916 //
1917 // // get base declaration from object type
1918 // Type *objectType = objectDecl->get_type();
1919 // StructInstType *structType = dynamic_cast< StructInstType* >( objectType );
1920 // if ( structType ) return structType->get_baseStruct();
1921 // UnionInstType *unionType = dynamic_cast< UnionInstType* >( objectType );
1922 // if ( unionType ) return unionType->get_baseUnion();
1923 //
1924 // return NULL;
1925 // }
1926 //
1927 // /// Finds the declaration with the given name, returning decls.end() if none such
1928 // std::list< Declaration* >::const_iterator findDeclNamed( const std::list< Declaration* > &decls, const std::string &name ) {
1929 // for( std::list< Declaration* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
1930 // if ( (*decl)->get_name() == name ) return decl;
1931 // }
1932 // return decls.end();
1933 // }
1934 //
1935 // Expression* Instantiate::mutate( MemberExpr *memberExpr ) {
1936 // // mutate, exiting early if no longer MemberExpr
1937 // Expression *expr = Mutator::mutate( memberExpr );
1938 // memberExpr = dynamic_cast< MemberExpr* >( expr );
1939 // if ( ! memberExpr ) return expr;
1940 //
1941 // // get declaration of member and base declaration of member, exiting early if not found
1942 // AggregateDecl *memberBase = getMemberBaseDecl( memberExpr );
1943 // if ( ! memberBase ) return memberExpr;
1944 // DeclarationWithType *memberDecl = memberExpr->get_member();
1945 // std::list< Declaration* >::const_iterator baseIt = findDeclNamed( memberBase->get_members(), memberDecl->get_name() );
1946 // if ( baseIt == memberBase->get_members().end() ) return memberExpr;
1947 // DeclarationWithType *baseDecl = dynamic_cast< DeclarationWithType* >( *baseIt );
1948 // if ( ! baseDecl ) return memberExpr;
1949 //
1950 // // check if stated type of the member is not the type of the member's declaration; if so, need a cast
1951 // // this *SHOULD* be safe, I don't think anything but the void-replacements I put in for dtypes would make it past the typechecker
1952 // SymTab::Indexer dummy;
1953 // if ( ResolvExpr::typesCompatible( memberDecl->get_type(), baseDecl->get_type(), dummy ) ) return memberExpr;
1954 // else return new CastExpr( memberExpr, memberDecl->get_type() );
1955 // }
1956
1957 void GenericInstantiator::doBeginScope() {
1958 DeclMutator::doBeginScope();
1959 instantiations.beginScope();
1960 }
1961
1962 void GenericInstantiator::doEndScope() {
1963 DeclMutator::doEndScope();
1964 instantiations.endScope();
1965 }
1966
1967////////////////////////////////////////// PolyGenericCalculator ////////////////////////////////////////////////////
1968
1969 void PolyGenericCalculator::beginTypeScope( Type *ty ) {
1970 scopeTyVars.beginScope();
1971 makeTyVarMap( ty, scopeTyVars );
1972 }
1973
1974 void PolyGenericCalculator::endTypeScope() {
1975 scopeTyVars.endScope();
1976 }
1977
1978 template< typename DeclClass >
1979 DeclClass * PolyGenericCalculator::handleDecl( DeclClass *decl, Type *type ) {
1980 beginTypeScope( type );
1981 knownLayouts.beginScope();
1982 knownOffsets.beginScope();
1983
1984 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1985
1986 knownOffsets.endScope();
1987 knownLayouts.endScope();
1988 endTypeScope();
1989 return ret;
1990 }
1991
1992 ObjectDecl * PolyGenericCalculator::mutate( ObjectDecl *objectDecl ) {
1993 return handleDecl( objectDecl, objectDecl->get_type() );
1994 }
1995
1996 DeclarationWithType * PolyGenericCalculator::mutate( FunctionDecl *functionDecl ) {
1997 return handleDecl( functionDecl, functionDecl->get_functionType() );
1998 }
1999
2000 TypedefDecl * PolyGenericCalculator::mutate( TypedefDecl *typedefDecl ) {
2001 return handleDecl( typedefDecl, typedefDecl->get_base() );
2002 }
2003
2004 TypeDecl * PolyGenericCalculator::mutate( TypeDecl *typeDecl ) {
2005 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2006 return Mutator::mutate( typeDecl );
2007 }
2008
2009 Type * PolyGenericCalculator::mutate( PointerType *pointerType ) {
2010 beginTypeScope( pointerType );
2011
2012 Type *ret = Mutator::mutate( pointerType );
2013
2014 endTypeScope();
2015 return ret;
2016 }
2017
2018 Type * PolyGenericCalculator::mutate( FunctionType *funcType ) {
2019 beginTypeScope( funcType );
2020
2021 // make sure that any type information passed into the function is accounted for
2022 for ( std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); fnParm != funcType->get_parameters().end(); ++fnParm ) {
2023 // condition here duplicates that in Pass2::mutate( FunctionType* )
2024 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
2025 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
2026 knownLayouts.insert( mangleType( polyType ) );
2027 }
2028 }
2029
2030 Type *ret = Mutator::mutate( funcType );
2031
2032 endTypeScope();
2033 return ret;
2034 }
2035
2036 Statement *PolyGenericCalculator::mutate( DeclStmt *declStmt ) {
2037 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) {
2038 if ( findGeneric( objectDecl->get_type() ) ) {
2039 // change initialization of a polymorphic value object
2040 // to allocate storage with alloca
2041 Type *declType = objectDecl->get_type();
2042 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) );
2043 alloc->get_args().push_back( new NameExpr( sizeofName( mangleType( declType ) ) ) );
2044
2045 delete objectDecl->get_init();
2046
2047 std::list<Expression*> designators;
2048 objectDecl->set_init( new SingleInit( alloc, designators, false ) ); // not constructed
2049 }
2050 }
2051 return Mutator::mutate( declStmt );
2052 }
2053
2054 /// Finds the member in the base list that matches the given declaration; returns its index, or -1 if not present
2055 long findMember( DeclarationWithType *memberDecl, std::list< Declaration* > &baseDecls ) {
2056 long i = 0;
2057 for(std::list< Declaration* >::const_iterator decl = baseDecls.begin(); decl != baseDecls.end(); ++decl, ++i ) {
2058 if ( memberDecl->get_name() != (*decl)->get_name() ) continue;
2059
2060 if ( DeclarationWithType *declWithType = dynamic_cast< DeclarationWithType* >( *decl ) ) {
2061 if ( memberDecl->get_mangleName().empty() || declWithType->get_mangleName().empty()
2062 || memberDecl->get_mangleName() == declWithType->get_mangleName() ) return i;
2063 else continue;
2064 } else return i;
2065 }
2066 return -1;
2067 }
2068
2069 /// Returns an index expression into the offset array for a type
2070 Expression *makeOffsetIndex( Type *objectType, long i ) {
2071 std::stringstream offset_namer;
2072 offset_namer << i;
2073 ConstantExpr *fieldIndex = new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), offset_namer.str() ) );
2074 UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) );
2075 fieldOffset->get_args().push_back( new NameExpr( offsetofName( mangleType( objectType ) ) ) );
2076 fieldOffset->get_args().push_back( fieldIndex );
2077 return fieldOffset;
2078 }
2079
2080 /// Returns an expression dereferenced n times
2081 Expression *makeDerefdVar( Expression *derefdVar, long n ) {
2082 for ( int i = 1; i < n; ++i ) {
2083 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
2084 derefExpr->get_args().push_back( derefdVar );
2085 // xxx - should set results on derefExpr
2086 derefdVar = derefExpr;
2087 }
2088 return derefdVar;
2089 }
2090
2091 Expression *PolyGenericCalculator::mutate( MemberExpr *memberExpr ) {
2092 // mutate, exiting early if no longer MemberExpr
2093 Expression *expr = Mutator::mutate( memberExpr );
2094 memberExpr = dynamic_cast< MemberExpr* >( expr );
2095 if ( ! memberExpr ) return expr;
2096
2097 // get declaration for base struct, exiting early if not found
2098 int varDepth;
2099 VariableExpr *varExpr = getBaseVar( memberExpr->get_aggregate(), &varDepth );
2100 if ( ! varExpr ) return memberExpr;
2101 ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
2102 if ( ! objectDecl ) return memberExpr;
2103
2104 // only mutate member expressions for polymorphic types
2105 int tyDepth;
2106 Type *objectType = hasPolyBase( objectDecl->get_type(), scopeTyVars, &tyDepth );
2107 if ( ! objectType ) return memberExpr;
2108 findGeneric( objectType ); // ensure layout for this type is available
2109
2110 Expression *newMemberExpr = 0;
2111 if ( StructInstType *structType = dynamic_cast< StructInstType* >( objectType ) ) {
2112 // look up offset index
2113 long i = findMember( memberExpr->get_member(), structType->get_baseStruct()->get_members() );
2114 if ( i == -1 ) return memberExpr;
2115
2116 // replace member expression with pointer to base plus offset
2117 UntypedExpr *fieldLoc = new UntypedExpr( new NameExpr( "?+?" ) );
2118 fieldLoc->get_args().push_back( makeDerefdVar( varExpr->clone(), varDepth ) );
2119 fieldLoc->get_args().push_back( makeOffsetIndex( objectType, i ) );
2120 newMemberExpr = fieldLoc;
2121 } else if ( dynamic_cast< UnionInstType* >( objectType ) ) {
2122 // union members are all at offset zero, so build appropriately-dereferenced variable
2123 newMemberExpr = makeDerefdVar( varExpr->clone(), varDepth );
2124 } else return memberExpr;
2125 assert( newMemberExpr );
2126
2127 Type *memberType = memberExpr->get_member()->get_type();
2128 if ( ! isPolyType( memberType, scopeTyVars ) ) {
2129 // Not all members of a polymorphic type are themselves of polymorphic type; in this case the member expression should be wrapped and dereferenced to form an lvalue
2130 CastExpr *ptrCastExpr = new CastExpr( newMemberExpr, new PointerType( Type::Qualifiers(), memberType->clone() ) );
2131 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
2132 derefExpr->get_args().push_back( ptrCastExpr );
2133 newMemberExpr = derefExpr;
2134 }
2135
2136 delete memberExpr;
2137 return newMemberExpr;
2138 }
2139
2140 ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) {
2141 ObjectDecl *newObj = new ObjectDecl( name, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, init );
2142 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
2143 return newObj;
2144 }
2145
2146 void PolyGenericCalculator::addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ) {
2147 for ( std::list< Type* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
2148 if ( findGeneric( *param ) ) {
2149 // push size/align vars for a generic parameter back
2150 std::string paramName = mangleType( *param );
2151 layoutCall->get_args().push_back( new NameExpr( sizeofName( paramName ) ) );
2152 layoutCall->get_args().push_back( new NameExpr( alignofName( paramName ) ) );
2153 } else {
2154 layoutCall->get_args().push_back( new SizeofExpr( (*param)->clone() ) );
2155 layoutCall->get_args().push_back( new AlignofExpr( (*param)->clone() ) );
2156 }
2157 }
2158 }
2159
2160 /// returns true if any of the otype parameters have a dynamic layout and puts all otype parameters in the output list
2161 bool findGenericParams( std::list< TypeDecl* > &baseParams, std::list< Expression* > &typeParams, std::list< Type* > &out ) {
2162 bool hasDynamicLayout = false;
2163
2164 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
2165 std::list< Expression* >::const_iterator typeParam = typeParams.begin();
2166 for ( ; baseParam != baseParams.end() && typeParam != typeParams.end(); ++baseParam, ++typeParam ) {
2167 // skip non-otype parameters
2168 if ( (*baseParam)->get_kind() != TypeDecl::Any ) continue;
2169 TypeExpr *typeExpr = dynamic_cast< TypeExpr* >( *typeParam );
2170 assert( typeExpr && "all otype parameters should be type expressions" );
2171
2172 Type *type = typeExpr->get_type();
2173 out.push_back( type );
2174 if ( isPolyType( type ) ) hasDynamicLayout = true;
2175 }
2176 assert( baseParam == baseParams.end() && typeParam == typeParams.end() );
2177
2178 return hasDynamicLayout;
2179 }
2180
2181 bool PolyGenericCalculator::findGeneric( Type *ty ) {
2182 ty = replaceTypeInst( ty, env );
2183
2184 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) {
2185 if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() ) {
2186 // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set
2187 return true;
2188 }
2189 return false;
2190 } else if ( StructInstType *structTy = dynamic_cast< StructInstType* >( ty ) ) {
2191 // check if this type already has a layout generated for it
2192 std::string typeName = mangleType( ty );
2193 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
2194
2195 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
2196 std::list< Type* > otypeParams;
2197 if ( ! findGenericParams( *structTy->get_baseParameters(), structTy->get_parameters(), otypeParams ) ) return false;
2198
2199 // insert local variables for layout and generate call to layout function
2200 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
2201 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2202
2203 int n_members = structTy->get_baseStruct()->get_members().size();
2204 if ( n_members == 0 ) {
2205 // all empty structs have the same layout - size 1, align 1
2206 makeVar( sizeofName( typeName ), layoutType, new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
2207 makeVar( alignofName( typeName ), layoutType->clone(), new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
2208 // NOTE zero-length arrays are forbidden in C, so empty structs have no offsetof array
2209 } else {
2210 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
2211 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
2212 ObjectDecl *offsetVar = makeVar( offsetofName( typeName ), new ArrayType( Type::Qualifiers(), layoutType->clone(), new ConstantExpr( Constant::from_int( n_members ) ), false, false ) );
2213
2214 // generate call to layout function
2215 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( structTy->get_baseStruct() ) ) );
2216 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
2217 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
2218 layoutCall->get_args().push_back( new VariableExpr( offsetVar ) );
2219 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
2220
2221 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
2222 }
2223
2224 return true;
2225 } else if ( UnionInstType *unionTy = dynamic_cast< UnionInstType* >( ty ) ) {
2226 // check if this type already has a layout generated for it
2227 std::string typeName = mangleType( ty );
2228 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
2229
2230 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
2231 std::list< Type* > otypeParams;
2232 if ( ! findGenericParams( *unionTy->get_baseParameters(), unionTy->get_parameters(), otypeParams ) ) return false;
2233
2234 // insert local variables for layout and generate call to layout function
2235 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
2236 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2237
2238 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
2239 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
2240
2241 // generate call to layout function
2242 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( unionTy->get_baseUnion() ) ) );
2243 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
2244 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
2245 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
2246
2247 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
2248
2249 return true;
2250 }
2251
2252 return false;
2253 }
2254
2255 Expression *PolyGenericCalculator::mutate( SizeofExpr *sizeofExpr ) {
2256 Type *ty = sizeofExpr->get_type();
2257 if ( findGeneric( ty ) ) {
2258 Expression *ret = new NameExpr( sizeofName( mangleType( ty ) ) );
2259 delete sizeofExpr;
2260 return ret;
2261 }
2262 return sizeofExpr;
2263 }
2264
2265 Expression *PolyGenericCalculator::mutate( AlignofExpr *alignofExpr ) {
2266 Type *ty = alignofExpr->get_type();
2267 if ( findGeneric( ty ) ) {
2268 Expression *ret = new NameExpr( alignofName( mangleType( ty ) ) );
2269 delete alignofExpr;
2270 return ret;
2271 }
2272 return alignofExpr;
2273 }
2274
2275 Expression *PolyGenericCalculator::mutate( OffsetofExpr *offsetofExpr ) {
2276 // mutate, exiting early if no longer OffsetofExpr
2277 Expression *expr = Mutator::mutate( offsetofExpr );
2278 offsetofExpr = dynamic_cast< OffsetofExpr* >( expr );
2279 if ( ! offsetofExpr ) return expr;
2280
2281 // only mutate expressions for polymorphic structs/unions
2282 Type *ty = offsetofExpr->get_type();
2283 if ( ! findGeneric( ty ) ) return offsetofExpr;
2284
2285 if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) {
2286 // replace offsetof expression by index into offset array
2287 long i = findMember( offsetofExpr->get_member(), structType->get_baseStruct()->get_members() );
2288 if ( i == -1 ) return offsetofExpr;
2289
2290 Expression *offsetInd = makeOffsetIndex( ty, i );
2291 delete offsetofExpr;
2292 return offsetInd;
2293 } else if ( dynamic_cast< UnionInstType* >( ty ) ) {
2294 // all union members are at offset zero
2295 delete offsetofExpr;
2296 return new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), std::string("0") ) );
2297 } else return offsetofExpr;
2298 }
2299
2300 Expression *PolyGenericCalculator::mutate( OffsetPackExpr *offsetPackExpr ) {
2301 StructInstType *ty = offsetPackExpr->get_type();
2302
2303 Expression *ret = 0;
2304 if ( findGeneric( ty ) ) {
2305 // pull offset back from generated type information
2306 ret = new NameExpr( offsetofName( mangleType( ty ) ) );
2307 } else {
2308 std::string offsetName = offsetofName( mangleType( ty ) );
2309 if ( knownOffsets.find( offsetName ) != knownOffsets.end() ) {
2310 // use the already-generated offsets for this type
2311 ret = new NameExpr( offsetName );
2312 } else {
2313 knownOffsets.insert( offsetName );
2314
2315 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members();
2316 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2317
2318 // build initializer list for offset array
2319 std::list< Initializer* > inits;
2320 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) {
2321 DeclarationWithType *memberDecl;
2322 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) {
2323 memberDecl = origMember->clone();
2324 } else {
2325 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 );
2326 }
2327 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) );
2328 }
2329
2330 // build the offset array and replace the pack with a reference to it
2331 ObjectDecl *offsetArray = makeVar( offsetName, new ArrayType( Type::Qualifiers(), offsetType, new ConstantExpr( Constant::from_ulong( baseMembers.size() ) ), false, false ),
2332 new ListInit( inits ) );
2333 ret = new VariableExpr( offsetArray );
2334 }
2335 }
2336
2337 delete offsetPackExpr;
2338 return ret;
2339 }
2340
2341 void PolyGenericCalculator::doBeginScope() {
2342 knownLayouts.beginScope();
2343 knownOffsets.beginScope();
2344 }
2345
2346 void PolyGenericCalculator::doEndScope() {
2347 knownLayouts.endScope();
2348 knownOffsets.endScope();
2349 }
2350
2351////////////////////////////////////////// Pass3 ////////////////////////////////////////////////////
2352
2353 template< typename DeclClass >
2354 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) {
2355 scopeTyVars.beginScope();
2356 makeTyVarMap( type, scopeTyVars );
2357
2358 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
2359 ScrubTyVars::scrub( decl, scopeTyVars );
2360
2361 scopeTyVars.endScope();
2362 return ret;
2363 }
2364
2365 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) {
2366 return handleDecl( objectDecl, objectDecl->get_type() );
2367 }
2368
2369 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) {
2370 return handleDecl( functionDecl, functionDecl->get_functionType() );
2371 }
2372
2373 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) {
2374 return handleDecl( typedefDecl, typedefDecl->get_base() );
2375 }
2376
2377 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) {
2378// Initializer *init = 0;
2379// std::list< Expression *> designators;
2380// scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2381// if ( typeDecl->get_base() ) {
2382// init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators );
2383// }
2384// return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init );
2385
2386 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2387 return Mutator::mutate( typeDecl );
2388 }
2389
2390 Type * Pass3::mutate( PointerType *pointerType ) {
2391 scopeTyVars.beginScope();
2392 makeTyVarMap( pointerType, scopeTyVars );
2393
2394 Type *ret = Mutator::mutate( pointerType );
2395
2396 scopeTyVars.endScope();
2397 return ret;
2398 }
2399
2400 Type * Pass3::mutate( FunctionType *functionType ) {
2401 scopeTyVars.beginScope();
2402 makeTyVarMap( functionType, scopeTyVars );
2403
2404 Type *ret = Mutator::mutate( functionType );
2405
2406 scopeTyVars.endScope();
2407 return ret;
2408 }
2409 } // anonymous namespace
2410} // namespace GenPoly
2411
2412// Local Variables: //
2413// tab-width: 4 //
2414// mode: c++ //
2415// compile-command: "make install" //
2416// End: //
Note: See TracBrowser for help on using the repository browser.