source: src/GenPoly/Box.cc@ 0e76cf4f

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 0e76cf4f was b726084, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

Merge branch 'master' into tuples

Conflicts:

src/ControlStruct/LabelTypeChecker.cc
src/InitTweak/FixInit.cc
src/ResolvExpr/Resolver.cc
src/Tuples/TupleAssignment.cc
src/Tuples/TupleAssignment.h

  • Property mode set to 100644
File size: 96.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Wed Jun 29 21:43:03 2016
13// Update Count : 296
14//
15
16#include <algorithm>
17#include <iterator>
18#include <list>
19#include <map>
20#include <set>
21#include <stack>
22#include <string>
23#include <utility>
24#include <vector>
25#include <cassert>
26
27#include "Box.h"
28#include "DeclMutator.h"
29#include "PolyMutator.h"
30#include "FindFunction.h"
31#include "ScopedSet.h"
32#include "ScrubTyVars.h"
33
34#include "Parser/ParseNode.h"
35
36#include "SynTree/Constant.h"
37#include "SynTree/Declaration.h"
38#include "SynTree/Expression.h"
39#include "SynTree/Initializer.h"
40#include "SynTree/Mutator.h"
41#include "SynTree/Statement.h"
42#include "SynTree/Type.h"
43#include "SynTree/TypeSubstitution.h"
44
45#include "ResolvExpr/TypeEnvironment.h"
46#include "ResolvExpr/TypeMap.h"
47#include "ResolvExpr/typeops.h"
48
49#include "SymTab/Indexer.h"
50#include "SymTab/Mangler.h"
51
52#include "Common/ScopedMap.h"
53#include "Common/SemanticError.h"
54#include "Common/UniqueName.h"
55#include "Common/utility.h"
56
57#include <ext/functional> // temporary
58
59namespace GenPoly {
60 namespace {
61 const std::list<Label> noLabels;
62
63 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars );
64
65 /// Adds layout-generation functions to polymorphic types
66 class LayoutFunctionBuilder final : public DeclMutator {
67 unsigned int functionNesting; // current level of nested functions
68 public:
69 LayoutFunctionBuilder() : functionNesting( 0 ) {}
70
71 using DeclMutator::mutate;
72 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
73 virtual Declaration *mutate( StructDecl *structDecl ) override;
74 virtual Declaration *mutate( UnionDecl *unionDecl ) override;
75 };
76
77 /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call
78 class Pass1 final : public PolyMutator {
79 public:
80 Pass1();
81
82 using PolyMutator::mutate;
83 virtual Expression *mutate( ApplicationExpr *appExpr ) override;
84 virtual Expression *mutate( AddressExpr *addrExpr ) override;
85 virtual Expression *mutate( UntypedExpr *expr ) override;
86 virtual DeclarationWithType* mutate( FunctionDecl *functionDecl ) override;
87 virtual TypeDecl *mutate( TypeDecl *typeDecl ) override;
88 virtual Expression *mutate( CommaExpr *commaExpr ) override;
89 virtual Expression *mutate( ConditionalExpr *condExpr ) override;
90 virtual Statement * mutate( ReturnStmt *returnStmt ) override;
91 virtual Type *mutate( PointerType *pointerType ) override;
92 virtual Type * mutate( FunctionType *functionType ) override;
93
94 virtual void doBeginScope() override;
95 virtual void doEndScope() override;
96 private:
97 /// Pass the extra type parameters from polymorphic generic arguments or return types into a function application
98 void passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes );
99 /// passes extra type parameters into a polymorphic function application
100 void passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
101 /// wraps a function application with a new temporary for the out-parameter return value
102 Expression *addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg );
103 /// Replaces all the type parameters of a generic type with their concrete equivalents under the current environment
104 void replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params );
105 /// Replaces a polymorphic type with its concrete equivalant under the current environment (returns itself if concrete).
106 /// If `doClone` is set to false, will not clone interior types
107 Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true );
108 /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value
109 Expression *addDynRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg );
110 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
111 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars );
112 void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
113 void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars );
114 /// Stores assignment operators from assertion list in local map of assignment operations
115 void findTypeOps( const Type::ForallList &forall );
116 void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars );
117 FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars );
118 /// Replaces intrinsic operator functions with their arithmetic desugaring
119 Expression *handleIntrinsics( ApplicationExpr *appExpr );
120 /// Inserts a new temporary variable into the current scope with an auto-generated name
121 ObjectDecl *makeTemporary( Type *type );
122
123 ScopedMap< std::string, DeclarationWithType* > assignOps; ///< Currently known type variable assignment operators
124 ScopedMap< std::string, DeclarationWithType* > ctorOps; ///< Currently known type variable constructors
125 ScopedMap< std::string, DeclarationWithType* > copyOps; ///< Currently known type variable copy constructors
126 ScopedMap< std::string, DeclarationWithType* > dtorOps; ///< Currently known type variable destructors
127 ResolvExpr::TypeMap< DeclarationWithType > scopedAssignOps; ///< Currently known assignment operators
128 ResolvExpr::TypeMap< DeclarationWithType > scopedCtorOps; ///< Currently known assignment operators
129 ResolvExpr::TypeMap< DeclarationWithType > scopedCopyOps; ///< Currently known assignment operators
130 ResolvExpr::TypeMap< DeclarationWithType > scopedDtorOps; ///< Currently known assignment operators
131 ScopedMap< std::string, DeclarationWithType* > adapters; ///< Set of adapter functions in the current scope
132
133 DeclarationWithType *retval;
134 bool useRetval;
135 UniqueName tempNamer;
136 };
137
138 /// * Moves polymorphic returns in function types to pointer-type parameters
139 /// * adds type size and assertion parameters to parameter lists
140 class Pass2 final : public PolyMutator {
141 public:
142 template< typename DeclClass >
143 DeclClass *handleDecl( DeclClass *decl, Type *type );
144
145 using PolyMutator::mutate;
146 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
147 virtual ObjectDecl *mutate( ObjectDecl *objectDecl ) override;
148 virtual TypeDecl *mutate( TypeDecl *typeDecl ) override;
149 virtual TypedefDecl *mutate( TypedefDecl *typedefDecl ) override;
150 virtual Type *mutate( PointerType *pointerType ) override;
151 virtual Type *mutate( FunctionType *funcType ) override;
152
153 private:
154 void addAdapters( FunctionType *functionType );
155
156 std::map< UniqueId, std::string > adapterName;
157 };
158
159 /// Replaces member and size/align/offsetof expressions on polymorphic generic types with calculated expressions.
160 /// * Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference
161 /// * Calculates polymorphic offsetof expressions from offset array
162 /// * Inserts dynamic calculation of polymorphic type layouts where needed
163 class PolyGenericCalculator final : public PolyMutator {
164 public:
165 typedef PolyMutator Parent;
166 using Parent::mutate;
167
168 template< typename DeclClass >
169 DeclClass *handleDecl( DeclClass *decl, Type *type );
170 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
171 virtual ObjectDecl *mutate( ObjectDecl *objectDecl ) override;
172 virtual TypedefDecl *mutate( TypedefDecl *objectDecl ) override;
173 virtual TypeDecl *mutate( TypeDecl *objectDecl ) override;
174 virtual Statement *mutate( DeclStmt *declStmt ) override;
175 virtual Type *mutate( PointerType *pointerType ) override;
176 virtual Type *mutate( FunctionType *funcType ) override;
177 virtual Expression *mutate( MemberExpr *memberExpr ) override;
178 virtual Expression *mutate( SizeofExpr *sizeofExpr ) override;
179 virtual Expression *mutate( AlignofExpr *alignofExpr ) override;
180 virtual Expression *mutate( OffsetofExpr *offsetofExpr ) override;
181 virtual Expression *mutate( OffsetPackExpr *offsetPackExpr ) override;
182
183 virtual void doBeginScope() override;
184 virtual void doEndScope() override;
185
186 private:
187 /// Makes a new variable in the current scope with the given name, type & optional initializer
188 ObjectDecl *makeVar( const std::string &name, Type *type, Initializer *init = 0 );
189 /// returns true if the type has a dynamic layout; such a layout will be stored in appropriately-named local variables when the function returns
190 bool findGeneric( Type *ty );
191 /// adds type parameters to the layout call; will generate the appropriate parameters if needed
192 void addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams );
193
194 /// Enters a new scope for type-variables, adding the type variables from ty
195 void beginTypeScope( Type *ty );
196 /// Exits the type-variable scope
197 void endTypeScope();
198
199 ScopedSet< std::string > knownLayouts; ///< Set of generic type layouts known in the current scope, indexed by sizeofName
200 ScopedSet< std::string > knownOffsets; ///< Set of non-generic types for which the offset array exists in the current scope, indexed by offsetofName
201 };
202
203 /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, and sizeof expressions of polymorphic types with the proper variable
204 class Pass3 final : public PolyMutator {
205 public:
206 template< typename DeclClass >
207 DeclClass *handleDecl( DeclClass *decl, Type *type );
208
209 using PolyMutator::mutate;
210 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
211 virtual ObjectDecl *mutate( ObjectDecl *objectDecl ) override;
212 virtual TypedefDecl *mutate( TypedefDecl *objectDecl ) override;
213 virtual TypeDecl *mutate( TypeDecl *objectDecl ) override;
214 virtual Type *mutate( PointerType *pointerType ) override;
215 virtual Type *mutate( FunctionType *funcType ) override;
216 private:
217 };
218
219 } // anonymous namespace
220
221 /// version of mutateAll with special handling for translation unit so you can check the end of the prelude when debugging
222 template< typename MutatorType >
223 inline void mutateTranslationUnit( std::list< Declaration* > &translationUnit, MutatorType &mutator ) {
224 bool seenIntrinsic = false;
225 SemanticError errors;
226 for ( typename std::list< Declaration* >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
227 try {
228 if ( *i ) {
229 if ( (*i)->get_linkage() == LinkageSpec::Intrinsic ) {
230 seenIntrinsic = true;
231 } else if ( seenIntrinsic ) {
232 seenIntrinsic = false; // break on this line when debugging for end of prelude
233 }
234
235 *i = dynamic_cast< Declaration* >( (*i)->acceptMutator( mutator ) );
236 assert( *i );
237 } // if
238 } catch( SemanticError &e ) {
239 errors.append( e );
240 } // try
241 } // for
242 if ( ! errors.isEmpty() ) {
243 throw errors;
244 } // if
245 }
246
247 void box( std::list< Declaration *>& translationUnit ) {
248 LayoutFunctionBuilder layoutBuilder;
249 Pass1 pass1;
250 Pass2 pass2;
251 PolyGenericCalculator polyCalculator;
252 Pass3 pass3;
253
254 layoutBuilder.mutateDeclarationList( translationUnit );
255 mutateTranslationUnit/*All*/( translationUnit, pass1 );
256 mutateTranslationUnit/*All*/( translationUnit, pass2 );
257 mutateTranslationUnit/*All*/( translationUnit, polyCalculator );
258 mutateTranslationUnit/*All*/( translationUnit, pass3 );
259 }
260
261 ////////////////////////////////// LayoutFunctionBuilder ////////////////////////////////////////////
262
263 DeclarationWithType *LayoutFunctionBuilder::mutate( FunctionDecl *functionDecl ) {
264 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
265 mutateAll( functionDecl->get_oldDecls(), *this );
266 ++functionNesting;
267 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
268 --functionNesting;
269 return functionDecl;
270 }
271
272 /// Get a list of type declarations that will affect a layout function
273 std::list< TypeDecl* > takeOtypeOnly( std::list< TypeDecl* > &decls ) {
274 std::list< TypeDecl * > otypeDecls;
275
276 for ( std::list< TypeDecl* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
277 if ( (*decl)->get_kind() == TypeDecl::Any ) {
278 otypeDecls.push_back( *decl );
279 }
280 }
281
282 return otypeDecls;
283 }
284
285 /// Adds parameters for otype layout to a function type
286 void addOtypeParams( FunctionType *layoutFnType, std::list< TypeDecl* > &otypeParams ) {
287 BasicType sizeAlignType( Type::Qualifiers(), BasicType::LongUnsignedInt );
288
289 for ( std::list< TypeDecl* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
290 TypeInstType paramType( Type::Qualifiers(), (*param)->get_name(), *param );
291 std::string paramName = mangleType( &paramType );
292 layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
293 layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
294 }
295 }
296
297 /// Builds a layout function declaration
298 FunctionDecl *buildLayoutFunctionDecl( AggregateDecl *typeDecl, unsigned int functionNesting, FunctionType *layoutFnType ) {
299 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
300 // because each unit generates copies of the default routines for each aggregate.
301 FunctionDecl *layoutDecl = new FunctionDecl(
302 layoutofName( typeDecl ), functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static, LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ), true, false );
303 layoutDecl->fixUniqueId();
304 return layoutDecl;
305 }
306
307 /// Makes a unary operation
308 Expression *makeOp( const std::string &name, Expression *arg ) {
309 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
310 expr->get_args().push_back( arg );
311 return expr;
312 }
313
314 /// Makes a binary operation
315 Expression *makeOp( const std::string &name, Expression *lhs, Expression *rhs ) {
316 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
317 expr->get_args().push_back( lhs );
318 expr->get_args().push_back( rhs );
319 return expr;
320 }
321
322 /// Returns the dereference of a local pointer variable
323 Expression *derefVar( ObjectDecl *var ) {
324 return makeOp( "*?", new VariableExpr( var ) );
325 }
326
327 /// makes an if-statement with a single-expression if-block and no then block
328 Statement *makeCond( Expression *cond, Expression *ifPart ) {
329 return new IfStmt( noLabels, cond, new ExprStmt( noLabels, ifPart ), 0 );
330 }
331
332 /// makes a statement that assigns rhs to lhs if lhs < rhs
333 Statement *makeAssignMax( Expression *lhs, Expression *rhs ) {
334 return makeCond( makeOp( "?<?", lhs, rhs ), makeOp( "?=?", lhs->clone(), rhs->clone() ) );
335 }
336
337 /// makes a statement that aligns lhs to rhs (rhs should be an integer power of two)
338 Statement *makeAlignTo( Expression *lhs, Expression *rhs ) {
339 // check that the lhs is zeroed out to the level of rhs
340 Expression *ifCond = makeOp( "?&?", lhs, makeOp( "?-?", rhs, new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "1" ) ) ) );
341 // if not aligned, increment to alignment
342 Expression *ifExpr = makeOp( "?+=?", lhs->clone(), makeOp( "?-?", rhs->clone(), ifCond->clone() ) );
343 return makeCond( ifCond, ifExpr );
344 }
345
346 /// adds an expression to a compound statement
347 void addExpr( CompoundStmt *stmts, Expression *expr ) {
348 stmts->get_kids().push_back( new ExprStmt( noLabels, expr ) );
349 }
350
351 /// adds a statement to a compound statement
352 void addStmt( CompoundStmt *stmts, Statement *stmt ) {
353 stmts->get_kids().push_back( stmt );
354 }
355
356 Declaration *LayoutFunctionBuilder::mutate( StructDecl *structDecl ) {
357 // do not generate layout function for "empty" tag structs
358 if ( structDecl->get_members().empty() ) return structDecl;
359
360 // get parameters that can change layout, exiting early if none
361 std::list< TypeDecl* > otypeParams = takeOtypeOnly( structDecl->get_parameters() );
362 if ( otypeParams.empty() ) return structDecl;
363
364 // build layout function signature
365 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
366 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
367 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
368
369 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
370 layoutFnType->get_parameters().push_back( sizeParam );
371 ObjectDecl *alignParam = new ObjectDecl( alignofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
372 layoutFnType->get_parameters().push_back( alignParam );
373 ObjectDecl *offsetParam = new ObjectDecl( offsetofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
374 layoutFnType->get_parameters().push_back( offsetParam );
375 addOtypeParams( layoutFnType, otypeParams );
376
377 // build function decl
378 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl, functionNesting, layoutFnType );
379
380 // calculate struct layout in function body
381
382 // initialize size and alignment to 0 and 1 (will have at least one member to re-edit size
383 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "0" ) ) ) );
384 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
385 unsigned long n_members = 0;
386 bool firstMember = true;
387 for ( std::list< Declaration* >::const_iterator member = structDecl->get_members().begin(); member != structDecl->get_members().end(); ++member ) {
388 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
389 assert( dwt );
390 Type *memberType = dwt->get_type();
391
392 if ( firstMember ) {
393 firstMember = false;
394 } else {
395 // make sure all members after the first (automatically aligned at 0) are properly padded for alignment
396 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), new AlignofExpr( memberType->clone() ) ) );
397 }
398
399 // place current size in the current offset index
400 addExpr( layoutDecl->get_statements(), makeOp( "?=?", makeOp( "?[?]", new VariableExpr( offsetParam ), new ConstantExpr( Constant::from_ulong( n_members ) ) ),
401 derefVar( sizeParam ) ) );
402 ++n_members;
403
404 // add member size to current size
405 addExpr( layoutDecl->get_statements(), makeOp( "?+=?", derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
406
407 // take max of member alignment and global alignment
408 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
409 }
410 // make sure the type is end-padded to a multiple of its alignment
411 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
412
413 addDeclarationAfter( layoutDecl );
414 return structDecl;
415 }
416
417 Declaration *LayoutFunctionBuilder::mutate( UnionDecl *unionDecl ) {
418 // do not generate layout function for "empty" tag unions
419 if ( unionDecl->get_members().empty() ) return unionDecl;
420
421 // get parameters that can change layout, exiting early if none
422 std::list< TypeDecl* > otypeParams = takeOtypeOnly( unionDecl->get_parameters() );
423 if ( otypeParams.empty() ) return unionDecl;
424
425 // build layout function signature
426 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
427 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
428 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
429
430 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
431 layoutFnType->get_parameters().push_back( sizeParam );
432 ObjectDecl *alignParam = new ObjectDecl( alignofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
433 layoutFnType->get_parameters().push_back( alignParam );
434 addOtypeParams( layoutFnType, otypeParams );
435
436 // build function decl
437 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl, functionNesting, layoutFnType );
438
439 // calculate union layout in function body
440 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
441 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
442 for ( std::list< Declaration* >::const_iterator member = unionDecl->get_members().begin(); member != unionDecl->get_members().end(); ++member ) {
443 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
444 assert( dwt );
445 Type *memberType = dwt->get_type();
446
447 // take max member size and global size
448 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
449
450 // take max of member alignment and global alignment
451 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
452 }
453 // make sure the type is end-padded to a multiple of its alignment
454 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
455
456 addDeclarationAfter( layoutDecl );
457 return unionDecl;
458 }
459
460 ////////////////////////////////////////// Pass1 ////////////////////////////////////////////////////
461
462 namespace {
463 std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) {
464 std::stringstream name;
465
466 // NOTE: this function previously used isPolyObj, which failed to produce
467 // the correct thing in some situations. It's not clear to me why this wasn't working.
468
469 // if the return type or a parameter type involved polymorphic types, then the adapter will need
470 // to take those polymorphic types as pointers. Therefore, there can be two different functions
471 // with the same mangled name, so we need to further mangle the names.
472 for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) {
473 if ( isPolyType( (*retval)->get_type(), tyVars ) ) {
474 name << "P";
475 } else {
476 name << "M";
477 }
478 }
479 name << "_";
480 std::list< DeclarationWithType *> &paramList = function->get_parameters();
481 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
482 if ( isPolyType( (*arg)->get_type(), tyVars ) ) {
483 name << "P";
484 } else {
485 name << "M";
486 }
487 } // for
488 return name.str();
489 }
490
491 std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) {
492 return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars );
493 }
494
495 std::string makeAdapterName( const std::string &mangleName ) {
496 return "_adapter" + mangleName;
497 }
498
499 Pass1::Pass1() : useRetval( false ), tempNamer( "_temp" ) {}
500
501 /// Returns T if the given declaration is a function with parameter (T*) for some TypeInstType T, NULL otherwise
502 TypeInstType *isTypeInstPtrFn( DeclarationWithType *decl ) {
503 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
504 if ( funType->get_parameters().size() == 1 ) {
505 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
506 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
507 return refType;
508 } // if
509 } // if
510 } // if
511 } // if
512 return 0;
513 }
514
515 /// Returns T if the given declaration is a function with parameters (T*, T) for some TypeInstType T, NULL otherwise
516 TypeInstType *isTypeInstPtrValFn( DeclarationWithType *decl ) {
517 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
518 if ( funType->get_parameters().size() == 2 ) {
519 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
520 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
521 if ( TypeInstType *refType2 = dynamic_cast< TypeInstType *>( funType->get_parameters().back()->get_type() ) ) {
522 if ( refType->get_name() == refType2->get_name() ) {
523 return refType;
524 } // if
525 } // if
526 } // if
527 } // if
528 } // if
529 } // if
530 return 0;
531 }
532
533 /// Returns T if the given declaration is (*?=?)(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
534 TypeInstType *isTypeInstAssignment( DeclarationWithType *decl ) {
535 return decl->get_name() == "?=?" ? isTypeInstPtrValFn( decl ) : 0;
536 }
537
538 /// Returns T if the given declaration is (*?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
539 TypeInstType *isTypeInstCtor( DeclarationWithType *decl ) {
540 return decl->get_name() == "?{}" ? isTypeInstPtrFn( decl ) : 0;
541 }
542
543 /// Returns T if the given declaration is (*?{})(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
544 TypeInstType *isTypeInstCopy( DeclarationWithType *decl ) {
545 return decl->get_name() == "?{}" ? isTypeInstPtrValFn( decl ) : 0;
546 }
547
548 /// Returns T if the given declaration is (*^?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
549 TypeInstType *isTypeInstDtor( DeclarationWithType *decl ) {
550 return decl->get_name() == "^?{}" ? isTypeInstPtrFn( decl ) : 0;
551 }
552
553 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified,
554 /// NULL otherwise
555 Type *isNoCvPtrFn( DeclarationWithType *decl ) {
556 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
557 if ( funType->get_parameters().size() == 1 ) {
558 Type::Qualifiers defaultQualifiers;
559 Type *paramType = funType->get_parameters().front()->get_type();
560 if ( paramType->get_qualifiers() != defaultQualifiers ) return 0;
561
562 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType ) ) {
563 Type *baseType = pointerType->get_base();
564 if ( baseType->get_qualifiers() == defaultQualifiers ) {
565 return baseType;
566 } // if
567 } // if
568 } // if
569 } // if
570 return 0;
571 }
572
573 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified,
574 /// NULL otherwise
575 Type *isNoCvPtrValFn( DeclarationWithType *decl ) {
576 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
577 if ( funType->get_parameters().size() == 2 ) {
578 Type::Qualifiers defaultQualifiers;
579 Type *paramType1 = funType->get_parameters().front()->get_type();
580 if ( paramType1->get_qualifiers() != defaultQualifiers ) return 0;
581 Type *paramType2 = funType->get_parameters().back()->get_type();
582 if ( paramType2->get_qualifiers() != defaultQualifiers ) return 0;
583
584 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType1 ) ) {
585 Type *baseType1 = pointerType->get_base();
586 if ( baseType1->get_qualifiers() != defaultQualifiers ) return 0;
587 SymTab::Indexer dummy;
588 if ( ResolvExpr::typesCompatible( baseType1, paramType2, dummy ) ) {
589 return baseType1;
590 } // if
591 } // if
592 } // if
593 } // if
594 return 0;
595 }
596
597 /// returns T if the given declaration is: (*?=?)(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
598 /// Only picks assignments where neither parameter is cv-qualified
599 Type *isAssignment( DeclarationWithType *decl ) {
600 return decl->get_name() == "?=?" ? isNoCvPtrValFn( decl ) : 0;
601 }
602
603 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise
604 /// Only picks ctors where the parameter is not cv-qualified
605 Type *isCtor( DeclarationWithType *decl ) {
606 return decl->get_name() == "?{}" ? isNoCvPtrFn( decl ) : 0;
607 }
608
609 /// returns T if the given declaration is: (*?{})(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
610 /// Only picks copy constructors where neither parameter is cv-qualified
611 Type *isCopy( DeclarationWithType *decl ) {
612 return decl->get_name() == "?{}" ? isNoCvPtrValFn( decl ) : 0;
613 }
614
615 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise
616 /// Only picks ctors where the parameter is not cv-qualified
617 Type *isDtor( DeclarationWithType *decl ) {
618 return decl->get_name() == "^?{}" ? isNoCvPtrFn( decl ) : 0;
619 }
620
621 void Pass1::findTypeOps( const Type::ForallList &forall ) {
622 // what if a nested function uses an assignment operator?
623 // assignOps.clear();
624 for ( Type::ForallList::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
625 for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) {
626 std::string typeName;
627 if ( TypeInstType *typeInst = isTypeInstAssignment( *assert ) ) {
628 assignOps[ typeInst->get_name() ] = *assert;
629 } else if ( TypeInstType *typeInst = isTypeInstCtor( *assert ) ) {
630 ctorOps[ typeInst->get_name() ] = *assert;
631 } else if ( TypeInstType *typeInst = isTypeInstCopy( *assert ) ) {
632 copyOps[ typeInst->get_name() ] = *assert;
633 } else if ( TypeInstType *typeInst = isTypeInstDtor( *assert ) ) {
634 dtorOps[ typeInst->get_name() ] = *assert;
635 } // if
636 } // for
637 } // for
638 }
639
640 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) {
641 // if this is a assignment function, put it in the map for this scope
642 if ( Type *paramType = isAssignment( functionDecl ) ) {
643 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
644 scopedAssignOps.insert( paramType, functionDecl );
645 }
646 } else if ( Type *paramType = isCtor( functionDecl ) ) {
647 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
648 scopedCtorOps.insert( paramType, functionDecl );
649 }
650 } else if ( Type *paramType = isCopy( functionDecl ) ) {
651 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
652 scopedCopyOps.insert( paramType, functionDecl );
653 }
654 } else if ( Type *paramType = isDtor( functionDecl ) ) {
655 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
656 scopedDtorOps.insert( paramType, functionDecl );
657 }
658 }
659
660 if ( functionDecl->get_statements() ) { // empty routine body ?
661 doBeginScope();
662 scopeTyVars.beginScope();
663 assignOps.beginScope();
664 ctorOps.beginScope();
665 copyOps.beginScope();
666 dtorOps.beginScope();
667
668 DeclarationWithType *oldRetval = retval;
669 bool oldUseRetval = useRetval;
670
671 // process polymorphic return value
672 retval = 0;
673 if ( isDynRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) {
674 retval = functionDecl->get_functionType()->get_returnVals().front();
675
676 // give names to unnamed return values
677 if ( retval->get_name() == "" ) {
678 retval->set_name( "_retparm" );
679 retval->set_linkage( LinkageSpec::C );
680 } // if
681 } // if
682
683 FunctionType *functionType = functionDecl->get_functionType();
684 makeTyVarMap( functionDecl->get_functionType(), scopeTyVars );
685 findTypeOps( functionDecl->get_functionType()->get_forall() );
686
687 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
688 std::list< FunctionType *> functions;
689 for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
690 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
691 findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter );
692 } // for
693 } // for
694 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
695 findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter );
696 } // for
697
698 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
699 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
700 if ( adapters.find( mangleName ) == adapters.end() ) {
701 std::string adapterName = makeAdapterName( mangleName );
702 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) ) );
703 } // if
704 } // for
705
706 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) );
707
708 scopeTyVars.endScope();
709 assignOps.endScope();
710 ctorOps.endScope();
711 copyOps.endScope();
712 dtorOps.endScope();
713 retval = oldRetval;
714 useRetval = oldUseRetval;
715 doEndScope();
716 } // if
717 return functionDecl;
718 }
719
720 TypeDecl *Pass1::mutate( TypeDecl *typeDecl ) {
721 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
722 return Mutator::mutate( typeDecl );
723 }
724
725 Expression *Pass1::mutate( CommaExpr *commaExpr ) {
726 bool oldUseRetval = useRetval;
727 useRetval = false;
728 commaExpr->set_arg1( maybeMutate( commaExpr->get_arg1(), *this ) );
729 useRetval = oldUseRetval;
730 commaExpr->set_arg2( maybeMutate( commaExpr->get_arg2(), *this ) );
731 return commaExpr;
732 }
733
734 Expression *Pass1::mutate( ConditionalExpr *condExpr ) {
735 bool oldUseRetval = useRetval;
736 useRetval = false;
737 condExpr->set_arg1( maybeMutate( condExpr->get_arg1(), *this ) );
738 useRetval = oldUseRetval;
739 condExpr->set_arg2( maybeMutate( condExpr->get_arg2(), *this ) );
740 condExpr->set_arg3( maybeMutate( condExpr->get_arg3(), *this ) );
741 return condExpr;
742
743 }
744
745 void Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) {
746 Type *polyType = isPolyType( parmType, exprTyVars );
747 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
748 std::string typeName = mangleType( polyType );
749 if ( seenTypes.count( typeName ) ) return;
750
751 arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) );
752 arg++;
753 arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) );
754 arg++;
755 if ( dynamic_cast< StructInstType* >( polyType ) ) {
756 if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) {
757 // zero-length arrays are forbidden by C, so don't pass offset for empty struct
758 if ( ! argBaseStructType->get_baseStruct()->get_members().empty() ) {
759 arg = appExpr->get_args().insert( arg, new OffsetPackExpr( argBaseStructType->clone() ) );
760 arg++;
761 }
762 } else {
763 throw SemanticError( "Cannot pass non-struct type for generic struct" );
764 }
765 }
766
767 seenTypes.insert( typeName );
768 }
769 }
770
771 void Pass1::passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
772 // pass size/align for type variables
773 for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) {
774 ResolvExpr::EqvClass eqvClass;
775 assert( env );
776 if ( tyParm->second == TypeDecl::Any ) {
777 Type *concrete = env->lookup( tyParm->first );
778 if ( concrete ) {
779 arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) );
780 arg++;
781 arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) );
782 arg++;
783 } else {
784 // xxx - should this be an assertion?
785 throw SemanticError( "unbound type variable: " + tyParm->first + " in application ", appExpr );
786 } // if
787 } // if
788 } // for
789
790 // add size/align for generic types to parameter list
791 if ( ! appExpr->get_function()->has_result() ) return;
792 FunctionType *funcType = getFunctionType( appExpr->get_function()->get_result() );
793 assert( funcType );
794
795 std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin();
796 std::list< Expression* >::const_iterator fnArg = arg;
797 std::set< std::string > seenTypes; ///< names for generic types we've seen
798
799 // a polymorphic return type may need to be added to the argument list
800 if ( polyRetType ) {
801 Type *concRetType = replaceWithConcrete( appExpr, polyRetType );
802 passArgTypeVars( appExpr, polyRetType, concRetType, arg, exprTyVars, seenTypes );
803 }
804
805 // add type information args for presently unseen types in parameter list
806 for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {
807 VariableExpr *fnArgBase = getBaseVar( *fnArg );
808 if ( ! fnArgBase ) continue; // xxx - previously had check for non-empty fnArgBase results
809 passArgTypeVars( appExpr, (*fnParm)->get_type(), fnArgBase->get_result(), arg, exprTyVars, seenTypes );
810 }
811 }
812
813 ObjectDecl *Pass1::makeTemporary( Type *type ) {
814 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, 0 );
815 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
816 return newObj;
817 }
818
819 Expression *Pass1::addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ) {
820 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
821 // if ( useRetval ) {
822 // assert( retval );
823 // arg = appExpr->get_args().insert( arg, new VariableExpr( retval ) );
824 // arg++;
825 // } else {
826
827 // Create temporary to hold return value of polymorphic function and produce that temporary as a result
828 // using a comma expression. Possibly change comma expression into statement expression "{}" for multiple
829 // return values.
830 ObjectDecl *newObj = makeTemporary( retType->clone() );
831 Expression *paramExpr = new VariableExpr( newObj );
832
833 // If the type of the temporary is not polymorphic, box temporary by taking its address;
834 // otherwise the temporary is already boxed and can be used directly.
835 if ( ! isPolyType( newObj->get_type(), scopeTyVars, env ) ) {
836 paramExpr = new AddressExpr( paramExpr );
837 } // if
838 arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call
839 arg++;
840 // Build a comma expression to call the function and emulate a normal return.
841 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) );
842 commaExpr->set_env( appExpr->get_env() );
843 appExpr->set_env( 0 );
844 return commaExpr;
845 // } // if
846 // return appExpr;
847 }
848
849 void Pass1::replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ) {
850 for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) {
851 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
852 assert(paramType && "Aggregate parameters should be type expressions");
853 paramType->set_type( replaceWithConcrete( appExpr, paramType->get_type(), false ) );
854 }
855 }
856
857 Type *Pass1::replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone ) {
858 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) {
859 Type *concrete = env->lookup( typeInst->get_name() );
860 if ( concrete == 0 ) {
861 throw SemanticError( "Unbound type variable " + typeInst->get_name() + " in ", appExpr );
862 } // if
863 return concrete;
864 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) {
865 if ( doClone ) {
866 structType = structType->clone();
867 }
868 replaceParametersWithConcrete( appExpr, structType->get_parameters() );
869 return structType;
870 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) {
871 if ( doClone ) {
872 unionType = unionType->clone();
873 }
874 replaceParametersWithConcrete( appExpr, unionType->get_parameters() );
875 return unionType;
876 }
877 return type;
878 }
879
880 Expression *Pass1::addDynRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *dynType, std::list< Expression *>::iterator &arg ) {
881 assert( env );
882 Type *concrete = replaceWithConcrete( appExpr, dynType );
883 // add out-parameter for return value
884 return addRetParam( appExpr, function, concrete, arg );
885 }
886
887 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
888 Expression *ret = appExpr;
889// if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) {
890 if ( isDynRet( function, tyVars ) ) {
891 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg );
892 } // if
893 std::string mangleName = mangleAdapterName( function, tyVars );
894 std::string adapterName = makeAdapterName( mangleName );
895
896 // cast adaptee to void (*)(), since it may have any type inside a polymorphic function
897 Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) );
898 appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) );
899 appExpr->set_function( new NameExpr( adapterName ) ); // xxx - result is never set on NameExpr
900
901 return ret;
902 }
903
904 void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) {
905 assert( arg->has_result() );
906 if ( isPolyType( param, exprTyVars ) ) {
907 if ( isPolyType( arg->get_result() ) ) {
908 // if the argument's type is polymorphic, we don't need to box again!
909 return;
910 } else if ( arg->get_result()->get_isLvalue() ) {
911 // VariableExpr and MemberExpr are lvalues; need to check this isn't coming from the second arg of a comma expression though (not an lvalue)
912 // xxx - need to test that this code is still reachable
913 if ( CommaExpr *commaArg = dynamic_cast< CommaExpr* >( arg ) ) {
914 commaArg->set_arg2( new AddressExpr( commaArg->get_arg2() ) );
915 } else {
916 arg = new AddressExpr( arg );
917 }
918 } else {
919 // use type computed in unification to declare boxed variables
920 Type * newType = param->clone();
921 if ( env ) env->apply( newType );
922 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, newType, 0 );
923 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right???
924 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
925 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
926 assign->get_args().push_back( new VariableExpr( newObj ) );
927 assign->get_args().push_back( arg );
928 stmtsToAdd.push_back( new ExprStmt( noLabels, assign ) );
929 arg = new AddressExpr( new VariableExpr( newObj ) );
930 } // if
931 } // if
932 }
933
934 /// cast parameters to polymorphic functions so that types are replaced with
935 /// void * if they are type parameters in the formal type.
936 /// this gets rid of warnings from gcc.
937 void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) {
938 if ( getFunctionType( formal ) ) {
939 Type * newType = formal->clone();
940 newType = ScrubTyVars::scrub( newType, tyVars );
941 actual = new CastExpr( actual, newType );
942 } // if
943 }
944
945 void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
946 for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->get_parameters().end(); ++param, ++arg ) {
947 assert( arg != appExpr->get_args().end() );
948 addCast( *arg, (*param)->get_type(), exprTyVars );
949 boxParam( (*param)->get_type(), *arg, exprTyVars );
950 } // for
951 }
952
953 void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
954 std::list< Expression *>::iterator cur = arg;
955 for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
956 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
957 InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() );
958 assert( inferParam != appExpr->get_inferParams().end() && "NOTE: Explicit casts of polymorphic functions to compatible monomorphic functions are currently unsupported" );
959 Expression *newExpr = inferParam->second.expr->clone();
960 addCast( newExpr, (*assert)->get_type(), tyVars );
961 boxParam( (*assert)->get_type(), newExpr, tyVars );
962 appExpr->get_args().insert( cur, newExpr );
963 } // for
964 } // for
965 }
966
967 void makeRetParm( FunctionType *funcType ) {
968 DeclarationWithType *retParm = funcType->get_returnVals().front();
969
970 // make a new parameter that is a pointer to the type of the old return value
971 retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) );
972 funcType->get_parameters().push_front( retParm );
973
974 // we don't need the return value any more
975 funcType->get_returnVals().clear();
976 }
977
978 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ) {
979 // actually make the adapter type
980 FunctionType *adapter = adaptee->clone();
981// if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) {
982 if ( isDynRet( adapter, tyVars ) ) {
983 makeRetParm( adapter );
984 } // if
985 adapter->get_parameters().push_front( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ) );
986 return adapter;
987 }
988
989 Expression *makeAdapterArg( DeclarationWithType *param, DeclarationWithType *arg, DeclarationWithType *realParam, const TyVarMap &tyVars ) {
990 assert( param );
991 assert( arg );
992 if ( isPolyType( realParam->get_type(), tyVars ) ) {
993 if ( ! isPolyType( arg->get_type() ) ) {
994 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
995 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) );
996 deref->set_result( arg->get_type()->clone() );
997 return deref;
998 } // if
999 } // if
1000 return new VariableExpr( param );
1001 }
1002
1003 void addAdapterParams( ApplicationExpr *adapteeApp, std::list< DeclarationWithType *>::iterator arg, std::list< DeclarationWithType *>::iterator param, std::list< DeclarationWithType *>::iterator paramEnd, std::list< DeclarationWithType *>::iterator realParam, const TyVarMap &tyVars ) {
1004 UniqueName paramNamer( "_p" );
1005 for ( ; param != paramEnd; ++param, ++arg, ++realParam ) {
1006 if ( (*param)->get_name() == "" ) {
1007 (*param)->set_name( paramNamer.newName() );
1008 (*param)->set_linkage( LinkageSpec::C );
1009 } // if
1010 adapteeApp->get_args().push_back( makeAdapterArg( *param, *arg, *realParam, tyVars ) );
1011 } // for
1012 }
1013
1014 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) {
1015 FunctionType *adapterType = makeAdapterType( adaptee, tyVars );
1016 adapterType = ScrubTyVars::scrub( adapterType, tyVars );
1017 DeclarationWithType *adapteeDecl = adapterType->get_parameters().front();
1018 adapteeDecl->set_name( "_adaptee" );
1019 ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) );
1020 Statement *bodyStmt;
1021
1022 Type::ForallList::iterator tyArg = realType->get_forall().begin();
1023 Type::ForallList::iterator tyParam = adapterType->get_forall().begin();
1024 Type::ForallList::iterator realTyParam = adaptee->get_forall().begin();
1025 for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) {
1026 assert( tyArg != realType->get_forall().end() );
1027 std::list< DeclarationWithType *>::iterator assertArg = (*tyArg)->get_assertions().begin();
1028 std::list< DeclarationWithType *>::iterator assertParam = (*tyParam)->get_assertions().begin();
1029 std::list< DeclarationWithType *>::iterator realAssertParam = (*realTyParam)->get_assertions().begin();
1030 for ( ; assertParam != (*tyParam)->get_assertions().end(); ++assertArg, ++assertParam, ++realAssertParam ) {
1031 assert( assertArg != (*tyArg)->get_assertions().end() );
1032 adapteeApp->get_args().push_back( makeAdapterArg( *assertParam, *assertArg, *realAssertParam, tyVars ) );
1033 } // for
1034 } // for
1035
1036 std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin();
1037 std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin();
1038 std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin();
1039 param++; // skip adaptee parameter in the adapter type
1040 if ( realType->get_returnVals().empty() ) {
1041 // void return
1042 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1043 bodyStmt = new ExprStmt( noLabels, adapteeApp );
1044// } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
1045 } else if ( isDynType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
1046 // return type T
1047 if ( (*param)->get_name() == "" ) {
1048 (*param)->set_name( "_ret" );
1049 (*param)->set_linkage( LinkageSpec::C );
1050 } // if
1051 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
1052 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
1053 deref->get_args().push_back( new CastExpr( new VariableExpr( *param++ ), new PointerType( Type::Qualifiers(), realType->get_returnVals().front()->get_type()->clone() ) ) );
1054 assign->get_args().push_back( deref );
1055 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1056 assign->get_args().push_back( adapteeApp );
1057 bodyStmt = new ExprStmt( noLabels, assign );
1058 } else {
1059 // adapter for a function that returns a monomorphic value
1060 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1061 bodyStmt = new ReturnStmt( noLabels, adapteeApp );
1062 } // if
1063 CompoundStmt *adapterBody = new CompoundStmt( noLabels );
1064 adapterBody->get_kids().push_back( bodyStmt );
1065 std::string adapterName = makeAdapterName( mangleName );
1066 return new FunctionDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, adapterType, adapterBody, false, false );
1067 }
1068
1069 void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) {
1070 // collect a list of function types passed as parameters or implicit parameters (assertions)
1071 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1072 std::list< FunctionType *> functions;
1073 for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
1074 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
1075 findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter );
1076 } // for
1077 } // for
1078 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1079 findFunction( (*arg)->get_type(), functions, exprTyVars, needsAdapter );
1080 } // for
1081
1082 // parameter function types for which an appropriate adapter has been generated. we cannot use the types
1083 // after applying substitutions, since two different parameter types may be unified to the same type
1084 std::set< std::string > adaptersDone;
1085
1086 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1087 FunctionType *originalFunction = (*funType)->clone();
1088 FunctionType *realFunction = (*funType)->clone();
1089 std::string mangleName = SymTab::Mangler::mangle( realFunction );
1090
1091 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this
1092 // pre-substitution parameter function type.
1093 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1094 adaptersDone.insert( adaptersDone.begin(), mangleName );
1095
1096 // apply substitution to type variables to figure out what the adapter's type should look like
1097 assert( env );
1098 env->apply( realFunction );
1099 mangleName = SymTab::Mangler::mangle( realFunction );
1100 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars );
1101
1102 typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter;
1103 AdapterIter adapter = adapters.find( mangleName );
1104 if ( adapter == adapters.end() ) {
1105 // adapter has not been created yet in the current scope, so define it
1106 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars );
1107 std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) );
1108 adapter = answer.first;
1109 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) );
1110 } // if
1111 assert( adapter != adapters.end() );
1112
1113 // add the appropriate adapter as a parameter
1114 appExpr->get_args().push_front( new VariableExpr( adapter->second ) );
1115 } // if
1116 } // for
1117 } // passAdapters
1118
1119 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) {
1120 NameExpr *opExpr;
1121 if ( isIncr ) {
1122 opExpr = new NameExpr( "?+=?" );
1123 } else {
1124 opExpr = new NameExpr( "?-=?" );
1125 } // if
1126 UntypedExpr *addAssign = new UntypedExpr( opExpr );
1127 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1128 addAssign->get_args().push_back( address->get_arg() );
1129 } else {
1130 addAssign->get_args().push_back( appExpr->get_args().front() );
1131 } // if
1132 addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) ) ) );
1133 addAssign->set_result( appExpr->get_result()->clone() );
1134 if ( appExpr->get_env() ) {
1135 addAssign->set_env( appExpr->get_env() );
1136 appExpr->set_env( 0 );
1137 } // if
1138 appExpr->get_args().clear();
1139 delete appExpr;
1140 return addAssign;
1141 }
1142
1143 Expression *Pass1::handleIntrinsics( ApplicationExpr *appExpr ) {
1144 if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->get_function() ) ) {
1145 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic ) {
1146 if ( varExpr->get_var()->get_name() == "?[?]" ) {
1147 assert( appExpr->has_result() );
1148 assert( appExpr->get_args().size() == 2 );
1149 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_result(), scopeTyVars, env );
1150 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_result(), scopeTyVars, env );
1151 assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers
1152 UntypedExpr *ret = 0;
1153 if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer
1154 ret = new UntypedExpr( new NameExpr( "?+?" ) );
1155 } // if
1156 if ( baseType1 ) {
1157 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1158 multiply->get_args().push_back( appExpr->get_args().back() );
1159 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1160 ret->get_args().push_back( appExpr->get_args().front() );
1161 ret->get_args().push_back( multiply );
1162 } else if ( baseType2 ) {
1163 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1164 multiply->get_args().push_back( appExpr->get_args().front() );
1165 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1166 ret->get_args().push_back( multiply );
1167 ret->get_args().push_back( appExpr->get_args().back() );
1168 } // if
1169 if ( baseType1 || baseType2 ) {
1170 ret->set_result( appExpr->get_result()->clone() );
1171 if ( appExpr->get_env() ) {
1172 ret->set_env( appExpr->get_env() );
1173 appExpr->set_env( 0 );
1174 } // if
1175 appExpr->get_args().clear();
1176 delete appExpr;
1177 return ret;
1178 } // if
1179 } else if ( varExpr->get_var()->get_name() == "*?" ) {
1180 assert( appExpr->has_result() );
1181 assert( ! appExpr->get_args().empty() );
1182 if ( isPolyType( appExpr->get_result(), scopeTyVars, env ) ) {
1183 Expression *ret = appExpr->get_args().front();
1184 delete ret->get_result();
1185 ret->set_result( appExpr->get_result()->clone() );
1186 if ( appExpr->get_env() ) {
1187 ret->set_env( appExpr->get_env() );
1188 appExpr->set_env( 0 );
1189 } // if
1190 appExpr->get_args().clear();
1191 delete appExpr;
1192 return ret;
1193 } // if
1194 } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) {
1195 assert( appExpr->has_result() );
1196 assert( appExpr->get_args().size() == 1 );
1197 if ( Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env ) ) {
1198 Type *tempType = appExpr->get_result()->clone();
1199 if ( env ) {
1200 env->apply( tempType );
1201 } // if
1202 ObjectDecl *newObj = makeTemporary( tempType );
1203 VariableExpr *tempExpr = new VariableExpr( newObj );
1204 UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) );
1205 assignExpr->get_args().push_back( tempExpr->clone() );
1206 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1207 assignExpr->get_args().push_back( address->get_arg()->clone() );
1208 } else {
1209 assignExpr->get_args().push_back( appExpr->get_args().front()->clone() );
1210 } // if
1211 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) );
1212 return new CommaExpr( firstComma, tempExpr );
1213 } // if
1214 } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) {
1215 assert( appExpr->has_result() );
1216 assert( appExpr->get_args().size() == 1 );
1217 if ( Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env ) ) {
1218 return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );
1219 } // if
1220 } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) {
1221 assert( appExpr->has_result() );
1222 assert( appExpr->get_args().size() == 2 );
1223 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_result(), scopeTyVars, env );
1224 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_result(), scopeTyVars, env );
1225 if ( baseType1 && baseType2 ) {
1226 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) );
1227 divide->get_args().push_back( appExpr );
1228 divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1229 divide->set_result( appExpr->get_result()->clone() );
1230 if ( appExpr->get_env() ) {
1231 divide->set_env( appExpr->get_env() );
1232 appExpr->set_env( 0 );
1233 } // if
1234 return divide;
1235 } else if ( baseType1 ) {
1236 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1237 multiply->get_args().push_back( appExpr->get_args().back() );
1238 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1239 appExpr->get_args().back() = multiply;
1240 } else if ( baseType2 ) {
1241 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1242 multiply->get_args().push_back( appExpr->get_args().front() );
1243 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1244 appExpr->get_args().front() = multiply;
1245 } // if
1246 } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) {
1247 assert( appExpr->has_result() );
1248 assert( appExpr->get_args().size() == 2 );
1249 Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env );
1250 if ( baseType ) {
1251 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1252 multiply->get_args().push_back( appExpr->get_args().back() );
1253 multiply->get_args().push_back( new SizeofExpr( baseType->clone() ) );
1254 appExpr->get_args().back() = multiply;
1255 } // if
1256 } // if
1257 return appExpr;
1258 } // if
1259 } // if
1260 return 0;
1261 }
1262
1263 Expression *Pass1::mutate( ApplicationExpr *appExpr ) {
1264 // std::cerr << "mutate appExpr: ";
1265 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
1266 // std::cerr << i->first << " ";
1267 // }
1268 // std::cerr << "\n";
1269 bool oldUseRetval = useRetval;
1270 useRetval = false;
1271 appExpr->get_function()->acceptMutator( *this );
1272 mutateAll( appExpr->get_args(), *this );
1273 useRetval = oldUseRetval;
1274
1275 assert( appExpr->get_function()->has_result() );
1276 PointerType *pointer = safe_dynamic_cast< PointerType *>( appExpr->get_function()->get_result() );
1277 FunctionType *function = safe_dynamic_cast< FunctionType *>( pointer->get_base() );
1278
1279 if ( Expression *newExpr = handleIntrinsics( appExpr ) ) {
1280 return newExpr;
1281 } // if
1282
1283 Expression *ret = appExpr;
1284
1285 std::list< Expression *>::iterator arg = appExpr->get_args().begin();
1286 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin();
1287
1288 TyVarMap exprTyVars( (TypeDecl::Kind)-1 );
1289 makeTyVarMap( function, exprTyVars );
1290 ReferenceToType *dynRetType = isDynRet( function, exprTyVars );
1291
1292 if ( dynRetType ) {
1293 ret = addDynRetParam( appExpr, function, dynRetType, arg );
1294 } else if ( needsAdapter( function, scopeTyVars ) ) {
1295 // std::cerr << "needs adapter: ";
1296 // printTyVarMap( std::cerr, scopeTyVars );
1297 // std::cerr << *env << std::endl;
1298 // change the application so it calls the adapter rather than the passed function
1299 ret = applyAdapter( appExpr, function, arg, scopeTyVars );
1300 } // if
1301 arg = appExpr->get_args().begin();
1302
1303 passTypeVars( appExpr, dynRetType, arg, exprTyVars );
1304 addInferredParams( appExpr, function, arg, exprTyVars );
1305
1306 arg = paramBegin;
1307
1308 boxParams( appExpr, function, arg, exprTyVars );
1309 passAdapters( appExpr, function, exprTyVars );
1310
1311 return ret;
1312 }
1313
1314 Expression *Pass1::mutate( UntypedExpr *expr ) {
1315 if ( expr->has_result() && isPolyType( expr->get_result(), scopeTyVars, env ) ) {
1316 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1317 if ( name->get_name() == "*?" ) {
1318 Expression *ret = expr->get_args().front();
1319 expr->get_args().clear();
1320 delete expr;
1321 return ret->acceptMutator( *this );
1322 } // if
1323 } // if
1324 } // if
1325 return PolyMutator::mutate( expr );
1326 }
1327
1328 Expression *Pass1::mutate( AddressExpr *addrExpr ) {
1329 assert( addrExpr->get_arg()->has_result() && ! addrExpr->get_arg()->get_result()->isVoid() );
1330
1331 bool needs = false;
1332 if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {
1333 if ( expr->has_result() && isPolyType( expr->get_result(), scopeTyVars, env ) ) {
1334 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1335 if ( name->get_name() == "*?" ) {
1336 if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {
1337 assert( appExpr->get_function()->has_result() );
1338 PointerType *pointer = safe_dynamic_cast< PointerType *>( appExpr->get_function()->get_result() );
1339 FunctionType *function = safe_dynamic_cast< FunctionType *>( pointer->get_base() );
1340 needs = needsAdapter( function, scopeTyVars );
1341 } // if
1342 } // if
1343 } // if
1344 } // if
1345 } // if
1346 // isPolyType check needs to happen before mutating addrExpr arg, so pull it forward
1347 // out of the if condition.
1348 bool polytype = isPolyType( addrExpr->get_arg()->get_result(), scopeTyVars, env );
1349 addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) );
1350 if ( polytype || needs ) {
1351 Expression *ret = addrExpr->get_arg();
1352 delete ret->get_result();
1353 ret->set_result( addrExpr->get_result()->clone() );
1354 addrExpr->set_arg( 0 );
1355 delete addrExpr;
1356 return ret;
1357 } else {
1358 return addrExpr;
1359 } // if
1360 }
1361
1362 /// Wraps a function declaration in a new pointer-to-function variable expression
1363 VariableExpr *wrapFunctionDecl( DeclarationWithType *functionDecl ) {
1364 // line below cloned from FixFunction.cc
1365 // xxx - functionObj is never added to a list of declarations...
1366 ObjectDecl *functionObj = new ObjectDecl( functionDecl->get_name(), functionDecl->get_storageClass(), functionDecl->get_linkage(), 0,
1367 new PointerType( Type::Qualifiers(), functionDecl->get_type()->clone() ), 0 );
1368 functionObj->set_mangleName( functionDecl->get_mangleName() );
1369 functionObj->set_scopeLevel( functionDecl->get_scopeLevel() );
1370 return new VariableExpr( functionObj );
1371 }
1372
1373 /// Finds the operation declaration for a given type in one of the two maps
1374 DeclarationWithType* findOpForType( Type *formalType, const ScopedMap< std::string, DeclarationWithType* >& ops, ResolvExpr::TypeMap< DeclarationWithType >& scopedOps ) {
1375 if ( TypeInstType *formalTypeInstType = dynamic_cast< TypeInstType* >( formalType ) ) {
1376 ScopedMap< std::string, DeclarationWithType *>::const_iterator opIt = ops.find( formalTypeInstType->get_name() );
1377 return opIt == ops.end() ? 0 : opIt->second;
1378 } else {
1379 return scopedOps.find( formalType );
1380 }
1381 }
1382
1383 /// Adds an assertion parameter to the application expression for the actual assertion declaration valued with the assert op
1384 void addAssertionFor( ApplicationExpr *appExpr, DeclarationWithType *actualDecl, DeclarationWithType *assertOp ) {
1385 appExpr->get_inferParams()[ actualDecl->get_uniqueId() ]
1386 = ParamEntry( assertOp->get_uniqueId(), assertOp->get_type()->clone(), actualDecl->get_type()->clone(), wrapFunctionDecl( assertOp ) );
1387 }
1388
1389 Statement * Pass1::mutate( ReturnStmt *returnStmt ) {
1390 if ( retval && returnStmt->get_expr() ) {
1391 assert( returnStmt->get_expr()->has_result() && ! returnStmt->get_expr()->get_result()->isVoid() );
1392 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
1393 // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) {
1394 // by this point, a cast expr on a polymorphic return value is redundant
1395 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( returnStmt->get_expr() ) ) {
1396 returnStmt->set_expr( castExpr->get_arg() );
1397 returnStmt->get_expr()->set_env( castExpr->get_env() );
1398 castExpr->set_env( 0 );
1399 castExpr->set_arg( 0 );
1400 delete castExpr;
1401 } //while
1402
1403 // find assignment operator for (polymorphic) return type
1404 ApplicationExpr *assignExpr = 0;
1405 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ) ) {
1406 // find assignment operator for type variable
1407 ScopedMap< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() );
1408 if ( assignIter == assignOps.end() ) {
1409 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() );
1410 } // if
1411 assignExpr = new ApplicationExpr( new VariableExpr( assignIter->second ) );
1412 } else if ( ReferenceToType *refType = dynamic_cast< ReferenceToType *>( retval->get_type() ) ) {
1413 // find assignment operator for generic type
1414 DeclarationWithType *functionDecl = scopedAssignOps.find( refType );
1415 if ( ! functionDecl ) {
1416 throw SemanticError( "Attempt to return dtype or ftype generic object in ", returnStmt->get_expr() );
1417 }
1418
1419 // wrap it up in an application expression
1420 assignExpr = new ApplicationExpr( wrapFunctionDecl( functionDecl ) );
1421 assignExpr->set_env( env->clone() );
1422
1423 // find each of its needed secondary assignment operators
1424 std::list< Expression* > &tyParams = refType->get_parameters();
1425 Type::ForallList &forallParams = functionDecl->get_type()->get_forall();
1426 std::list< Expression* >::const_iterator tyIt = tyParams.begin();
1427 Type::ForallList::const_iterator forallIt = forallParams.begin();
1428 for ( ; tyIt != tyParams.end() && forallIt != forallParams.end(); ++tyIt, ++forallIt ) {
1429 // Add appropriate mapping to assignment expression environment
1430 TypeExpr *formalTypeExpr = dynamic_cast< TypeExpr* >( *tyIt );
1431 assert( formalTypeExpr && "type parameters must be type expressions" );
1432 Type *formalType = formalTypeExpr->get_type();
1433 assignExpr->get_env()->add( (*forallIt)->get_name(), formalType );
1434
1435 // skip non-otype parameters (ftype/dtype)
1436 if ( (*forallIt)->get_kind() != TypeDecl::Any ) continue;
1437
1438 // find otype operators for formal type
1439 DeclarationWithType *assertAssign = findOpForType( formalType, assignOps, scopedAssignOps );
1440 if ( ! assertAssign ) throw SemanticError( "No assignment operation found for ", formalType );
1441
1442 DeclarationWithType *assertCtor = findOpForType( formalType, ctorOps, scopedCtorOps );
1443 if ( ! assertCtor ) throw SemanticError( "No default constructor found for ", formalType );
1444
1445 DeclarationWithType *assertCopy = findOpForType( formalType, copyOps, scopedCopyOps );
1446 if ( ! assertCopy ) throw SemanticError( "No copy constructor found for ", formalType );
1447
1448 DeclarationWithType *assertDtor = findOpForType( formalType, dtorOps, scopedDtorOps );
1449 if ( ! assertDtor ) throw SemanticError( "No destructor found for ", formalType );
1450
1451 // add inferred parameters for otype operators to assignment expression
1452 // NOTE: Code here assumes that first four assertions are assign op, ctor, copy ctor, dtor, in that order
1453 std::list< DeclarationWithType* > &asserts = (*forallIt)->get_assertions();
1454 assert( asserts.size() >= 4 && "Type param needs otype operator assertions" );
1455
1456 std::list< DeclarationWithType* >::iterator actualIt = asserts.begin();
1457 addAssertionFor( assignExpr, *actualIt, assertAssign );
1458 ++actualIt;
1459 addAssertionFor( assignExpr, *actualIt, assertCtor );
1460 ++actualIt;
1461 addAssertionFor( assignExpr, *actualIt, assertCopy );
1462 ++actualIt;
1463 addAssertionFor( assignExpr, *actualIt, assertDtor );
1464
1465 }
1466 }
1467 assert( assignExpr );
1468
1469 // replace return statement with appropriate assignment to out parameter
1470 Expression *retParm = new NameExpr( retval->get_name() );
1471 retParm->set_result( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
1472 assignExpr->get_args().push_back( retParm );
1473 assignExpr->get_args().push_back( returnStmt->get_expr() );
1474 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) );
1475 // } else {
1476 // useRetval = true;
1477 // stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( returnStmt->get_expr() ) ) );
1478 // useRetval = false;
1479 // } // if
1480 returnStmt->set_expr( 0 );
1481 } else {
1482 returnStmt->set_expr( mutateExpression( returnStmt->get_expr() ) );
1483 } // if
1484 return returnStmt;
1485 }
1486
1487 Type * Pass1::mutate( PointerType *pointerType ) {
1488 scopeTyVars.beginScope();
1489 makeTyVarMap( pointerType, scopeTyVars );
1490
1491 Type *ret = Mutator::mutate( pointerType );
1492
1493 scopeTyVars.endScope();
1494 return ret;
1495 }
1496
1497 Type * Pass1::mutate( FunctionType *functionType ) {
1498 scopeTyVars.beginScope();
1499 makeTyVarMap( functionType, scopeTyVars );
1500
1501 Type *ret = Mutator::mutate( functionType );
1502
1503 scopeTyVars.endScope();
1504 return ret;
1505 }
1506
1507 void Pass1::doBeginScope() {
1508 adapters.beginScope();
1509 scopedAssignOps.beginScope();
1510 scopedCtorOps.beginScope();
1511 scopedCopyOps.beginScope();
1512 scopedDtorOps.beginScope();
1513 }
1514
1515 void Pass1::doEndScope() {
1516 adapters.endScope();
1517 scopedAssignOps.endScope();
1518 scopedCtorOps.endScope();
1519 scopedCopyOps.endScope();
1520 scopedDtorOps.endScope();
1521 }
1522
1523////////////////////////////////////////// Pass2 ////////////////////////////////////////////////////
1524
1525 void Pass2::addAdapters( FunctionType *functionType ) {
1526 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1527 std::list< FunctionType *> functions;
1528 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1529 Type *orig = (*arg)->get_type();
1530 findAndReplaceFunction( orig, functions, scopeTyVars, needsAdapter );
1531 (*arg)->set_type( orig );
1532 }
1533 std::set< std::string > adaptersDone;
1534 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1535 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
1536 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1537 std::string adapterName = makeAdapterName( mangleName );
1538 paramList.push_front( new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) );
1539 adaptersDone.insert( adaptersDone.begin(), mangleName );
1540 }
1541 }
1542// deleteAll( functions );
1543 }
1544
1545 template< typename DeclClass >
1546 DeclClass * Pass2::handleDecl( DeclClass *decl, Type *type ) {
1547 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1548
1549 return ret;
1550 }
1551
1552 DeclarationWithType * Pass2::mutate( FunctionDecl *functionDecl ) {
1553 return handleDecl( functionDecl, functionDecl->get_functionType() );
1554 }
1555
1556 ObjectDecl * Pass2::mutate( ObjectDecl *objectDecl ) {
1557 return handleDecl( objectDecl, objectDecl->get_type() );
1558 }
1559
1560 TypeDecl * Pass2::mutate( TypeDecl *typeDecl ) {
1561 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1562 if ( typeDecl->get_base() ) {
1563 return handleDecl( typeDecl, typeDecl->get_base() );
1564 } else {
1565 return Mutator::mutate( typeDecl );
1566 }
1567 }
1568
1569 TypedefDecl * Pass2::mutate( TypedefDecl *typedefDecl ) {
1570 return handleDecl( typedefDecl, typedefDecl->get_base() );
1571 }
1572
1573 Type * Pass2::mutate( PointerType *pointerType ) {
1574 scopeTyVars.beginScope();
1575 makeTyVarMap( pointerType, scopeTyVars );
1576
1577 Type *ret = Mutator::mutate( pointerType );
1578
1579 scopeTyVars.endScope();
1580 return ret;
1581 }
1582
1583 Type *Pass2::mutate( FunctionType *funcType ) {
1584 scopeTyVars.beginScope();
1585 makeTyVarMap( funcType, scopeTyVars );
1586
1587 // move polymorphic return type to parameter list
1588 if ( isDynRet( funcType ) ) {
1589 DeclarationWithType *ret = funcType->get_returnVals().front();
1590 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) );
1591 funcType->get_parameters().push_front( ret );
1592 funcType->get_returnVals().pop_front();
1593 }
1594
1595 // add size/align and assertions for type parameters to parameter list
1596 std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin();
1597 std::list< DeclarationWithType *> inferredParams;
1598 ObjectDecl newObj( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 );
1599 ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0,
1600 new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 );
1601 for ( Type::ForallList::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
1602 ObjectDecl *sizeParm, *alignParm;
1603 // add all size and alignment parameters to parameter list
1604 if ( (*tyParm)->get_kind() == TypeDecl::Any ) {
1605 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm );
1606 std::string parmName = mangleType( &parmType );
1607
1608 sizeParm = newObj.clone();
1609 sizeParm->set_name( sizeofName( parmName ) );
1610 last = funcType->get_parameters().insert( last, sizeParm );
1611 ++last;
1612
1613 alignParm = newObj.clone();
1614 alignParm->set_name( alignofName( parmName ) );
1615 last = funcType->get_parameters().insert( last, alignParm );
1616 ++last;
1617 }
1618 // move all assertions into parameter list
1619 for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) {
1620// *assert = (*assert)->acceptMutator( *this );
1621 inferredParams.push_back( *assert );
1622 }
1623 (*tyParm)->get_assertions().clear();
1624 }
1625
1626 // add size/align for generic parameter types to parameter list
1627 std::set< std::string > seenTypes; // sizeofName for generic types we've seen
1628 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) {
1629 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1630 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1631 std::string typeName = mangleType( polyType );
1632 if ( seenTypes.count( typeName ) ) continue;
1633
1634 ObjectDecl *sizeParm, *alignParm, *offsetParm;
1635 sizeParm = newObj.clone();
1636 sizeParm->set_name( sizeofName( typeName ) );
1637 last = funcType->get_parameters().insert( last, sizeParm );
1638 ++last;
1639
1640 alignParm = newObj.clone();
1641 alignParm->set_name( alignofName( typeName ) );
1642 last = funcType->get_parameters().insert( last, alignParm );
1643 ++last;
1644
1645 if ( StructInstType *polyBaseStruct = dynamic_cast< StructInstType* >( polyType ) ) {
1646 // NOTE zero-length arrays are illegal in C, so empty structs have no offset array
1647 if ( ! polyBaseStruct->get_baseStruct()->get_members().empty() ) {
1648 offsetParm = newPtr.clone();
1649 offsetParm->set_name( offsetofName( typeName ) );
1650 last = funcType->get_parameters().insert( last, offsetParm );
1651 ++last;
1652 }
1653 }
1654
1655 seenTypes.insert( typeName );
1656 }
1657 }
1658
1659 // splice assertion parameters into parameter list
1660 funcType->get_parameters().splice( last, inferredParams );
1661 addAdapters( funcType );
1662 mutateAll( funcType->get_returnVals(), *this );
1663 mutateAll( funcType->get_parameters(), *this );
1664
1665 scopeTyVars.endScope();
1666 return funcType;
1667 }
1668
1669////////////////////////////////////////// PolyGenericCalculator ////////////////////////////////////////////////////
1670
1671 void PolyGenericCalculator::beginTypeScope( Type *ty ) {
1672 scopeTyVars.beginScope();
1673 makeTyVarMap( ty, scopeTyVars );
1674 }
1675
1676 void PolyGenericCalculator::endTypeScope() {
1677 scopeTyVars.endScope();
1678 }
1679
1680 template< typename DeclClass >
1681 DeclClass * PolyGenericCalculator::handleDecl( DeclClass *decl, Type *type ) {
1682 beginTypeScope( type );
1683 // knownLayouts.beginScope();
1684 // knownOffsets.beginScope();
1685
1686 DeclClass *ret = static_cast< DeclClass *>( Parent::mutate( decl ) );
1687
1688 // knownOffsets.endScope();
1689 // knownLayouts.endScope();
1690 endTypeScope();
1691 return ret;
1692 }
1693
1694 ObjectDecl * PolyGenericCalculator::mutate( ObjectDecl *objectDecl ) {
1695 return handleDecl( objectDecl, objectDecl->get_type() );
1696 }
1697
1698 DeclarationWithType * PolyGenericCalculator::mutate( FunctionDecl *functionDecl ) {
1699 knownLayouts.beginScope();
1700 knownOffsets.beginScope();
1701
1702 DeclarationWithType * decl = handleDecl( functionDecl, functionDecl->get_functionType() );
1703 knownOffsets.endScope();
1704 knownLayouts.endScope();
1705 return decl;
1706 }
1707
1708 TypedefDecl * PolyGenericCalculator::mutate( TypedefDecl *typedefDecl ) {
1709 return handleDecl( typedefDecl, typedefDecl->get_base() );
1710 }
1711
1712 TypeDecl * PolyGenericCalculator::mutate( TypeDecl *typeDecl ) {
1713 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1714 return Parent::mutate( typeDecl );
1715 }
1716
1717 Type * PolyGenericCalculator::mutate( PointerType *pointerType ) {
1718 beginTypeScope( pointerType );
1719
1720 Type *ret = Parent::mutate( pointerType );
1721
1722 endTypeScope();
1723 return ret;
1724 }
1725
1726 Type * PolyGenericCalculator::mutate( FunctionType *funcType ) {
1727 beginTypeScope( funcType );
1728
1729 // make sure that any type information passed into the function is accounted for
1730 for ( std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); fnParm != funcType->get_parameters().end(); ++fnParm ) {
1731 // condition here duplicates that in Pass2::mutate( FunctionType* )
1732 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1733 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1734 knownLayouts.insert( mangleType( polyType ) );
1735 }
1736 }
1737
1738 Type *ret = Parent::mutate( funcType );
1739
1740 endTypeScope();
1741 return ret;
1742 }
1743
1744 Statement *PolyGenericCalculator::mutate( DeclStmt *declStmt ) {
1745 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) {
1746 if ( findGeneric( objectDecl->get_type() ) ) {
1747 // change initialization of a polymorphic value object
1748 // to allocate storage with alloca
1749 Type *declType = objectDecl->get_type();
1750 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) );
1751 alloc->get_args().push_back( new NameExpr( sizeofName( mangleType( declType ) ) ) );
1752
1753 delete objectDecl->get_init();
1754
1755 std::list<Expression*> designators;
1756 objectDecl->set_init( new SingleInit( alloc, designators, false ) ); // not constructed
1757 }
1758 }
1759 return Parent::mutate( declStmt );
1760 }
1761
1762 /// Finds the member in the base list that matches the given declaration; returns its index, or -1 if not present
1763 long findMember( DeclarationWithType *memberDecl, std::list< Declaration* > &baseDecls ) {
1764 long i = 0;
1765 for(std::list< Declaration* >::const_iterator decl = baseDecls.begin(); decl != baseDecls.end(); ++decl, ++i ) {
1766 if ( memberDecl->get_name() != (*decl)->get_name() ) continue;
1767
1768 if ( DeclarationWithType *declWithType = dynamic_cast< DeclarationWithType* >( *decl ) ) {
1769 if ( memberDecl->get_mangleName().empty() || declWithType->get_mangleName().empty()
1770 || memberDecl->get_mangleName() == declWithType->get_mangleName() ) return i;
1771 else continue;
1772 } else return i;
1773 }
1774 return -1;
1775 }
1776
1777 /// Returns an index expression into the offset array for a type
1778 Expression *makeOffsetIndex( Type *objectType, long i ) {
1779 std::stringstream offset_namer;
1780 offset_namer << i;
1781 ConstantExpr *fieldIndex = new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), offset_namer.str() ) );
1782 UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) );
1783 fieldOffset->get_args().push_back( new NameExpr( offsetofName( mangleType( objectType ) ) ) );
1784 fieldOffset->get_args().push_back( fieldIndex );
1785 return fieldOffset;
1786 }
1787
1788 /// Returns an expression dereferenced n times
1789 Expression *makeDerefdVar( Expression *derefdVar, long n ) {
1790 for ( int i = 1; i < n; ++i ) {
1791 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1792 derefExpr->get_args().push_back( derefdVar );
1793 // xxx - should set results on derefExpr
1794 derefdVar = derefExpr;
1795 }
1796 return derefdVar;
1797 }
1798
1799 Expression *PolyGenericCalculator::mutate( MemberExpr *memberExpr ) {
1800 // mutate, exiting early if no longer MemberExpr
1801 Expression *expr = Parent::mutate( memberExpr );
1802 memberExpr = dynamic_cast< MemberExpr* >( expr );
1803 if ( ! memberExpr ) return expr;
1804
1805 // get declaration for base struct, exiting early if not found
1806 int varDepth;
1807 VariableExpr *varExpr = getBaseVar( memberExpr->get_aggregate(), &varDepth );
1808 if ( ! varExpr ) return memberExpr;
1809 ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1810 if ( ! objectDecl ) return memberExpr;
1811
1812 // only mutate member expressions for polymorphic types
1813 int tyDepth;
1814 Type *objectType = hasPolyBase( objectDecl->get_type(), scopeTyVars, &tyDepth );
1815 if ( ! objectType ) return memberExpr;
1816 findGeneric( objectType ); // ensure layout for this type is available
1817
1818 // replace member expression with dynamically-computed layout expression
1819 Expression *newMemberExpr = 0;
1820 if ( StructInstType *structType = dynamic_cast< StructInstType* >( objectType ) ) {
1821 // look up offset index
1822 long i = findMember( memberExpr->get_member(), structType->get_baseStruct()->get_members() );
1823 if ( i == -1 ) return memberExpr;
1824
1825 // replace member expression with pointer to base plus offset
1826 UntypedExpr *fieldLoc = new UntypedExpr( new NameExpr( "?+?" ) );
1827 fieldLoc->get_args().push_back( makeDerefdVar( varExpr->clone(), varDepth ) );
1828 fieldLoc->get_args().push_back( makeOffsetIndex( objectType, i ) );
1829 newMemberExpr = fieldLoc;
1830 } else if ( dynamic_cast< UnionInstType* >( objectType ) ) {
1831 // union members are all at offset zero, so build appropriately-dereferenced variable
1832 newMemberExpr = makeDerefdVar( varExpr->clone(), varDepth );
1833 } else return memberExpr;
1834 assert( newMemberExpr );
1835
1836 Type *memberType = memberExpr->get_member()->get_type();
1837 if ( ! isPolyType( memberType, scopeTyVars ) ) {
1838 // Not all members of a polymorphic type are themselves of polymorphic type; in this case the member expression should be wrapped and dereferenced to form an lvalue
1839 CastExpr *ptrCastExpr = new CastExpr( newMemberExpr, new PointerType( Type::Qualifiers(), memberType->clone() ) );
1840 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1841 derefExpr->get_args().push_back( ptrCastExpr );
1842 newMemberExpr = derefExpr;
1843 }
1844
1845 delete memberExpr;
1846 return newMemberExpr;
1847 }
1848
1849 ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) {
1850 ObjectDecl *newObj = new ObjectDecl( name, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, init );
1851 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
1852 return newObj;
1853 }
1854
1855 void PolyGenericCalculator::addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ) {
1856 for ( std::list< Type* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
1857 if ( findGeneric( *param ) ) {
1858 // push size/align vars for a generic parameter back
1859 std::string paramName = mangleType( *param );
1860 layoutCall->get_args().push_back( new NameExpr( sizeofName( paramName ) ) );
1861 layoutCall->get_args().push_back( new NameExpr( alignofName( paramName ) ) );
1862 } else {
1863 layoutCall->get_args().push_back( new SizeofExpr( (*param)->clone() ) );
1864 layoutCall->get_args().push_back( new AlignofExpr( (*param)->clone() ) );
1865 }
1866 }
1867 }
1868
1869 /// returns true if any of the otype parameters have a dynamic layout and puts all otype parameters in the output list
1870 bool findGenericParams( std::list< TypeDecl* > &baseParams, std::list< Expression* > &typeParams, std::list< Type* > &out ) {
1871 bool hasDynamicLayout = false;
1872
1873 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
1874 std::list< Expression* >::const_iterator typeParam = typeParams.begin();
1875 for ( ; baseParam != baseParams.end() && typeParam != typeParams.end(); ++baseParam, ++typeParam ) {
1876 // skip non-otype parameters
1877 if ( (*baseParam)->get_kind() != TypeDecl::Any ) continue;
1878 TypeExpr *typeExpr = dynamic_cast< TypeExpr* >( *typeParam );
1879 assert( typeExpr && "all otype parameters should be type expressions" );
1880
1881 Type *type = typeExpr->get_type();
1882 out.push_back( type );
1883 if ( isPolyType( type ) ) hasDynamicLayout = true;
1884 }
1885 assert( baseParam == baseParams.end() && typeParam == typeParams.end() );
1886
1887 return hasDynamicLayout;
1888 }
1889
1890 bool PolyGenericCalculator::findGeneric( Type *ty ) {
1891 ty = replaceTypeInst( ty, env );
1892
1893 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) {
1894 if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() ) {
1895 // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set
1896 return true;
1897 }
1898 return false;
1899 } else if ( StructInstType *structTy = dynamic_cast< StructInstType* >( ty ) ) {
1900 // check if this type already has a layout generated for it
1901 std::string typeName = mangleType( ty );
1902 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
1903
1904 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
1905 std::list< Type* > otypeParams;
1906 if ( ! findGenericParams( *structTy->get_baseParameters(), structTy->get_parameters(), otypeParams ) ) return false;
1907
1908 // insert local variables for layout and generate call to layout function
1909 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
1910 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1911
1912 int n_members = structTy->get_baseStruct()->get_members().size();
1913 if ( n_members == 0 ) {
1914 // all empty structs have the same layout - size 1, align 1
1915 makeVar( sizeofName( typeName ), layoutType, new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
1916 makeVar( alignofName( typeName ), layoutType->clone(), new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
1917 // NOTE zero-length arrays are forbidden in C, so empty structs have no offsetof array
1918 } else {
1919 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
1920 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
1921 ObjectDecl *offsetVar = makeVar( offsetofName( typeName ), new ArrayType( Type::Qualifiers(), layoutType->clone(), new ConstantExpr( Constant::from_int( n_members ) ), false, false ) );
1922
1923 // generate call to layout function
1924 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( structTy->get_baseStruct() ) ) );
1925 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
1926 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
1927 layoutCall->get_args().push_back( new VariableExpr( offsetVar ) );
1928 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
1929
1930 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
1931 }
1932
1933 return true;
1934 } else if ( UnionInstType *unionTy = dynamic_cast< UnionInstType* >( ty ) ) {
1935 // check if this type already has a layout generated for it
1936 std::string typeName = mangleType( ty );
1937 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
1938
1939 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
1940 std::list< Type* > otypeParams;
1941 if ( ! findGenericParams( *unionTy->get_baseParameters(), unionTy->get_parameters(), otypeParams ) ) return false;
1942
1943 // insert local variables for layout and generate call to layout function
1944 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
1945 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1946
1947 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
1948 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
1949
1950 // generate call to layout function
1951 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( unionTy->get_baseUnion() ) ) );
1952 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
1953 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
1954 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
1955
1956 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
1957
1958 return true;
1959 }
1960
1961 return false;
1962 }
1963
1964 Expression *PolyGenericCalculator::mutate( SizeofExpr *sizeofExpr ) {
1965 Type *ty = sizeofExpr->get_type();
1966 if ( findGeneric( ty ) ) {
1967 Expression *ret = new NameExpr( sizeofName( mangleType( ty ) ) );
1968 delete sizeofExpr;
1969 return ret;
1970 }
1971 return sizeofExpr;
1972 }
1973
1974 Expression *PolyGenericCalculator::mutate( AlignofExpr *alignofExpr ) {
1975 Type *ty = alignofExpr->get_type();
1976 if ( findGeneric( ty ) ) {
1977 Expression *ret = new NameExpr( alignofName( mangleType( ty ) ) );
1978 delete alignofExpr;
1979 return ret;
1980 }
1981 return alignofExpr;
1982 }
1983
1984 Expression *PolyGenericCalculator::mutate( OffsetofExpr *offsetofExpr ) {
1985 // mutate, exiting early if no longer OffsetofExpr
1986 Expression *expr = Parent::mutate( offsetofExpr );
1987 offsetofExpr = dynamic_cast< OffsetofExpr* >( expr );
1988 if ( ! offsetofExpr ) return expr;
1989
1990 // only mutate expressions for polymorphic structs/unions
1991 Type *ty = offsetofExpr->get_type();
1992 if ( ! findGeneric( ty ) ) return offsetofExpr;
1993
1994 if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) {
1995 // replace offsetof expression by index into offset array
1996 long i = findMember( offsetofExpr->get_member(), structType->get_baseStruct()->get_members() );
1997 if ( i == -1 ) return offsetofExpr;
1998
1999 Expression *offsetInd = makeOffsetIndex( ty, i );
2000 delete offsetofExpr;
2001 return offsetInd;
2002 } else if ( dynamic_cast< UnionInstType* >( ty ) ) {
2003 // all union members are at offset zero
2004 delete offsetofExpr;
2005 return new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "0" ) );
2006 } else return offsetofExpr;
2007 }
2008
2009 Expression *PolyGenericCalculator::mutate( OffsetPackExpr *offsetPackExpr ) {
2010 StructInstType *ty = offsetPackExpr->get_type();
2011
2012 Expression *ret = 0;
2013 if ( findGeneric( ty ) ) {
2014 // pull offset back from generated type information
2015 ret = new NameExpr( offsetofName( mangleType( ty ) ) );
2016 } else {
2017 std::string offsetName = offsetofName( mangleType( ty ) );
2018 if ( knownOffsets.find( offsetName ) != knownOffsets.end() ) {
2019 // use the already-generated offsets for this type
2020 ret = new NameExpr( offsetName );
2021 } else {
2022 knownOffsets.insert( offsetName );
2023
2024 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members();
2025 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2026
2027 // build initializer list for offset array
2028 std::list< Initializer* > inits;
2029 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) {
2030 DeclarationWithType *memberDecl;
2031 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) {
2032 memberDecl = origMember->clone();
2033 } else {
2034 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 );
2035 }
2036 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) );
2037 }
2038
2039 // build the offset array and replace the pack with a reference to it
2040 ObjectDecl *offsetArray = makeVar( offsetName, new ArrayType( Type::Qualifiers(), offsetType, new ConstantExpr( Constant::from_ulong( baseMembers.size() ) ), false, false ),
2041 new ListInit( inits ) );
2042 ret = new VariableExpr( offsetArray );
2043 }
2044 }
2045
2046 delete offsetPackExpr;
2047 return ret;
2048 }
2049
2050 void PolyGenericCalculator::doBeginScope() {
2051 knownLayouts.beginScope();
2052 knownOffsets.beginScope();
2053 }
2054
2055 void PolyGenericCalculator::doEndScope() {
2056 knownLayouts.endScope();
2057 knownOffsets.endScope();
2058 }
2059
2060////////////////////////////////////////// Pass3 ////////////////////////////////////////////////////
2061
2062 template< typename DeclClass >
2063 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) {
2064 scopeTyVars.beginScope();
2065 makeTyVarMap( type, scopeTyVars );
2066
2067 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
2068 ScrubTyVars::scrub( decl, scopeTyVars );
2069
2070 scopeTyVars.endScope();
2071 return ret;
2072 }
2073
2074 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) {
2075 return handleDecl( objectDecl, objectDecl->get_type() );
2076 }
2077
2078 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) {
2079 return handleDecl( functionDecl, functionDecl->get_functionType() );
2080 }
2081
2082 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) {
2083 return handleDecl( typedefDecl, typedefDecl->get_base() );
2084 }
2085
2086 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) {
2087// Initializer *init = 0;
2088// std::list< Expression *> designators;
2089// scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2090// if ( typeDecl->get_base() ) {
2091// init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators );
2092// }
2093// return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init );
2094
2095 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2096 return Mutator::mutate( typeDecl );
2097 }
2098
2099 Type * Pass3::mutate( PointerType *pointerType ) {
2100 scopeTyVars.beginScope();
2101 makeTyVarMap( pointerType, scopeTyVars );
2102
2103 Type *ret = Mutator::mutate( pointerType );
2104
2105 scopeTyVars.endScope();
2106 return ret;
2107 }
2108
2109 Type * Pass3::mutate( FunctionType *functionType ) {
2110 scopeTyVars.beginScope();
2111 makeTyVarMap( functionType, scopeTyVars );
2112
2113 Type *ret = Mutator::mutate( functionType );
2114
2115 scopeTyVars.endScope();
2116 return ret;
2117 }
2118 } // anonymous namespace
2119} // namespace GenPoly
2120
2121// Local Variables: //
2122// tab-width: 4 //
2123// mode: c++ //
2124// compile-command: "make install" //
2125// End: //
Note: See TracBrowser for help on using the repository browser.