source: src/GenPoly/Box.cc@ df2be83

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay gc_noraii jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new string with_gc
Last change on this file since df2be83 was 6f49cdf, checked in by Aaron Moss <a3moss@…>, 10 years ago

Switch uses of TyVarMap over to begin/endScope()

  • Property mode set to 100644
File size: 102.3 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Feb 5 16:45:07 2016
13// Update Count : 286
14//
15
16#include <algorithm>
17#include <iterator>
18#include <list>
19#include <map>
20#include <set>
21#include <stack>
22#include <string>
23#include <utility>
24#include <vector>
25#include <cassert>
26
27#include "Box.h"
28#include "DeclMutator.h"
29#include "PolyMutator.h"
30#include "FindFunction.h"
31#include "ScopedMap.h"
32#include "ScopedSet.h"
33#include "ScrubTyVars.h"
34
35#include "Parser/ParseNode.h"
36
37#include "SynTree/Constant.h"
38#include "SynTree/Declaration.h"
39#include "SynTree/Expression.h"
40#include "SynTree/Initializer.h"
41#include "SynTree/Mutator.h"
42#include "SynTree/Statement.h"
43#include "SynTree/Type.h"
44#include "SynTree/TypeSubstitution.h"
45
46#include "ResolvExpr/TypeEnvironment.h"
47#include "ResolvExpr/TypeMap.h"
48#include "ResolvExpr/typeops.h"
49
50#include "SymTab/Indexer.h"
51#include "SymTab/Mangler.h"
52
53#include "Common/SemanticError.h"
54#include "Common/UniqueName.h"
55#include "Common/utility.h"
56
57#include <ext/functional> // temporary
58
59namespace GenPoly {
60 namespace {
61 const std::list<Label> noLabels;
62
63 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars );
64
65 /// Abstracts type equality for a list of parameter types
66 struct TypeList {
67 TypeList() : params() {}
68 TypeList( const std::list< Type* > &_params ) : params() { cloneAll(_params, params); }
69 TypeList( std::list< Type* > &&_params ) : params( _params ) {}
70
71 TypeList( const TypeList &that ) : params() { cloneAll(that.params, params); }
72 TypeList( TypeList &&that ) : params( std::move( that.params ) ) {}
73
74 /// Extracts types from a list of TypeExpr*
75 TypeList( const std::list< TypeExpr* >& _params ) : params() {
76 for ( std::list< TypeExpr* >::const_iterator param = _params.begin(); param != _params.end(); ++param ) {
77 params.push_back( (*param)->get_type()->clone() );
78 }
79 }
80
81 TypeList& operator= ( const TypeList &that ) {
82 deleteAll( params );
83
84 params.clear();
85 cloneAll( that.params, params );
86
87 return *this;
88 }
89
90 TypeList& operator= ( TypeList &&that ) {
91 deleteAll( params );
92
93 params = std::move( that.params );
94
95 return *this;
96 }
97
98 ~TypeList() { deleteAll( params ); }
99
100 bool operator== ( const TypeList& that ) const {
101 if ( params.size() != that.params.size() ) return false;
102
103 SymTab::Indexer dummy;
104 for ( std::list< Type* >::const_iterator it = params.begin(), jt = that.params.begin(); it != params.end(); ++it, ++jt ) {
105 if ( ! ResolvExpr::typesCompatible( *it, *jt, dummy ) ) return false;
106 }
107 return true;
108 }
109
110 std::list< Type* > params; ///< Instantiation parameters
111 };
112
113 /// Maps a key and a TypeList to the some value, accounting for scope
114 template< typename Key, typename Value >
115 class InstantiationMap {
116 /// Wraps value for a specific (Key, TypeList) combination
117 typedef std::pair< TypeList, Value* > Instantiation;
118 /// List of TypeLists paired with their appropriate values
119 typedef std::vector< Instantiation > ValueList;
120 /// Underlying map type; maps keys to a linear list of corresponding TypeLists and values
121 typedef ScopedMap< Key*, ValueList > InnerMap;
122
123 InnerMap instantiations; ///< instantiations
124
125 public:
126 /// Starts a new scope
127 void beginScope() { instantiations.beginScope(); }
128
129 /// Ends a scope
130 void endScope() { instantiations.endScope(); }
131
132 /// Gets the value for the (key, typeList) pair, returns NULL on none such.
133 Value *lookup( Key *key, const std::list< TypeExpr* >& params ) const {
134 TypeList typeList( params );
135
136 // scan scopes for matches to the key
137 for ( typename InnerMap::const_iterator insts = instantiations.find( key ); insts != instantiations.end(); insts = instantiations.findNext( insts, key ) ) {
138 for ( typename ValueList::const_reverse_iterator inst = insts->second.rbegin(); inst != insts->second.rend(); ++inst ) {
139 if ( inst->first == typeList ) return inst->second;
140 }
141 }
142 // no matching instantiations found
143 return 0;
144 }
145
146 /// Adds a value for a (key, typeList) pair to the current scope
147 void insert( Key *key, const std::list< TypeExpr* > &params, Value *value ) {
148 instantiations[ key ].push_back( Instantiation( TypeList( params ), value ) );
149 }
150 };
151
152 /// Adds layout-generation functions to polymorphic types
153 class LayoutFunctionBuilder : public DeclMutator {
154 unsigned int functionNesting; // current level of nested functions
155 public:
156 LayoutFunctionBuilder() : functionNesting( 0 ) {}
157
158 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
159 virtual Declaration *mutate( StructDecl *structDecl );
160 virtual Declaration *mutate( UnionDecl *unionDecl );
161 };
162
163 /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call
164 class Pass1 : public PolyMutator {
165 public:
166 Pass1();
167 virtual Expression *mutate( ApplicationExpr *appExpr );
168 virtual Expression *mutate( AddressExpr *addrExpr );
169 virtual Expression *mutate( UntypedExpr *expr );
170 virtual DeclarationWithType* mutate( FunctionDecl *functionDecl );
171 virtual TypeDecl *mutate( TypeDecl *typeDecl );
172 virtual Expression *mutate( CommaExpr *commaExpr );
173 virtual Expression *mutate( ConditionalExpr *condExpr );
174 virtual Statement * mutate( ReturnStmt *returnStmt );
175 virtual Type *mutate( PointerType *pointerType );
176 virtual Type * mutate( FunctionType *functionType );
177
178 virtual void doBeginScope();
179 virtual void doEndScope();
180 private:
181 /// Pass the extra type parameters from polymorphic generic arguments or return types into a function application
182 void passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes );
183 /// passes extra type parameters into a polymorphic function application
184 void passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
185 /// wraps a function application with a new temporary for the out-parameter return value
186 Expression *addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg );
187 /// Replaces all the type parameters of a generic type with their concrete equivalents under the current environment
188 void replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params );
189 /// Replaces a polymorphic type with its concrete equivalant under the current environment (returns itself if concrete).
190 /// If `doClone` is set to false, will not clone interior types
191 Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true );
192 /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value
193 Expression *addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg );
194 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
195 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars );
196 void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
197 void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars );
198 /// Stores assignment operators from assertion list in local map of assignment operations
199 void findAssignOps( const std::list< TypeDecl *> &forall );
200 void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars );
201 FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars );
202 /// Replaces intrinsic operator functions with their arithmetic desugaring
203 Expression *handleIntrinsics( ApplicationExpr *appExpr );
204 /// Inserts a new temporary variable into the current scope with an auto-generated name
205 ObjectDecl *makeTemporary( Type *type );
206
207 ScopedMap< std::string, DeclarationWithType *> assignOps; ///< Currently known type variable assignment operators
208 ResolvExpr::TypeMap< DeclarationWithType > scopedAssignOps; ///< Currently known assignment operators
209 ScopedMap< std::string, DeclarationWithType* > adapters; ///< Set of adapter functions in the current scope
210
211 DeclarationWithType *retval;
212 bool useRetval;
213 UniqueName tempNamer;
214 };
215
216 /// * Moves polymorphic returns in function types to pointer-type parameters
217 /// * adds type size and assertion parameters to parameter lists
218 class Pass2 : public PolyMutator {
219 public:
220 template< typename DeclClass >
221 DeclClass *handleDecl( DeclClass *decl, Type *type );
222 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
223 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
224 virtual TypeDecl *mutate( TypeDecl *typeDecl );
225 virtual TypedefDecl *mutate( TypedefDecl *typedefDecl );
226 virtual Type *mutate( PointerType *pointerType );
227 virtual Type *mutate( FunctionType *funcType );
228
229 private:
230 void addAdapters( FunctionType *functionType );
231
232 std::map< UniqueId, std::string > adapterName;
233 };
234
235 /// Mutator pass that replaces concrete instantiations of generic types with actual struct declarations, scoped appropriately
236 class GenericInstantiator : public DeclMutator {
237 /// Map of (generic type, parameter list) pairs to concrete type instantiations
238 InstantiationMap< AggregateDecl, AggregateDecl > instantiations;
239 /// Namer for concrete types
240 UniqueName typeNamer;
241
242 public:
243 GenericInstantiator() : DeclMutator(), instantiations(), typeNamer("_conc_") {}
244
245 virtual Type* mutate( StructInstType *inst );
246 virtual Type* mutate( UnionInstType *inst );
247
248 // virtual Expression* mutate( MemberExpr *memberExpr );
249
250 virtual void doBeginScope();
251 virtual void doEndScope();
252 private:
253 /// Wrap instantiation lookup for structs
254 StructDecl* lookup( StructInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (StructDecl*)instantiations.lookup( inst->get_baseStruct(), typeSubs ); }
255 /// Wrap instantiation lookup for unions
256 UnionDecl* lookup( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (UnionDecl*)instantiations.lookup( inst->get_baseUnion(), typeSubs ); }
257 /// Wrap instantiation insertion for structs
258 void insert( StructInstType *inst, const std::list< TypeExpr* > &typeSubs, StructDecl *decl ) { instantiations.insert( inst->get_baseStruct(), typeSubs, decl ); }
259 /// Wrap instantiation insertion for unions
260 void insert( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs, UnionDecl *decl ) { instantiations.insert( inst->get_baseUnion(), typeSubs, decl ); }
261 };
262
263 /// Replaces member and size/align/offsetof expressions on polymorphic generic types with calculated expressions.
264 /// * Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference
265 /// * Calculates polymorphic offsetof expressions from offset array
266 /// * Inserts dynamic calculation of polymorphic type layouts where needed
267 class PolyGenericCalculator : public PolyMutator {
268 public:
269 template< typename DeclClass >
270 DeclClass *handleDecl( DeclClass *decl, Type *type );
271 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
272 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
273 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
274 virtual TypeDecl *mutate( TypeDecl *objectDecl );
275 virtual Statement *mutate( DeclStmt *declStmt );
276 virtual Type *mutate( PointerType *pointerType );
277 virtual Type *mutate( FunctionType *funcType );
278 virtual Expression *mutate( MemberExpr *memberExpr );
279 virtual Expression *mutate( SizeofExpr *sizeofExpr );
280 virtual Expression *mutate( AlignofExpr *alignofExpr );
281 virtual Expression *mutate( OffsetofExpr *offsetofExpr );
282 virtual Expression *mutate( OffsetPackExpr *offsetPackExpr );
283
284 virtual void doBeginScope();
285 virtual void doEndScope();
286
287 private:
288 /// Makes a new variable in the current scope with the given name, type & optional initializer
289 ObjectDecl *makeVar( const std::string &name, Type *type, Initializer *init = 0 );
290 /// returns true if the type has a dynamic layout; such a layout will be stored in appropriately-named local variables when the function returns
291 bool findGeneric( Type *ty );
292 /// adds type parameters to the layout call; will generate the appropriate parameters if needed
293 void addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams );
294
295 ScopedSet< std::string > knownLayouts; ///< Set of generic type layouts known in the current scope, indexed by sizeofName
296 ScopedSet< std::string > knownOffsets; ///< Set of non-generic types for which the offset array exists in the current scope, indexed by offsetofName
297 };
298
299 /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, and sizeof expressions of polymorphic types with the proper variable
300 class Pass3 : public PolyMutator {
301 public:
302 template< typename DeclClass >
303 DeclClass *handleDecl( DeclClass *decl, Type *type );
304 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
305 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
306 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
307 virtual TypeDecl *mutate( TypeDecl *objectDecl );
308 virtual Type *mutate( PointerType *pointerType );
309 virtual Type *mutate( FunctionType *funcType );
310 private:
311 };
312
313 } // anonymous namespace
314
315 /// version of mutateAll with special handling for translation unit so you can check the end of the prelude when debugging
316 template< typename MutatorType >
317 inline void mutateTranslationUnit( std::list< Declaration* > &translationUnit, MutatorType &mutator ) {
318 bool seenIntrinsic = false;
319 SemanticError errors;
320 for ( typename std::list< Declaration* >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
321 try {
322 if ( *i ) {
323 if ( (*i)->get_linkage() == LinkageSpec::Intrinsic ) {
324 seenIntrinsic = true;
325 } else if ( seenIntrinsic ) {
326 seenIntrinsic = false; // break on this line when debugging for end of prelude
327 }
328
329 *i = dynamic_cast< Declaration* >( (*i)->acceptMutator( mutator ) );
330 assert( *i );
331 } // if
332 } catch( SemanticError &e ) {
333 errors.append( e );
334 } // try
335 } // for
336 if ( ! errors.isEmpty() ) {
337 throw errors;
338 } // if
339 }
340
341 void box( std::list< Declaration *>& translationUnit ) {
342 LayoutFunctionBuilder layoutBuilder;
343 Pass1 pass1;
344 Pass2 pass2;
345 GenericInstantiator instantiator;
346 PolyGenericCalculator polyCalculator;
347 Pass3 pass3;
348
349 layoutBuilder.mutateDeclarationList( translationUnit );
350 mutateTranslationUnit/*All*/( translationUnit, pass1 );
351 mutateTranslationUnit/*All*/( translationUnit, pass2 );
352 instantiator.mutateDeclarationList( translationUnit );
353 mutateTranslationUnit/*All*/( translationUnit, polyCalculator );
354 mutateTranslationUnit/*All*/( translationUnit, pass3 );
355 }
356
357 ////////////////////////////////// LayoutFunctionBuilder ////////////////////////////////////////////
358
359 DeclarationWithType *LayoutFunctionBuilder::mutate( FunctionDecl *functionDecl ) {
360 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
361 mutateAll( functionDecl->get_oldDecls(), *this );
362 ++functionNesting;
363 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
364 --functionNesting;
365 return functionDecl;
366 }
367
368 /// Get a list of type declarations that will affect a layout function
369 std::list< TypeDecl* > takeOtypeOnly( std::list< TypeDecl* > &decls ) {
370 std::list< TypeDecl * > otypeDecls;
371
372 for ( std::list< TypeDecl* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
373 if ( (*decl)->get_kind() == TypeDecl::Any ) {
374 otypeDecls.push_back( *decl );
375 }
376 }
377
378 return otypeDecls;
379 }
380
381 /// Adds parameters for otype layout to a function type
382 void addOtypeParams( FunctionType *layoutFnType, std::list< TypeDecl* > &otypeParams ) {
383 BasicType sizeAlignType( Type::Qualifiers(), BasicType::LongUnsignedInt );
384
385 for ( std::list< TypeDecl* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
386 TypeInstType paramType( Type::Qualifiers(), (*param)->get_name(), *param );
387 std::string paramName = mangleType( &paramType );
388 layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
389 layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
390 }
391 }
392
393 /// Builds a layout function declaration
394 FunctionDecl *buildLayoutFunctionDecl( AggregateDecl *typeDecl, unsigned int functionNesting, FunctionType *layoutFnType ) {
395 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
396 // because each unit generates copies of the default routines for each aggregate.
397 FunctionDecl *layoutDecl = new FunctionDecl(
398 layoutofName( typeDecl ), functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static, LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ), true, false );
399 layoutDecl->fixUniqueId();
400 return layoutDecl;
401 }
402
403 /// Makes a unary operation
404 Expression *makeOp( const std::string &name, Expression *arg ) {
405 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
406 expr->get_args().push_back( arg );
407 return expr;
408 }
409
410 /// Makes a binary operation
411 Expression *makeOp( const std::string &name, Expression *lhs, Expression *rhs ) {
412 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
413 expr->get_args().push_back( lhs );
414 expr->get_args().push_back( rhs );
415 return expr;
416 }
417
418 /// Returns the dereference of a local pointer variable
419 Expression *derefVar( ObjectDecl *var ) {
420 return makeOp( "*?", new VariableExpr( var ) );
421 }
422
423 /// makes an if-statement with a single-expression if-block and no then block
424 Statement *makeCond( Expression *cond, Expression *ifPart ) {
425 return new IfStmt( noLabels, cond, new ExprStmt( noLabels, ifPart ), 0 );
426 }
427
428 /// makes a statement that assigns rhs to lhs if lhs < rhs
429 Statement *makeAssignMax( Expression *lhs, Expression *rhs ) {
430 return makeCond( makeOp( "?<?", lhs, rhs ), makeOp( "?=?", lhs->clone(), rhs->clone() ) );
431 }
432
433 /// makes a statement that aligns lhs to rhs (rhs should be an integer power of two)
434 Statement *makeAlignTo( Expression *lhs, Expression *rhs ) {
435 // check that the lhs is zeroed out to the level of rhs
436 Expression *ifCond = makeOp( "?&?", lhs, makeOp( "?-?", rhs, new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "1" ) ) ) );
437 // if not aligned, increment to alignment
438 Expression *ifExpr = makeOp( "?+=?", lhs->clone(), makeOp( "?-?", rhs->clone(), ifCond->clone() ) );
439 return makeCond( ifCond, ifExpr );
440 }
441
442 /// adds an expression to a compound statement
443 void addExpr( CompoundStmt *stmts, Expression *expr ) {
444 stmts->get_kids().push_back( new ExprStmt( noLabels, expr ) );
445 }
446
447 /// adds a statement to a compound statement
448 void addStmt( CompoundStmt *stmts, Statement *stmt ) {
449 stmts->get_kids().push_back( stmt );
450 }
451
452 Declaration *LayoutFunctionBuilder::mutate( StructDecl *structDecl ) {
453 // do not generate layout function for "empty" tag structs
454 if ( structDecl->get_members().empty() ) return structDecl;
455
456 // get parameters that can change layout, exiting early if none
457 std::list< TypeDecl* > otypeParams = takeOtypeOnly( structDecl->get_parameters() );
458 if ( otypeParams.empty() ) return structDecl;
459
460 // build layout function signature
461 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
462 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
463 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
464
465 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
466 layoutFnType->get_parameters().push_back( sizeParam );
467 ObjectDecl *alignParam = new ObjectDecl( alignofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
468 layoutFnType->get_parameters().push_back( alignParam );
469 ObjectDecl *offsetParam = new ObjectDecl( offsetofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
470 layoutFnType->get_parameters().push_back( offsetParam );
471 addOtypeParams( layoutFnType, otypeParams );
472
473 // build function decl
474 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl, functionNesting, layoutFnType );
475
476 // calculate struct layout in function body
477
478 // initialize size and alignment to 0 and 1 (will have at least one member to re-edit size
479 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "0" ) ) ) );
480 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
481 unsigned long n_members = 0;
482 bool firstMember = true;
483 for ( std::list< Declaration* >::const_iterator member = structDecl->get_members().begin(); member != structDecl->get_members().end(); ++member ) {
484 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
485 assert( dwt );
486 Type *memberType = dwt->get_type();
487
488 if ( firstMember ) {
489 firstMember = false;
490 } else {
491 // make sure all members after the first (automatically aligned at 0) are properly padded for alignment
492 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), new AlignofExpr( memberType->clone() ) ) );
493 }
494
495 // place current size in the current offset index
496 addExpr( layoutDecl->get_statements(), makeOp( "?=?", makeOp( "?[?]", new VariableExpr( offsetParam ), new ConstantExpr( Constant::from( n_members ) ) ),
497 derefVar( sizeParam ) ) );
498 ++n_members;
499
500 // add member size to current size
501 addExpr( layoutDecl->get_statements(), makeOp( "?+=?", derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
502
503 // take max of member alignment and global alignment
504 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
505 }
506 // make sure the type is end-padded to a multiple of its alignment
507 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
508
509 addDeclarationAfter( layoutDecl );
510 return structDecl;
511 }
512
513 Declaration *LayoutFunctionBuilder::mutate( UnionDecl *unionDecl ) {
514 // do not generate layout function for "empty" tag unions
515 if ( unionDecl->get_members().empty() ) return unionDecl;
516
517 // get parameters that can change layout, exiting early if none
518 std::list< TypeDecl* > otypeParams = takeOtypeOnly( unionDecl->get_parameters() );
519 if ( otypeParams.empty() ) return unionDecl;
520
521 // build layout function signature
522 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
523 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
524 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
525
526 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
527 layoutFnType->get_parameters().push_back( sizeParam );
528 ObjectDecl *alignParam = new ObjectDecl( alignofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
529 layoutFnType->get_parameters().push_back( alignParam );
530 addOtypeParams( layoutFnType, otypeParams );
531
532 // build function decl
533 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl, functionNesting, layoutFnType );
534
535 // calculate union layout in function body
536 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
537 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
538 for ( std::list< Declaration* >::const_iterator member = unionDecl->get_members().begin(); member != unionDecl->get_members().end(); ++member ) {
539 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
540 assert( dwt );
541 Type *memberType = dwt->get_type();
542
543 // take max member size and global size
544 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
545
546 // take max of member alignment and global alignment
547 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
548 }
549 // make sure the type is end-padded to a multiple of its alignment
550 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
551
552 addDeclarationAfter( layoutDecl );
553 return unionDecl;
554 }
555
556 ////////////////////////////////////////// Pass1 ////////////////////////////////////////////////////
557
558 namespace {
559 std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) {
560 std::stringstream name;
561
562 // NOTE: this function previously used isPolyObj, which failed to produce
563 // the correct thing in some situations. It's not clear to me why this wasn't working.
564
565 // if the return type or a parameter type involved polymorphic types, then the adapter will need
566 // to take those polymorphic types as pointers. Therefore, there can be two different functions
567 // with the same mangled name, so we need to further mangle the names.
568 for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) {
569 if ( isPolyType( (*retval)->get_type(), tyVars ) ) {
570 name << "P";
571 } else {
572 name << "M";
573 }
574 }
575 name << "_";
576 std::list< DeclarationWithType *> &paramList = function->get_parameters();
577 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
578 if ( isPolyType( (*arg)->get_type(), tyVars ) ) {
579 name << "P";
580 } else {
581 name << "M";
582 }
583 } // for
584 return name.str();
585 }
586
587 std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) {
588 return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars );
589 }
590
591 std::string makeAdapterName( const std::string &mangleName ) {
592 return "_adapter" + mangleName;
593 }
594
595 Pass1::Pass1() : useRetval( false ), tempNamer( "_temp" ) {}
596
597 /// Returns T if the given declaration is (*?=?)(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
598 TypeInstType *isTypeInstAssignment( DeclarationWithType *decl ) {
599 if ( decl->get_name() == "?=?" ) {
600 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
601 if ( funType->get_parameters().size() == 2 ) {
602 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
603 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
604 if ( TypeInstType *refType2 = dynamic_cast< TypeInstType *>( funType->get_parameters().back()->get_type() ) ) {
605 if ( refType->get_name() == refType2->get_name() ) {
606 return refType;
607 } // if
608 } // if
609 } // if
610 } // if
611 } // if
612 } // if
613 } // if
614 return 0;
615 }
616
617 /// returns T if the given declaration is: (*?=?)(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
618 /// Only picks assignments where neither parameter is cv-qualified
619 Type *isAssignment( DeclarationWithType *decl ) {
620 if ( decl->get_name() == "?=?" ) {
621 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
622 if ( funType->get_parameters().size() == 2 ) {
623 Type::Qualifiers defaultQualifiers;
624 Type *paramType1 = funType->get_parameters().front()->get_type();
625 if ( paramType1->get_qualifiers() != defaultQualifiers ) return 0;
626 Type *paramType2 = funType->get_parameters().back()->get_type();
627 if ( paramType2->get_qualifiers() != defaultQualifiers ) return 0;
628
629 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType1 ) ) {
630 Type *baseType1 = pointerType->get_base();
631 if ( baseType1->get_qualifiers() != defaultQualifiers ) return 0;
632 SymTab::Indexer dummy;
633 if ( ResolvExpr::typesCompatible( baseType1, paramType2, dummy ) ) {
634 return baseType1;
635 } // if
636 } // if
637 } // if
638 } // if
639 } // if
640 return 0;
641 }
642
643 void Pass1::findAssignOps( const std::list< TypeDecl *> &forall ) {
644 // what if a nested function uses an assignment operator?
645 // assignOps.clear();
646 for ( std::list< TypeDecl *>::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
647 for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) {
648 std::string typeName;
649 if ( TypeInstType *typeInst = isTypeInstAssignment( *assert ) ) {
650 assignOps[ typeInst->get_name() ] = *assert;
651 } // if
652 } // for
653 } // for
654 }
655
656 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) {
657 // if this is a assignment function, put it in the map for this scope
658 if ( Type *assignedType = isAssignment( functionDecl ) ) {
659 if ( ! dynamic_cast< TypeInstType* >( assignedType ) ) {
660 scopedAssignOps.insert( assignedType, functionDecl );
661 }
662 }
663
664 if ( functionDecl->get_statements() ) { // empty routine body ?
665 doBeginScope();
666 scopeTyVars.beginScope();;
667 assignOps.beginScope();
668 DeclarationWithType *oldRetval = retval;
669 bool oldUseRetval = useRetval;
670
671 // process polymorphic return value
672 retval = 0;
673 if ( isPolyRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) {
674 retval = functionDecl->get_functionType()->get_returnVals().front();
675
676 // give names to unnamed return values
677 if ( retval->get_name() == "" ) {
678 retval->set_name( "_retparm" );
679 retval->set_linkage( LinkageSpec::C );
680 } // if
681 } // if
682
683 FunctionType *functionType = functionDecl->get_functionType();
684 makeTyVarMap( functionDecl->get_functionType(), scopeTyVars );
685 findAssignOps( functionDecl->get_functionType()->get_forall() );
686
687 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
688 std::list< FunctionType *> functions;
689 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
690 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
691 findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter );
692 } // for
693 } // for
694 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
695 findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter );
696 } // for
697
698 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
699 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
700 if ( adapters.find( mangleName ) == adapters.end() ) {
701 std::string adapterName = makeAdapterName( mangleName );
702 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) ) );
703 } // if
704 } // for
705
706 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) );
707
708 scopeTyVars.endScope();
709 assignOps.endScope();
710 retval = oldRetval;
711 useRetval = oldUseRetval;
712 doEndScope();
713 } // if
714 return functionDecl;
715 }
716
717 TypeDecl *Pass1::mutate( TypeDecl *typeDecl ) {
718 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
719 return Mutator::mutate( typeDecl );
720 }
721
722 Expression *Pass1::mutate( CommaExpr *commaExpr ) {
723 bool oldUseRetval = useRetval;
724 useRetval = false;
725 commaExpr->set_arg1( maybeMutate( commaExpr->get_arg1(), *this ) );
726 useRetval = oldUseRetval;
727 commaExpr->set_arg2( maybeMutate( commaExpr->get_arg2(), *this ) );
728 return commaExpr;
729 }
730
731 Expression *Pass1::mutate( ConditionalExpr *condExpr ) {
732 bool oldUseRetval = useRetval;
733 useRetval = false;
734 condExpr->set_arg1( maybeMutate( condExpr->get_arg1(), *this ) );
735 useRetval = oldUseRetval;
736 condExpr->set_arg2( maybeMutate( condExpr->get_arg2(), *this ) );
737 condExpr->set_arg3( maybeMutate( condExpr->get_arg3(), *this ) );
738 return condExpr;
739
740 }
741
742 void Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) {
743 Type *polyBase = hasPolyBase( parmType, exprTyVars );
744 if ( polyBase && ! dynamic_cast< TypeInstType* >( polyBase ) ) {
745 std::string typeName = mangleType( polyBase );
746 if ( seenTypes.count( typeName ) ) return;
747
748 arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) );
749 arg++;
750 arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) );
751 arg++;
752 if ( dynamic_cast< StructInstType* >( polyBase ) ) {
753 if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) {
754 // zero-length arrays are forbidden by C, so don't pass offset for empty struct
755 if ( ! argBaseStructType->get_baseStruct()->get_members().empty() ) {
756 arg = appExpr->get_args().insert( arg, new OffsetPackExpr( argBaseStructType->clone() ) );
757 arg++;
758 }
759 } else {
760 throw SemanticError( "Cannot pass non-struct type for generic struct" );
761 }
762 }
763
764 seenTypes.insert( typeName );
765 }
766 }
767
768 void Pass1::passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
769 // pass size/align for type variables
770 for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) {
771 ResolvExpr::EqvClass eqvClass;
772 assert( env );
773 if ( tyParm->second == TypeDecl::Any ) {
774 Type *concrete = env->lookup( tyParm->first );
775 if ( concrete ) {
776 arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) );
777 arg++;
778 arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) );
779 arg++;
780 } else {
781 throw SemanticError( "unbound type variable in application ", appExpr );
782 } // if
783 } // if
784 } // for
785
786 // add size/align for generic types to parameter list
787 if ( appExpr->get_function()->get_results().empty() ) return;
788 FunctionType *funcType = getFunctionType( appExpr->get_function()->get_results().front() );
789 assert( funcType );
790
791 std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin();
792 std::list< Expression* >::const_iterator fnArg = arg;
793 std::set< std::string > seenTypes; //< names for generic types we've seen
794
795 // a polymorphic return type may need to be added to the argument list
796 if ( polyRetType ) {
797 Type *concRetType = replaceWithConcrete( appExpr, polyRetType );
798 passArgTypeVars( appExpr, polyRetType, concRetType, arg, exprTyVars, seenTypes );
799 }
800
801 // add type information args for presently unseen types in parameter list
802 for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {
803 VariableExpr *fnArgBase = getBaseVar( *fnArg );
804 if ( ! fnArgBase || fnArgBase->get_results().empty() ) continue;
805 passArgTypeVars( appExpr, (*fnParm)->get_type(), fnArgBase->get_results().front(), arg, exprTyVars, seenTypes );
806 }
807 }
808
809 ObjectDecl *Pass1::makeTemporary( Type *type ) {
810 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, 0 );
811 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
812 return newObj;
813 }
814
815 Expression *Pass1::addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ) {
816 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
817 // if ( useRetval ) {
818 // assert( retval );
819 // arg = appExpr->get_args().insert( arg, new VariableExpr( retval ) );
820 // arg++;
821 // } else {
822
823 // Create temporary to hold return value of polymorphic function and produce that temporary as a result
824 // using a comma expression. Possibly change comma expression into statement expression "{}" for multiple
825 // return values.
826 ObjectDecl *newObj = makeTemporary( retType->clone() );
827 Expression *paramExpr = new VariableExpr( newObj );
828
829 // If the type of the temporary is not polymorphic, box temporary by taking its address;
830 // otherwise the temporary is already boxed and can be used directly.
831 if ( ! isPolyType( newObj->get_type(), scopeTyVars, env ) ) {
832 paramExpr = new AddressExpr( paramExpr );
833 } // if
834 arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call
835 arg++;
836 // Build a comma expression to call the function and emulate a normal return.
837 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) );
838 commaExpr->set_env( appExpr->get_env() );
839 appExpr->set_env( 0 );
840 return commaExpr;
841 // } // if
842 // return appExpr;
843 }
844
845 void Pass1::replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ) {
846 for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) {
847 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
848 assert(paramType && "Aggregate parameters should be type expressions");
849 paramType->set_type( replaceWithConcrete( appExpr, paramType->get_type(), false ) );
850 }
851 }
852
853 Type *Pass1::replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone ) {
854 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) {
855 Type *concrete = env->lookup( typeInst->get_name() );
856 if ( concrete == 0 ) {
857 throw SemanticError( "Unbound type variable " + typeInst->get_name() + " in ", appExpr );
858 } // if
859 return concrete;
860 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) {
861 if ( doClone ) {
862 structType = structType->clone();
863 }
864 replaceParametersWithConcrete( appExpr, structType->get_parameters() );
865 return structType;
866 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) {
867 if ( doClone ) {
868 unionType = unionType->clone();
869 }
870 replaceParametersWithConcrete( appExpr, unionType->get_parameters() );
871 return unionType;
872 }
873 return type;
874 }
875
876 Expression *Pass1::addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg ) {
877 assert( env );
878 Type *concrete = replaceWithConcrete( appExpr, polyType );
879 // add out-parameter for return value
880 return addRetParam( appExpr, function, concrete, arg );
881 }
882
883 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
884 Expression *ret = appExpr;
885 if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) {
886 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg );
887 } // if
888 std::string mangleName = mangleAdapterName( function, tyVars );
889 std::string adapterName = makeAdapterName( mangleName );
890
891 // cast adaptee to void (*)(), since it may have any type inside a polymorphic function
892 Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) );
893 appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) );
894 appExpr->set_function( new NameExpr( adapterName ) );
895
896 return ret;
897 }
898
899 void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) {
900 assert( ! arg->get_results().empty() );
901 if ( isPolyType( param, exprTyVars ) ) {
902 if ( isPolyType( arg->get_results().front() ) ) {
903 // if the argument's type is polymorphic, we don't need to box again!
904 return;
905 } else if ( arg->get_results().front()->get_isLvalue() ) {
906 // VariableExpr and MemberExpr are lvalues; need to check this isn't coming from the second arg of a comma expression though (not an lvalue)
907 if ( CommaExpr *commaArg = dynamic_cast< CommaExpr* >( arg ) ) {
908 commaArg->set_arg2( new AddressExpr( commaArg->get_arg2() ) );
909 } else {
910 arg = new AddressExpr( arg );
911 }
912 } else {
913 // use type computed in unification to declare boxed variables
914 Type * newType = param->clone();
915 if ( env ) env->apply( newType );
916 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, newType, 0 );
917 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right???
918 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
919 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
920 assign->get_args().push_back( new VariableExpr( newObj ) );
921 assign->get_args().push_back( arg );
922 stmtsToAdd.push_back( new ExprStmt( noLabels, assign ) );
923 arg = new AddressExpr( new VariableExpr( newObj ) );
924 } // if
925 } // if
926 }
927
928 /// cast parameters to polymorphic functions so that types are replaced with
929 /// void * if they are type parameters in the formal type.
930 /// this gets rid of warnings from gcc.
931 void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) {
932 Type * newType = formal->clone();
933 if ( getFunctionType( newType ) ) {
934 newType = ScrubTyVars::scrub( newType, tyVars );
935 actual = new CastExpr( actual, newType );
936 } // if
937 }
938
939 void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
940 for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->get_parameters().end(); ++param, ++arg ) {
941 assert( arg != appExpr->get_args().end() );
942 addCast( *arg, (*param)->get_type(), exprTyVars );
943 boxParam( (*param)->get_type(), *arg, exprTyVars );
944 } // for
945 }
946
947 void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
948 std::list< Expression *>::iterator cur = arg;
949 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
950 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
951 InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() );
952 assert( inferParam != appExpr->get_inferParams().end() && "NOTE: Explicit casts of polymorphic functions to compatible monomorphic functions are currently unsupported" );
953 Expression *newExpr = inferParam->second.expr->clone();
954 addCast( newExpr, (*assert)->get_type(), tyVars );
955 boxParam( (*assert)->get_type(), newExpr, tyVars );
956 appExpr->get_args().insert( cur, newExpr );
957 } // for
958 } // for
959 }
960
961 void makeRetParm( FunctionType *funcType ) {
962 DeclarationWithType *retParm = funcType->get_returnVals().front();
963
964 // make a new parameter that is a pointer to the type of the old return value
965 retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) );
966 funcType->get_parameters().push_front( retParm );
967
968 // we don't need the return value any more
969 funcType->get_returnVals().clear();
970 }
971
972 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ) {
973 // actually make the adapter type
974 FunctionType *adapter = adaptee->clone();
975 if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) {
976 makeRetParm( adapter );
977 } // if
978 adapter->get_parameters().push_front( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ) );
979 return adapter;
980 }
981
982 Expression *makeAdapterArg( DeclarationWithType *param, DeclarationWithType *arg, DeclarationWithType *realParam, const TyVarMap &tyVars ) {
983 assert( param );
984 assert( arg );
985 if ( isPolyType( realParam->get_type(), tyVars ) ) {
986 if ( ! isPolyType( arg->get_type() ) ) {
987 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
988 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) );
989 deref->get_results().push_back( arg->get_type()->clone() );
990 return deref;
991 } // if
992 } // if
993 return new VariableExpr( param );
994 }
995
996 void addAdapterParams( ApplicationExpr *adapteeApp, std::list< DeclarationWithType *>::iterator arg, std::list< DeclarationWithType *>::iterator param, std::list< DeclarationWithType *>::iterator paramEnd, std::list< DeclarationWithType *>::iterator realParam, const TyVarMap &tyVars ) {
997 UniqueName paramNamer( "_p" );
998 for ( ; param != paramEnd; ++param, ++arg, ++realParam ) {
999 if ( (*param)->get_name() == "" ) {
1000 (*param)->set_name( paramNamer.newName() );
1001 (*param)->set_linkage( LinkageSpec::C );
1002 } // if
1003 adapteeApp->get_args().push_back( makeAdapterArg( *param, *arg, *realParam, tyVars ) );
1004 } // for
1005 }
1006
1007 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) {
1008 FunctionType *adapterType = makeAdapterType( adaptee, tyVars );
1009 adapterType = ScrubTyVars::scrub( adapterType, tyVars );
1010 DeclarationWithType *adapteeDecl = adapterType->get_parameters().front();
1011 adapteeDecl->set_name( "_adaptee" );
1012 ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) );
1013 Statement *bodyStmt;
1014
1015 std::list< TypeDecl *>::iterator tyArg = realType->get_forall().begin();
1016 std::list< TypeDecl *>::iterator tyParam = adapterType->get_forall().begin();
1017 std::list< TypeDecl *>::iterator realTyParam = adaptee->get_forall().begin();
1018 for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) {
1019 assert( tyArg != realType->get_forall().end() );
1020 std::list< DeclarationWithType *>::iterator assertArg = (*tyArg)->get_assertions().begin();
1021 std::list< DeclarationWithType *>::iterator assertParam = (*tyParam)->get_assertions().begin();
1022 std::list< DeclarationWithType *>::iterator realAssertParam = (*realTyParam)->get_assertions().begin();
1023 for ( ; assertParam != (*tyParam)->get_assertions().end(); ++assertArg, ++assertParam, ++realAssertParam ) {
1024 assert( assertArg != (*tyArg)->get_assertions().end() );
1025 adapteeApp->get_args().push_back( makeAdapterArg( *assertParam, *assertArg, *realAssertParam, tyVars ) );
1026 } // for
1027 } // for
1028
1029 std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin();
1030 std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin();
1031 std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin();
1032 param++; // skip adaptee parameter
1033 if ( realType->get_returnVals().empty() ) {
1034 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1035 bodyStmt = new ExprStmt( noLabels, adapteeApp );
1036 } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
1037 if ( (*param)->get_name() == "" ) {
1038 (*param)->set_name( "_ret" );
1039 (*param)->set_linkage( LinkageSpec::C );
1040 } // if
1041 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
1042 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
1043 deref->get_args().push_back( new CastExpr( new VariableExpr( *param++ ), new PointerType( Type::Qualifiers(), realType->get_returnVals().front()->get_type()->clone() ) ) );
1044 assign->get_args().push_back( deref );
1045 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1046 assign->get_args().push_back( adapteeApp );
1047 bodyStmt = new ExprStmt( noLabels, assign );
1048 } else {
1049 // adapter for a function that returns a monomorphic value
1050 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1051 bodyStmt = new ReturnStmt( noLabels, adapteeApp );
1052 } // if
1053 CompoundStmt *adapterBody = new CompoundStmt( noLabels );
1054 adapterBody->get_kids().push_back( bodyStmt );
1055 std::string adapterName = makeAdapterName( mangleName );
1056 return new FunctionDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, adapterType, adapterBody, false, false );
1057 }
1058
1059 void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) {
1060 // collect a list of function types passed as parameters or implicit parameters (assertions)
1061 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1062 std::list< FunctionType *> functions;
1063 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
1064 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
1065 findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter );
1066 } // for
1067 } // for
1068 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1069 findFunction( (*arg)->get_type(), functions, exprTyVars, needsAdapter );
1070 } // for
1071
1072 // parameter function types for which an appropriate adapter has been generated. we cannot use the types
1073 // after applying substitutions, since two different parameter types may be unified to the same type
1074 std::set< std::string > adaptersDone;
1075
1076 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1077 FunctionType *originalFunction = (*funType)->clone();
1078 FunctionType *realFunction = (*funType)->clone();
1079 std::string mangleName = SymTab::Mangler::mangle( realFunction );
1080
1081 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this
1082 // pre-substitution parameter function type.
1083 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1084 adaptersDone.insert( adaptersDone.begin(), mangleName );
1085
1086 // apply substitution to type variables to figure out what the adapter's type should look like
1087 assert( env );
1088 env->apply( realFunction );
1089 mangleName = SymTab::Mangler::mangle( realFunction );
1090 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars );
1091
1092 typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter;
1093 AdapterIter adapter = adapters.find( mangleName );
1094 if ( adapter == adapters.end() ) {
1095 // adapter has not been created yet in the current scope, so define it
1096 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars );
1097 std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) );
1098 adapter = answer.first;
1099 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) );
1100 } // if
1101 assert( adapter != adapters.end() );
1102
1103 // add the appropriate adapter as a parameter
1104 appExpr->get_args().push_front( new VariableExpr( adapter->second ) );
1105 } // if
1106 } // for
1107 } // passAdapters
1108
1109 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) {
1110 NameExpr *opExpr;
1111 if ( isIncr ) {
1112 opExpr = new NameExpr( "?+=?" );
1113 } else {
1114 opExpr = new NameExpr( "?-=?" );
1115 } // if
1116 UntypedExpr *addAssign = new UntypedExpr( opExpr );
1117 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1118 addAssign->get_args().push_back( address->get_arg() );
1119 } else {
1120 addAssign->get_args().push_back( appExpr->get_args().front() );
1121 } // if
1122 addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) ) ) );
1123 addAssign->get_results().front() = appExpr->get_results().front()->clone();
1124 if ( appExpr->get_env() ) {
1125 addAssign->set_env( appExpr->get_env() );
1126 appExpr->set_env( 0 );
1127 } // if
1128 appExpr->get_args().clear();
1129 delete appExpr;
1130 return addAssign;
1131 }
1132
1133 Expression *Pass1::handleIntrinsics( ApplicationExpr *appExpr ) {
1134 if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->get_function() ) ) {
1135 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic ) {
1136 if ( varExpr->get_var()->get_name() == "?[?]" ) {
1137 assert( ! appExpr->get_results().empty() );
1138 assert( appExpr->get_args().size() == 2 );
1139 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
1140 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
1141 assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers
1142 UntypedExpr *ret = 0;
1143 if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer
1144 ret = new UntypedExpr( new NameExpr( "?+?" ) );
1145 } // if
1146 if ( baseType1 ) {
1147 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1148 multiply->get_args().push_back( appExpr->get_args().back() );
1149 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1150 ret->get_args().push_back( appExpr->get_args().front() );
1151 ret->get_args().push_back( multiply );
1152 } else if ( baseType2 ) {
1153 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1154 multiply->get_args().push_back( appExpr->get_args().front() );
1155 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1156 ret->get_args().push_back( multiply );
1157 ret->get_args().push_back( appExpr->get_args().back() );
1158 } // if
1159 if ( baseType1 || baseType2 ) {
1160 ret->get_results().push_front( appExpr->get_results().front()->clone() );
1161 if ( appExpr->get_env() ) {
1162 ret->set_env( appExpr->get_env() );
1163 appExpr->set_env( 0 );
1164 } // if
1165 appExpr->get_args().clear();
1166 delete appExpr;
1167 return ret;
1168 } // if
1169 } else if ( varExpr->get_var()->get_name() == "*?" ) {
1170 assert( ! appExpr->get_results().empty() );
1171 assert( ! appExpr->get_args().empty() );
1172 if ( isPolyType( appExpr->get_results().front(), scopeTyVars, env ) ) {
1173 Expression *ret = appExpr->get_args().front();
1174 delete ret->get_results().front();
1175 ret->get_results().front() = appExpr->get_results().front()->clone();
1176 if ( appExpr->get_env() ) {
1177 ret->set_env( appExpr->get_env() );
1178 appExpr->set_env( 0 );
1179 } // if
1180 appExpr->get_args().clear();
1181 delete appExpr;
1182 return ret;
1183 } // if
1184 } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) {
1185 assert( ! appExpr->get_results().empty() );
1186 assert( appExpr->get_args().size() == 1 );
1187 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
1188 Type *tempType = appExpr->get_results().front()->clone();
1189 if ( env ) {
1190 env->apply( tempType );
1191 } // if
1192 ObjectDecl *newObj = makeTemporary( tempType );
1193 VariableExpr *tempExpr = new VariableExpr( newObj );
1194 UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) );
1195 assignExpr->get_args().push_back( tempExpr->clone() );
1196 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1197 assignExpr->get_args().push_back( address->get_arg()->clone() );
1198 } else {
1199 assignExpr->get_args().push_back( appExpr->get_args().front()->clone() );
1200 } // if
1201 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) );
1202 return new CommaExpr( firstComma, tempExpr );
1203 } // if
1204 } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) {
1205 assert( ! appExpr->get_results().empty() );
1206 assert( appExpr->get_args().size() == 1 );
1207 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
1208 return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );
1209 } // if
1210 } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) {
1211 assert( ! appExpr->get_results().empty() );
1212 assert( appExpr->get_args().size() == 2 );
1213 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
1214 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
1215 if ( baseType1 && baseType2 ) {
1216 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) );
1217 divide->get_args().push_back( appExpr );
1218 divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1219 divide->get_results().push_front( appExpr->get_results().front()->clone() );
1220 if ( appExpr->get_env() ) {
1221 divide->set_env( appExpr->get_env() );
1222 appExpr->set_env( 0 );
1223 } // if
1224 return divide;
1225 } else if ( baseType1 ) {
1226 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1227 multiply->get_args().push_back( appExpr->get_args().back() );
1228 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1229 appExpr->get_args().back() = multiply;
1230 } else if ( baseType2 ) {
1231 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1232 multiply->get_args().push_back( appExpr->get_args().front() );
1233 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1234 appExpr->get_args().front() = multiply;
1235 } // if
1236 } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) {
1237 assert( ! appExpr->get_results().empty() );
1238 assert( appExpr->get_args().size() == 2 );
1239 Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env );
1240 if ( baseType ) {
1241 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1242 multiply->get_args().push_back( appExpr->get_args().back() );
1243 multiply->get_args().push_back( new SizeofExpr( baseType->clone() ) );
1244 appExpr->get_args().back() = multiply;
1245 } // if
1246 } // if
1247 return appExpr;
1248 } // if
1249 } // if
1250 return 0;
1251 }
1252
1253 Expression *Pass1::mutate( ApplicationExpr *appExpr ) {
1254 // std::cerr << "mutate appExpr: ";
1255 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
1256 // std::cerr << i->first << " ";
1257 // }
1258 // std::cerr << "\n";
1259 bool oldUseRetval = useRetval;
1260 useRetval = false;
1261 appExpr->get_function()->acceptMutator( *this );
1262 mutateAll( appExpr->get_args(), *this );
1263 useRetval = oldUseRetval;
1264
1265 assert( ! appExpr->get_function()->get_results().empty() );
1266 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
1267 assert( pointer );
1268 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
1269 assert( function );
1270
1271 if ( Expression *newExpr = handleIntrinsics( appExpr ) ) {
1272 return newExpr;
1273 } // if
1274
1275 Expression *ret = appExpr;
1276
1277 std::list< Expression *>::iterator arg = appExpr->get_args().begin();
1278 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin();
1279
1280 TyVarMap exprTyVars( (TypeDecl::Kind)-1 );
1281 makeTyVarMap( function, exprTyVars );
1282 ReferenceToType *polyRetType = isPolyRet( function );
1283
1284 if ( polyRetType ) {
1285 ret = addPolyRetParam( appExpr, function, polyRetType, arg );
1286 } else if ( needsAdapter( function, scopeTyVars ) ) {
1287 // std::cerr << "needs adapter: ";
1288 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
1289 // std::cerr << i->first << " ";
1290 // }
1291 // std::cerr << "\n";
1292 // change the application so it calls the adapter rather than the passed function
1293 ret = applyAdapter( appExpr, function, arg, scopeTyVars );
1294 } // if
1295 arg = appExpr->get_args().begin();
1296
1297 passTypeVars( appExpr, polyRetType, arg, exprTyVars );
1298 addInferredParams( appExpr, function, arg, exprTyVars );
1299
1300 arg = paramBegin;
1301
1302 boxParams( appExpr, function, arg, exprTyVars );
1303
1304 passAdapters( appExpr, function, exprTyVars );
1305
1306 return ret;
1307 }
1308
1309 Expression *Pass1::mutate( UntypedExpr *expr ) {
1310 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
1311 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1312 if ( name->get_name() == "*?" ) {
1313 Expression *ret = expr->get_args().front();
1314 expr->get_args().clear();
1315 delete expr;
1316 return ret->acceptMutator( *this );
1317 } // if
1318 } // if
1319 } // if
1320 return PolyMutator::mutate( expr );
1321 }
1322
1323 Expression *Pass1::mutate( AddressExpr *addrExpr ) {
1324 assert( ! addrExpr->get_arg()->get_results().empty() );
1325
1326 bool needs = false;
1327 if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {
1328 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
1329 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1330 if ( name->get_name() == "*?" ) {
1331 if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {
1332 assert( ! appExpr->get_function()->get_results().empty() );
1333 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
1334 assert( pointer );
1335 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
1336 assert( function );
1337 needs = needsAdapter( function, scopeTyVars );
1338 } // if
1339 } // if
1340 } // if
1341 } // if
1342 } // if
1343 addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) );
1344 if ( isPolyType( addrExpr->get_arg()->get_results().front(), scopeTyVars, env ) || needs ) {
1345 Expression *ret = addrExpr->get_arg();
1346 delete ret->get_results().front();
1347 ret->get_results().front() = addrExpr->get_results().front()->clone();
1348 addrExpr->set_arg( 0 );
1349 delete addrExpr;
1350 return ret;
1351 } else {
1352 return addrExpr;
1353 } // if
1354 }
1355
1356 /// Wraps a function declaration in a new pointer-to-function variable expression
1357 VariableExpr *wrapFunctionDecl( DeclarationWithType *functionDecl ) {
1358 // line below cloned from FixFunction.cc
1359 ObjectDecl *functionObj = new ObjectDecl( functionDecl->get_name(), functionDecl->get_storageClass(), functionDecl->get_linkage(), 0,
1360 new PointerType( Type::Qualifiers(), functionDecl->get_type()->clone() ), 0 );
1361 functionObj->set_mangleName( functionDecl->get_mangleName() );
1362 return new VariableExpr( functionObj );
1363 }
1364
1365 Statement * Pass1::mutate( ReturnStmt *returnStmt ) {
1366 if ( retval && returnStmt->get_expr() ) {
1367 assert( ! returnStmt->get_expr()->get_results().empty() );
1368 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
1369 // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) {
1370 // by this point, a cast expr on a polymorphic return value is redundant
1371 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( returnStmt->get_expr() ) ) {
1372 returnStmt->set_expr( castExpr->get_arg() );
1373 returnStmt->get_expr()->set_env( castExpr->get_env() );
1374 castExpr->set_env( 0 );
1375 castExpr->set_arg( 0 );
1376 delete castExpr;
1377 } //while
1378
1379 // find assignment operator for (polymorphic) return type
1380 ApplicationExpr *assignExpr = 0;
1381 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ) ) {
1382 // find assignment operator for type variable
1383 ScopedMap< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() );
1384 if ( assignIter == assignOps.end() ) {
1385 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() );
1386 } // if
1387 assignExpr = new ApplicationExpr( new VariableExpr( assignIter->second ) );
1388 } else if ( ReferenceToType *refType = dynamic_cast< ReferenceToType *>( retval->get_type() ) ) {
1389 // find assignment operator for generic type
1390 DeclarationWithType *functionDecl = scopedAssignOps.find( refType );
1391 if ( ! functionDecl ) {
1392 throw SemanticError( "Attempt to return dtype or ftype generic object in ", returnStmt->get_expr() );
1393 }
1394
1395 // wrap it up in an application expression
1396 assignExpr = new ApplicationExpr( wrapFunctionDecl( functionDecl ) );
1397 assignExpr->set_env( env->clone() );
1398
1399 // find each of its needed secondary assignment operators
1400 std::list< Expression* > &tyParams = refType->get_parameters();
1401 std::list< TypeDecl* > &forallParams = functionDecl->get_type()->get_forall();
1402 std::list< Expression* >::const_iterator tyIt = tyParams.begin();
1403 std::list< TypeDecl* >::const_iterator forallIt = forallParams.begin();
1404 for ( ; tyIt != tyParams.end() && forallIt != forallParams.end(); ++tyIt, ++forallIt ) {
1405 // Add appropriate mapping to assignment expression environment
1406 TypeExpr *formalTypeExpr = dynamic_cast< TypeExpr* >( *tyIt );
1407 assert( formalTypeExpr && "type parameters must be type expressions" );
1408 Type *formalType = formalTypeExpr->get_type();
1409 assignExpr->get_env()->add( (*forallIt)->get_name(), formalType );
1410
1411 // skip types with no assign op (ftype/dtype)
1412 if ( (*forallIt)->get_kind() != TypeDecl::Any ) continue;
1413
1414 // find assignment operator for formal type
1415 DeclarationWithType *assertAssign = 0;
1416 if ( TypeInstType *formalTypeInstType = dynamic_cast< TypeInstType* >( formalType ) ) {
1417 ScopedMap< std::string, DeclarationWithType *>::const_iterator assertAssignIt = assignOps.find( formalTypeInstType->get_name() );
1418 if ( assertAssignIt == assignOps.end() ) {
1419 throw SemanticError( "No assignment operation found for ", formalTypeInstType );
1420 }
1421 assertAssign = assertAssignIt->second;
1422 } else {
1423 assertAssign = scopedAssignOps.find( formalType );
1424 if ( ! assertAssign ) {
1425 throw SemanticError( "No assignment operation found for ", formalType );
1426 }
1427 }
1428
1429 // add inferred parameter for field assignment operator to assignment expression
1430 std::list< DeclarationWithType* > &asserts = (*forallIt)->get_assertions();
1431 assert( ! asserts.empty() && "Type param needs assignment operator assertion" );
1432 DeclarationWithType *actualDecl = asserts.front();
1433 assignExpr->get_inferParams()[ actualDecl->get_uniqueId() ]
1434 = ParamEntry( assertAssign->get_uniqueId(), assertAssign->get_type()->clone(), actualDecl->get_type()->clone(), wrapFunctionDecl( assertAssign ) );
1435 }
1436 }
1437 assert( assignExpr );
1438
1439 // replace return statement with appropriate assignment to out parameter
1440 Expression *retParm = new NameExpr( retval->get_name() );
1441 retParm->get_results().push_back( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
1442 assignExpr->get_args().push_back( retParm );
1443 assignExpr->get_args().push_back( returnStmt->get_expr() );
1444 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) );
1445 // } else {
1446 // useRetval = true;
1447 // stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( returnStmt->get_expr() ) ) );
1448 // useRetval = false;
1449 // } // if
1450 returnStmt->set_expr( 0 );
1451 } else {
1452 returnStmt->set_expr( mutateExpression( returnStmt->get_expr() ) );
1453 } // if
1454 return returnStmt;
1455 }
1456
1457 Type * Pass1::mutate( PointerType *pointerType ) {
1458 scopeTyVars.beginScope();
1459 makeTyVarMap( pointerType, scopeTyVars );
1460
1461 Type *ret = Mutator::mutate( pointerType );
1462
1463 scopeTyVars.endScope();
1464 return ret;
1465 }
1466
1467 Type * Pass1::mutate( FunctionType *functionType ) {
1468 scopeTyVars.beginScope();
1469 makeTyVarMap( functionType, scopeTyVars );
1470
1471 Type *ret = Mutator::mutate( functionType );
1472
1473 scopeTyVars.endScope();
1474 return ret;
1475 }
1476
1477 void Pass1::doBeginScope() {
1478 adapters.beginScope();
1479 scopedAssignOps.beginScope();
1480 }
1481
1482 void Pass1::doEndScope() {
1483 adapters.endScope();
1484 scopedAssignOps.endScope();
1485 }
1486
1487////////////////////////////////////////// Pass2 ////////////////////////////////////////////////////
1488
1489 void Pass2::addAdapters( FunctionType *functionType ) {
1490 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1491 std::list< FunctionType *> functions;
1492 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1493 Type *orig = (*arg)->get_type();
1494 findAndReplaceFunction( orig, functions, scopeTyVars, needsAdapter );
1495 (*arg)->set_type( orig );
1496 }
1497 std::set< std::string > adaptersDone;
1498 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1499 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
1500 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1501 std::string adapterName = makeAdapterName( mangleName );
1502 paramList.push_front( new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) );
1503 adaptersDone.insert( adaptersDone.begin(), mangleName );
1504 }
1505 }
1506// deleteAll( functions );
1507 }
1508
1509 template< typename DeclClass >
1510 DeclClass * Pass2::handleDecl( DeclClass *decl, Type *type ) {
1511 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1512
1513 return ret;
1514 }
1515
1516 DeclarationWithType * Pass2::mutate( FunctionDecl *functionDecl ) {
1517 return handleDecl( functionDecl, functionDecl->get_functionType() );
1518 }
1519
1520 ObjectDecl * Pass2::mutate( ObjectDecl *objectDecl ) {
1521 return handleDecl( objectDecl, objectDecl->get_type() );
1522 }
1523
1524 TypeDecl * Pass2::mutate( TypeDecl *typeDecl ) {
1525 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1526 if ( typeDecl->get_base() ) {
1527 return handleDecl( typeDecl, typeDecl->get_base() );
1528 } else {
1529 return Mutator::mutate( typeDecl );
1530 }
1531 }
1532
1533 TypedefDecl * Pass2::mutate( TypedefDecl *typedefDecl ) {
1534 return handleDecl( typedefDecl, typedefDecl->get_base() );
1535 }
1536
1537 Type * Pass2::mutate( PointerType *pointerType ) {
1538 scopeTyVars.beginScope();
1539 makeTyVarMap( pointerType, scopeTyVars );
1540
1541 Type *ret = Mutator::mutate( pointerType );
1542
1543 scopeTyVars.endScope();
1544 return ret;
1545 }
1546
1547 Type *Pass2::mutate( FunctionType *funcType ) {
1548 scopeTyVars.beginScope();
1549 makeTyVarMap( funcType, scopeTyVars );
1550
1551 // move polymorphic return type to parameter list
1552 if ( isPolyRet( funcType ) ) {
1553 DeclarationWithType *ret = funcType->get_returnVals().front();
1554 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) );
1555 funcType->get_parameters().push_front( ret );
1556 funcType->get_returnVals().pop_front();
1557 }
1558
1559 // add size/align and assertions for type parameters to parameter list
1560 std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin();
1561 std::list< DeclarationWithType *> inferredParams;
1562 ObjectDecl newObj( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 );
1563 ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0,
1564 new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 );
1565 for ( std::list< TypeDecl *>::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
1566 ObjectDecl *sizeParm, *alignParm;
1567 // add all size and alignment parameters to parameter list
1568 if ( (*tyParm)->get_kind() == TypeDecl::Any ) {
1569 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm );
1570 std::string parmName = mangleType( &parmType );
1571
1572 sizeParm = newObj.clone();
1573 sizeParm->set_name( sizeofName( parmName ) );
1574 last = funcType->get_parameters().insert( last, sizeParm );
1575 ++last;
1576
1577 alignParm = newObj.clone();
1578 alignParm->set_name( alignofName( parmName ) );
1579 last = funcType->get_parameters().insert( last, alignParm );
1580 ++last;
1581 }
1582 // move all assertions into parameter list
1583 for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) {
1584// *assert = (*assert)->acceptMutator( *this );
1585 inferredParams.push_back( *assert );
1586 }
1587 (*tyParm)->get_assertions().clear();
1588 }
1589
1590 // add size/align for generic parameter types to parameter list
1591 std::set< std::string > seenTypes; // sizeofName for generic types we've seen
1592 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) {
1593 Type *polyBase = hasPolyBase( (*fnParm)->get_type(), scopeTyVars );
1594 if ( polyBase && ! dynamic_cast< TypeInstType* >( polyBase ) ) {
1595 std::string typeName = mangleType( polyBase );
1596 if ( seenTypes.count( typeName ) ) continue;
1597
1598 ObjectDecl *sizeParm, *alignParm, *offsetParm;
1599 sizeParm = newObj.clone();
1600 sizeParm->set_name( sizeofName( typeName ) );
1601 last = funcType->get_parameters().insert( last, sizeParm );
1602 ++last;
1603
1604 alignParm = newObj.clone();
1605 alignParm->set_name( alignofName( typeName ) );
1606 last = funcType->get_parameters().insert( last, alignParm );
1607 ++last;
1608
1609 if ( StructInstType *polyBaseStruct = dynamic_cast< StructInstType* >( polyBase ) ) {
1610 // NOTE zero-length arrays are illegal in C, so empty structs have no offset array
1611 if ( ! polyBaseStruct->get_baseStruct()->get_members().empty() ) {
1612 offsetParm = newPtr.clone();
1613 offsetParm->set_name( offsetofName( typeName ) );
1614 last = funcType->get_parameters().insert( last, offsetParm );
1615 ++last;
1616 }
1617 }
1618
1619 seenTypes.insert( typeName );
1620 }
1621 }
1622
1623 // splice assertion parameters into parameter list
1624 funcType->get_parameters().splice( last, inferredParams );
1625 addAdapters( funcType );
1626 mutateAll( funcType->get_returnVals(), *this );
1627 mutateAll( funcType->get_parameters(), *this );
1628
1629 scopeTyVars.endScope();
1630 return funcType;
1631 }
1632
1633//////////////////////////////////////// GenericInstantiator //////////////////////////////////////////////////
1634
1635 /// Makes substitutions of params into baseParams; returns true if all parameters substituted for a concrete type
1636 bool makeSubstitutions( const std::list< TypeDecl* >& baseParams, const std::list< Expression* >& params, std::list< TypeExpr* >& out ) {
1637 bool allConcrete = true; // will finish the substitution list even if they're not all concrete
1638
1639 // substitute concrete types for given parameters, and incomplete types for placeholders
1640 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
1641 std::list< Expression* >::const_iterator param = params.begin();
1642 for ( ; baseParam != baseParams.end() && param != params.end(); ++baseParam, ++param ) {
1643 // switch ( (*baseParam)->get_kind() ) {
1644 // case TypeDecl::Any: { // any type is a valid substitution here; complete types can be used to instantiate generics
1645 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
1646 assert(paramType && "Aggregate parameters should be type expressions");
1647 out.push_back( paramType->clone() );
1648 // check that the substituted type isn't a type variable itself
1649 if ( dynamic_cast< TypeInstType* >( paramType->get_type() ) ) {
1650 allConcrete = false;
1651 }
1652 // break;
1653 // }
1654 // case TypeDecl::Dtype: // dtype can be consistently replaced with void [only pointers, which become void*]
1655 // out.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) );
1656 // break;
1657 // case TypeDecl::Ftype: // pointer-to-ftype can be consistently replaced with void (*)(void) [similar to dtype]
1658 // out.push_back( new TypeExpr( new FunctionType( Type::Qualifiers(), false ) ) );
1659 // break;
1660 // }
1661 }
1662
1663 // if any parameters left over, not done
1664 if ( baseParam != baseParams.end() ) return false;
1665 // // if not enough parameters given, substitute remaining incomplete types for placeholders
1666 // for ( ; baseParam != baseParams.end(); ++baseParam ) {
1667 // switch ( (*baseParam)->get_kind() ) {
1668 // case TypeDecl::Any: // no more substitutions here, fail early
1669 // return false;
1670 // case TypeDecl::Dtype: // dtype can be consistently replaced with void [only pointers, which become void*]
1671 // out.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) );
1672 // break;
1673 // case TypeDecl::Ftype: // pointer-to-ftype can be consistently replaced with void (*)(void) [similar to dtype]
1674 // out.push_back( new TypeExpr( new FunctionType( Type::Qualifiers(), false ) ) );
1675 // break;
1676 // }
1677 // }
1678
1679 return allConcrete;
1680 }
1681
1682 /// Substitutes types of members of in according to baseParams => typeSubs, appending the result to out
1683 void substituteMembers( const std::list< Declaration* >& in, const std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs,
1684 std::list< Declaration* >& out ) {
1685 // substitute types into new members
1686 TypeSubstitution subs( baseParams.begin(), baseParams.end(), typeSubs.begin() );
1687 for ( std::list< Declaration* >::const_iterator member = in.begin(); member != in.end(); ++member ) {
1688 Declaration *newMember = (*member)->clone();
1689 subs.apply(newMember);
1690 out.push_back( newMember );
1691 }
1692 }
1693
1694 Type* GenericInstantiator::mutate( StructInstType *inst ) {
1695 // mutate subtypes
1696 Type *mutated = Mutator::mutate( inst );
1697 inst = dynamic_cast< StructInstType* >( mutated );
1698 if ( ! inst ) return mutated;
1699
1700 // exit early if no need for further mutation
1701 if ( inst->get_parameters().empty() ) return inst;
1702 assert( inst->get_baseParameters() && "Base struct has parameters" );
1703
1704 // check if type can be concretely instantiated; put substitutions into typeSubs
1705 std::list< TypeExpr* > typeSubs;
1706 if ( ! makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ) ) {
1707 deleteAll( typeSubs );
1708 return inst;
1709 }
1710
1711 // make concrete instantiation of generic type
1712 StructDecl *concDecl = lookup( inst, typeSubs );
1713 if ( ! concDecl ) {
1714 // set concDecl to new type, insert type declaration into statements to add
1715 concDecl = new StructDecl( typeNamer.newName( inst->get_name() ) );
1716 substituteMembers( inst->get_baseStruct()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() );
1717 DeclMutator::addDeclaration( concDecl );
1718 insert( inst, typeSubs, concDecl );
1719 }
1720 StructInstType *newInst = new StructInstType( inst->get_qualifiers(), concDecl->get_name() );
1721 newInst->set_baseStruct( concDecl );
1722
1723 deleteAll( typeSubs );
1724 delete inst;
1725 return newInst;
1726 }
1727
1728 Type* GenericInstantiator::mutate( UnionInstType *inst ) {
1729 // mutate subtypes
1730 Type *mutated = Mutator::mutate( inst );
1731 inst = dynamic_cast< UnionInstType* >( mutated );
1732 if ( ! inst ) return mutated;
1733
1734 // exit early if no need for further mutation
1735 if ( inst->get_parameters().empty() ) return inst;
1736 assert( inst->get_baseParameters() && "Base union has parameters" );
1737
1738 // check if type can be concretely instantiated; put substitutions into typeSubs
1739 std::list< TypeExpr* > typeSubs;
1740 if ( ! makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ) ) {
1741 deleteAll( typeSubs );
1742 return inst;
1743 }
1744
1745 // make concrete instantiation of generic type
1746 UnionDecl *concDecl = lookup( inst, typeSubs );
1747 if ( ! concDecl ) {
1748 // set concDecl to new type, insert type declaration into statements to add
1749 concDecl = new UnionDecl( typeNamer.newName( inst->get_name() ) );
1750 substituteMembers( inst->get_baseUnion()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() );
1751 DeclMutator::addDeclaration( concDecl );
1752 insert( inst, typeSubs, concDecl );
1753 }
1754 UnionInstType *newInst = new UnionInstType( inst->get_qualifiers(), concDecl->get_name() );
1755 newInst->set_baseUnion( concDecl );
1756
1757 deleteAll( typeSubs );
1758 delete inst;
1759 return newInst;
1760 }
1761
1762 // /// Gets the base struct or union declaration for a member expression; NULL if not applicable
1763 // AggregateDecl* getMemberBaseDecl( MemberExpr *memberExpr ) {
1764 // // get variable for member aggregate
1765 // VariableExpr *varExpr = dynamic_cast< VariableExpr* >( memberExpr->get_aggregate() );
1766 // if ( ! varExpr ) return NULL;
1767 //
1768 // // get object for variable
1769 // ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1770 // if ( ! objectDecl ) return NULL;
1771 //
1772 // // get base declaration from object type
1773 // Type *objectType = objectDecl->get_type();
1774 // StructInstType *structType = dynamic_cast< StructInstType* >( objectType );
1775 // if ( structType ) return structType->get_baseStruct();
1776 // UnionInstType *unionType = dynamic_cast< UnionInstType* >( objectType );
1777 // if ( unionType ) return unionType->get_baseUnion();
1778 //
1779 // return NULL;
1780 // }
1781 //
1782 // /// Finds the declaration with the given name, returning decls.end() if none such
1783 // std::list< Declaration* >::const_iterator findDeclNamed( const std::list< Declaration* > &decls, const std::string &name ) {
1784 // for( std::list< Declaration* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
1785 // if ( (*decl)->get_name() == name ) return decl;
1786 // }
1787 // return decls.end();
1788 // }
1789 //
1790 // Expression* Instantiate::mutate( MemberExpr *memberExpr ) {
1791 // // mutate, exiting early if no longer MemberExpr
1792 // Expression *expr = Mutator::mutate( memberExpr );
1793 // memberExpr = dynamic_cast< MemberExpr* >( expr );
1794 // if ( ! memberExpr ) return expr;
1795 //
1796 // // get declaration of member and base declaration of member, exiting early if not found
1797 // AggregateDecl *memberBase = getMemberBaseDecl( memberExpr );
1798 // if ( ! memberBase ) return memberExpr;
1799 // DeclarationWithType *memberDecl = memberExpr->get_member();
1800 // std::list< Declaration* >::const_iterator baseIt = findDeclNamed( memberBase->get_members(), memberDecl->get_name() );
1801 // if ( baseIt == memberBase->get_members().end() ) return memberExpr;
1802 // DeclarationWithType *baseDecl = dynamic_cast< DeclarationWithType* >( *baseIt );
1803 // if ( ! baseDecl ) return memberExpr;
1804 //
1805 // // check if stated type of the member is not the type of the member's declaration; if so, need a cast
1806 // // this *SHOULD* be safe, I don't think anything but the void-replacements I put in for dtypes would make it past the typechecker
1807 // SymTab::Indexer dummy;
1808 // if ( ResolvExpr::typesCompatible( memberDecl->get_type(), baseDecl->get_type(), dummy ) ) return memberExpr;
1809 // else return new CastExpr( memberExpr, memberDecl->get_type() );
1810 // }
1811
1812 void GenericInstantiator::doBeginScope() {
1813 DeclMutator::doBeginScope();
1814 instantiations.beginScope();
1815 }
1816
1817 void GenericInstantiator::doEndScope() {
1818 DeclMutator::doEndScope();
1819 instantiations.endScope();
1820 }
1821
1822////////////////////////////////////////// MemberExprFixer ////////////////////////////////////////////////////
1823
1824 template< typename DeclClass >
1825 DeclClass * PolyGenericCalculator::handleDecl( DeclClass *decl, Type *type ) {
1826 scopeTyVars.beginScope();
1827 makeTyVarMap( type, scopeTyVars );
1828
1829 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1830
1831 scopeTyVars.endScope();
1832 return ret;
1833 }
1834
1835 ObjectDecl * PolyGenericCalculator::mutate( ObjectDecl *objectDecl ) {
1836 return handleDecl( objectDecl, objectDecl->get_type() );
1837 }
1838
1839 DeclarationWithType * PolyGenericCalculator::mutate( FunctionDecl *functionDecl ) {
1840 return handleDecl( functionDecl, functionDecl->get_functionType() );
1841 }
1842
1843 TypedefDecl * PolyGenericCalculator::mutate( TypedefDecl *typedefDecl ) {
1844 return handleDecl( typedefDecl, typedefDecl->get_base() );
1845 }
1846
1847 TypeDecl * PolyGenericCalculator::mutate( TypeDecl *typeDecl ) {
1848 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1849 return Mutator::mutate( typeDecl );
1850 }
1851
1852 Type * PolyGenericCalculator::mutate( PointerType *pointerType ) {
1853 scopeTyVars.beginScope();
1854 makeTyVarMap( pointerType, scopeTyVars );
1855
1856 Type *ret = Mutator::mutate( pointerType );
1857
1858 scopeTyVars.endScope();
1859 return ret;
1860 }
1861
1862 Type * PolyGenericCalculator::mutate( FunctionType *funcType ) {
1863 scopeTyVars.beginScope();
1864 makeTyVarMap( funcType, scopeTyVars );
1865
1866 // make sure that any type information passed into the function is accounted for
1867 for ( std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); fnParm != funcType->get_parameters().end(); ++fnParm ) {
1868 // condition here duplicates that in Pass2::mutate( FunctionType* )
1869 Type *polyBase = hasPolyBase( (*fnParm)->get_type(), scopeTyVars );
1870 if ( polyBase && ! dynamic_cast< TypeInstType* >( polyBase ) ) {
1871 knownLayouts.insert( mangleType( polyBase ) );
1872 }
1873 }
1874
1875 Type *ret = Mutator::mutate( funcType );
1876
1877 scopeTyVars.endScope();
1878 return ret;
1879 }
1880
1881 Statement *PolyGenericCalculator::mutate( DeclStmt *declStmt ) {
1882 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) {
1883 if ( findGeneric( objectDecl->get_type() ) ) {
1884 // change initialization of a polymorphic value object
1885 // to allocate storage with alloca
1886 Type *declType = objectDecl->get_type();
1887 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) );
1888 alloc->get_args().push_back( new NameExpr( sizeofName( mangleType( declType ) ) ) );
1889
1890 delete objectDecl->get_init();
1891
1892 std::list<Expression*> designators;
1893 objectDecl->set_init( new SingleInit( alloc, designators ) );
1894 }
1895 }
1896 return Mutator::mutate( declStmt );
1897 }
1898
1899 /// Finds the member in the base list that matches the given declaration; returns its index, or -1 if not present
1900 long findMember( DeclarationWithType *memberDecl, std::list< Declaration* > &baseDecls ) {
1901 long i = 0;
1902 for(std::list< Declaration* >::const_iterator decl = baseDecls.begin(); decl != baseDecls.end(); ++decl, ++i ) {
1903 if ( memberDecl->get_name() != (*decl)->get_name() ) continue;
1904
1905 if ( DeclarationWithType *declWithType = dynamic_cast< DeclarationWithType* >( *decl ) ) {
1906 if ( memberDecl->get_mangleName().empty() || declWithType->get_mangleName().empty()
1907 || memberDecl->get_mangleName() == declWithType->get_mangleName() ) return i;
1908 else continue;
1909 } else return i;
1910 }
1911 return -1;
1912 }
1913
1914 /// Returns an index expression into the offset array for a type
1915 Expression *makeOffsetIndex( Type *objectType, long i ) {
1916 std::stringstream offset_namer;
1917 offset_namer << i;
1918 ConstantExpr *fieldIndex = new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), offset_namer.str() ) );
1919 UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) );
1920 fieldOffset->get_args().push_back( new NameExpr( offsetofName( mangleType( objectType ) ) ) );
1921 fieldOffset->get_args().push_back( fieldIndex );
1922 return fieldOffset;
1923 }
1924
1925 /// Returns an expression dereferenced n times
1926 Expression *makeDerefdVar( Expression *derefdVar, long n ) {
1927 for ( int i = 1; i < n; ++i ) {
1928 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1929 derefExpr->get_args().push_back( derefdVar );
1930 derefdVar = derefExpr;
1931 }
1932 return derefdVar;
1933 }
1934
1935 Expression *PolyGenericCalculator::mutate( MemberExpr *memberExpr ) {
1936 // mutate, exiting early if no longer MemberExpr
1937 Expression *expr = Mutator::mutate( memberExpr );
1938 memberExpr = dynamic_cast< MemberExpr* >( expr );
1939 if ( ! memberExpr ) return expr;
1940
1941 // get declaration for base struct, exiting early if not found
1942 int varDepth;
1943 VariableExpr *varExpr = getBaseVar( memberExpr->get_aggregate(), &varDepth );
1944 if ( ! varExpr ) return memberExpr;
1945 ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1946 if ( ! objectDecl ) return memberExpr;
1947
1948 // only mutate member expressions for polymorphic types
1949 int tyDepth;
1950 Type *objectType = hasPolyBase( objectDecl->get_type(), scopeTyVars, &tyDepth );
1951 if ( ! objectType ) return memberExpr;
1952 findGeneric( objectType ); // ensure layout for this type is available
1953
1954 Expression *newMemberExpr = 0;
1955 if ( StructInstType *structType = dynamic_cast< StructInstType* >( objectType ) ) {
1956 // look up offset index
1957 long i = findMember( memberExpr->get_member(), structType->get_baseStruct()->get_members() );
1958 if ( i == -1 ) return memberExpr;
1959
1960 // replace member expression with pointer to base plus offset
1961 UntypedExpr *fieldLoc = new UntypedExpr( new NameExpr( "?+?" ) );
1962 fieldLoc->get_args().push_back( makeDerefdVar( varExpr->clone(), varDepth ) );
1963 fieldLoc->get_args().push_back( makeOffsetIndex( objectType, i ) );
1964 newMemberExpr = fieldLoc;
1965 } else if ( dynamic_cast< UnionInstType* >( objectType ) ) {
1966 // union members are all at offset zero, so build appropriately-dereferenced variable
1967 newMemberExpr = makeDerefdVar( varExpr->clone(), varDepth );
1968 } else return memberExpr;
1969 assert( newMemberExpr );
1970
1971 Type *memberType = memberExpr->get_member()->get_type();
1972 if ( ! isPolyType( memberType, scopeTyVars ) ) {
1973 // Not all members of a polymorphic type are themselves of polymorphic type; in this case the member expression should be wrapped and dereferenced to form an lvalue
1974 CastExpr *ptrCastExpr = new CastExpr( newMemberExpr, new PointerType( Type::Qualifiers(), memberType->clone() ) );
1975 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1976 derefExpr->get_args().push_back( ptrCastExpr );
1977 newMemberExpr = derefExpr;
1978 }
1979
1980 delete memberExpr;
1981 return newMemberExpr;
1982 }
1983
1984 ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) {
1985 ObjectDecl *newObj = new ObjectDecl( name, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, init );
1986 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
1987 return newObj;
1988 }
1989
1990 void PolyGenericCalculator::addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ) {
1991 for ( std::list< Type* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
1992 if ( findGeneric( *param ) ) {
1993 // push size/align vars for a generic parameter back
1994 std::string paramName = mangleType( *param );
1995 layoutCall->get_args().push_back( new NameExpr( sizeofName( paramName ) ) );
1996 layoutCall->get_args().push_back( new NameExpr( alignofName( paramName ) ) );
1997 } else {
1998 layoutCall->get_args().push_back( new SizeofExpr( (*param)->clone() ) );
1999 layoutCall->get_args().push_back( new AlignofExpr( (*param)->clone() ) );
2000 }
2001 }
2002 }
2003
2004 /// returns true if any of the otype parameters have a dynamic layout and puts all otype parameters in the output list
2005 bool findGenericParams( std::list< TypeDecl* > &baseParams, std::list< Expression* > &typeParams, std::list< Type* > &out ) {
2006 bool hasDynamicLayout = false;
2007
2008 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
2009 std::list< Expression* >::const_iterator typeParam = typeParams.begin();
2010 for ( ; baseParam != baseParams.end() && typeParam != typeParams.end(); ++baseParam, ++typeParam ) {
2011 // skip non-otype parameters
2012 if ( (*baseParam)->get_kind() != TypeDecl::Any ) continue;
2013 TypeExpr *typeExpr = dynamic_cast< TypeExpr* >( *typeParam );
2014 assert( typeExpr && "all otype parameters should be type expressions" );
2015
2016 Type *type = typeExpr->get_type();
2017 out.push_back( type );
2018 if ( isPolyType( type ) ) hasDynamicLayout = true;
2019 }
2020 assert( baseParam == baseParams.end() && typeParam == typeParams.end() );
2021
2022 return hasDynamicLayout;
2023 }
2024
2025 bool PolyGenericCalculator::findGeneric( Type *ty ) {
2026 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) {
2027 // duplicate logic from isPolyType()
2028 if ( env ) {
2029 if ( Type *newType = env->lookup( typeInst->get_name() ) ) {
2030 return findGeneric( newType );
2031 } // if
2032 } // if
2033 if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() ) {
2034 // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set
2035 return true;
2036 }
2037 return false;
2038 } else if ( StructInstType *structTy = dynamic_cast< StructInstType* >( ty ) ) {
2039 // check if this type already has a layout generated for it
2040 std::string typeName = mangleType( ty );
2041 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
2042
2043 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
2044 std::list< Type* > otypeParams;
2045 if ( ! findGenericParams( *structTy->get_baseParameters(), structTy->get_parameters(), otypeParams ) ) return false;
2046
2047 // insert local variables for layout and generate call to layout function
2048 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
2049 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2050
2051 int n_members = structTy->get_baseStruct()->get_members().size();
2052 if ( n_members == 0 ) {
2053 // all empty structs have the same layout - size 1, align 1
2054 makeVar( sizeofName( typeName ), layoutType, new SingleInit( new ConstantExpr( Constant::from( (unsigned long)1 ) ) ) );
2055 makeVar( alignofName( typeName ), layoutType->clone(), new SingleInit( new ConstantExpr( Constant::from( (unsigned long)1 ) ) ) );
2056 // NOTE zero-length arrays are forbidden in C, so empty structs have no offsetof array
2057 } else {
2058 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
2059 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
2060 ObjectDecl *offsetVar = makeVar( offsetofName( typeName ), new ArrayType( Type::Qualifiers(), layoutType->clone(), new ConstantExpr( Constant::from( n_members ) ), false, false ) );
2061
2062 // generate call to layout function
2063 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( structTy->get_baseStruct() ) ) );
2064 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
2065 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
2066 layoutCall->get_args().push_back( new VariableExpr( offsetVar ) );
2067 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
2068
2069 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
2070 }
2071
2072 return true;
2073 } else if ( UnionInstType *unionTy = dynamic_cast< UnionInstType* >( ty ) ) {
2074 // check if this type already has a layout generated for it
2075 std::string typeName = mangleType( ty );
2076 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
2077
2078 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
2079 std::list< Type* > otypeParams;
2080 if ( ! findGenericParams( *unionTy->get_baseParameters(), unionTy->get_parameters(), otypeParams ) ) return false;
2081
2082 // insert local variables for layout and generate call to layout function
2083 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
2084 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2085
2086 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
2087 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
2088
2089 // generate call to layout function
2090 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( unionTy->get_baseUnion() ) ) );
2091 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
2092 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
2093 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
2094
2095 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
2096
2097 return true;
2098 }
2099
2100 return false;
2101 }
2102
2103 Expression *PolyGenericCalculator::mutate( SizeofExpr *sizeofExpr ) {
2104 Type *ty = sizeofExpr->get_type();
2105 if ( findGeneric( ty ) ) {
2106 Expression *ret = new NameExpr( sizeofName( mangleType( ty ) ) );
2107 delete sizeofExpr;
2108 return ret;
2109 }
2110 return sizeofExpr;
2111 }
2112
2113 Expression *PolyGenericCalculator::mutate( AlignofExpr *alignofExpr ) {
2114 Type *ty = alignofExpr->get_type();
2115 if ( findGeneric( ty ) ) {
2116 Expression *ret = new NameExpr( alignofName( mangleType( ty ) ) );
2117 delete alignofExpr;
2118 return ret;
2119 }
2120 return alignofExpr;
2121 }
2122
2123 Expression *PolyGenericCalculator::mutate( OffsetofExpr *offsetofExpr ) {
2124 // mutate, exiting early if no longer OffsetofExpr
2125 Expression *expr = Mutator::mutate( offsetofExpr );
2126 offsetofExpr = dynamic_cast< OffsetofExpr* >( expr );
2127 if ( ! offsetofExpr ) return expr;
2128
2129 // only mutate expressions for polymorphic structs/unions
2130 Type *ty = offsetofExpr->get_type();
2131 if ( ! findGeneric( ty ) ) return offsetofExpr;
2132
2133 if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) {
2134 // replace offsetof expression by index into offset array
2135 long i = findMember( offsetofExpr->get_member(), structType->get_baseStruct()->get_members() );
2136 if ( i == -1 ) return offsetofExpr;
2137
2138 Expression *offsetInd = makeOffsetIndex( ty, i );
2139 delete offsetofExpr;
2140 return offsetInd;
2141 } else if ( dynamic_cast< UnionInstType* >( ty ) ) {
2142 // all union members are at offset zero
2143 delete offsetofExpr;
2144 return new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), std::string("0") ) );
2145 } else return offsetofExpr;
2146 }
2147
2148 Expression *PolyGenericCalculator::mutate( OffsetPackExpr *offsetPackExpr ) {
2149 StructInstType *ty = offsetPackExpr->get_type();
2150
2151 Expression *ret = 0;
2152 if ( findGeneric( ty ) ) {
2153 // pull offset back from generated type information
2154 ret = new NameExpr( offsetofName( mangleType( ty ) ) );
2155 } else {
2156 std::string offsetName = offsetofName( mangleType( ty ) );
2157 if ( knownOffsets.find( offsetName ) != knownOffsets.end() ) {
2158 // use the already-generated offsets for this type
2159 ret = new NameExpr( offsetName );
2160 } else {
2161 knownOffsets.insert( offsetName );
2162
2163 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members();
2164 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2165
2166 // build initializer list for offset array
2167 std::list< Initializer* > inits;
2168 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) {
2169 DeclarationWithType *memberDecl;
2170 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) {
2171 memberDecl = origMember->clone();
2172 } else {
2173 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 );
2174 }
2175 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) );
2176 }
2177
2178 // build the offset array and replace the pack with a reference to it
2179 ObjectDecl *offsetArray = makeVar( offsetName, new ArrayType( Type::Qualifiers(), offsetType, new ConstantExpr( Constant::from( baseMembers.size() ) ), false, false ),
2180 new ListInit( inits ) );
2181 ret = new VariableExpr( offsetArray );
2182 }
2183 }
2184
2185 delete offsetPackExpr;
2186 return ret;
2187 }
2188
2189 void PolyGenericCalculator::doBeginScope() {
2190 knownLayouts.beginScope();
2191 knownOffsets.beginScope();
2192 }
2193
2194 void PolyGenericCalculator::doEndScope() {
2195 knownLayouts.endScope();
2196 knownOffsets.endScope();
2197 }
2198
2199////////////////////////////////////////// Pass3 ////////////////////////////////////////////////////
2200
2201 template< typename DeclClass >
2202 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) {
2203 scopeTyVars.beginScope();
2204 makeTyVarMap( type, scopeTyVars );
2205
2206 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
2207 ScrubTyVars::scrub( decl, scopeTyVars );
2208
2209 scopeTyVars.endScope();
2210 return ret;
2211 }
2212
2213 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) {
2214 return handleDecl( objectDecl, objectDecl->get_type() );
2215 }
2216
2217 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) {
2218 return handleDecl( functionDecl, functionDecl->get_functionType() );
2219 }
2220
2221 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) {
2222 return handleDecl( typedefDecl, typedefDecl->get_base() );
2223 }
2224
2225 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) {
2226// Initializer *init = 0;
2227// std::list< Expression *> designators;
2228// scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2229// if ( typeDecl->get_base() ) {
2230// init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators );
2231// }
2232// return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init );
2233
2234 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2235 return Mutator::mutate( typeDecl );
2236 }
2237
2238 Type * Pass3::mutate( PointerType *pointerType ) {
2239 scopeTyVars.beginScope();
2240 makeTyVarMap( pointerType, scopeTyVars );
2241
2242 Type *ret = Mutator::mutate( pointerType );
2243
2244 scopeTyVars.endScope();
2245 return ret;
2246 }
2247
2248 Type * Pass3::mutate( FunctionType *functionType ) {
2249 scopeTyVars.beginScope();
2250 makeTyVarMap( functionType, scopeTyVars );
2251
2252 Type *ret = Mutator::mutate( functionType );
2253
2254 scopeTyVars.endScope();
2255 return ret;
2256 }
2257 } // anonymous namespace
2258} // namespace GenPoly
2259
2260// Local Variables: //
2261// tab-width: 4 //
2262// mode: c++ //
2263// compile-command: "make install" //
2264// End: //
Note: See TracBrowser for help on using the repository browser.