source: src/GenPoly/Box.cc@ dc86541

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since dc86541 was 8c49c0e, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

decouple code that uses Type's forall list from std::list in preparation for trying to replace with a managed list

  • Property mode set to 100644
File size: 96.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Wed Jun 29 21:43:03 2016
13// Update Count : 296
14//
15
16#include <algorithm>
17#include <iterator>
18#include <list>
19#include <map>
20#include <set>
21#include <stack>
22#include <string>
23#include <utility>
24#include <vector>
25#include <cassert>
26
27#include "Box.h"
28#include "DeclMutator.h"
29#include "PolyMutator.h"
30#include "FindFunction.h"
31#include "ScopedSet.h"
32#include "ScrubTyVars.h"
33
34#include "Parser/ParseNode.h"
35
36#include "SynTree/Constant.h"
37#include "SynTree/Declaration.h"
38#include "SynTree/Expression.h"
39#include "SynTree/Initializer.h"
40#include "SynTree/Mutator.h"
41#include "SynTree/Statement.h"
42#include "SynTree/Type.h"
43#include "SynTree/TypeSubstitution.h"
44
45#include "ResolvExpr/TypeEnvironment.h"
46#include "ResolvExpr/TypeMap.h"
47#include "ResolvExpr/typeops.h"
48
49#include "SymTab/Indexer.h"
50#include "SymTab/Mangler.h"
51
52#include "Common/ScopedMap.h"
53#include "Common/SemanticError.h"
54#include "Common/UniqueName.h"
55#include "Common/utility.h"
56
57#include <ext/functional> // temporary
58
59namespace GenPoly {
60 namespace {
61 const std::list<Label> noLabels;
62
63 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars );
64
65 /// Adds layout-generation functions to polymorphic types
66 class LayoutFunctionBuilder : public DeclMutator {
67 unsigned int functionNesting; // current level of nested functions
68 public:
69 LayoutFunctionBuilder() : functionNesting( 0 ) {}
70
71 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
72 virtual Declaration *mutate( StructDecl *structDecl );
73 virtual Declaration *mutate( UnionDecl *unionDecl );
74 };
75
76 /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call
77 class Pass1 : public PolyMutator {
78 public:
79 Pass1();
80 virtual Expression *mutate( ApplicationExpr *appExpr );
81 virtual Expression *mutate( AddressExpr *addrExpr );
82 virtual Expression *mutate( UntypedExpr *expr );
83 virtual DeclarationWithType* mutate( FunctionDecl *functionDecl );
84 virtual TypeDecl *mutate( TypeDecl *typeDecl );
85 virtual Expression *mutate( CommaExpr *commaExpr );
86 virtual Expression *mutate( ConditionalExpr *condExpr );
87 virtual Statement * mutate( ReturnStmt *returnStmt );
88 virtual Type *mutate( PointerType *pointerType );
89 virtual Type * mutate( FunctionType *functionType );
90
91 virtual void doBeginScope();
92 virtual void doEndScope();
93 private:
94 /// Pass the extra type parameters from polymorphic generic arguments or return types into a function application
95 void passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes );
96 /// passes extra type parameters into a polymorphic function application
97 void passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
98 /// wraps a function application with a new temporary for the out-parameter return value
99 Expression *addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg );
100 /// Replaces all the type parameters of a generic type with their concrete equivalents under the current environment
101 void replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params );
102 /// Replaces a polymorphic type with its concrete equivalant under the current environment (returns itself if concrete).
103 /// If `doClone` is set to false, will not clone interior types
104 Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true );
105 /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value
106 Expression *addDynRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg );
107 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
108 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars );
109 void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
110 void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars );
111 /// Stores assignment operators from assertion list in local map of assignment operations
112 void findTypeOps( const Type::ForallList &forall );
113 void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars );
114 FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars );
115 /// Replaces intrinsic operator functions with their arithmetic desugaring
116 Expression *handleIntrinsics( ApplicationExpr *appExpr );
117 /// Inserts a new temporary variable into the current scope with an auto-generated name
118 ObjectDecl *makeTemporary( Type *type );
119
120 ScopedMap< std::string, DeclarationWithType* > assignOps; ///< Currently known type variable assignment operators
121 ScopedMap< std::string, DeclarationWithType* > ctorOps; ///< Currently known type variable constructors
122 ScopedMap< std::string, DeclarationWithType* > copyOps; ///< Currently known type variable copy constructors
123 ScopedMap< std::string, DeclarationWithType* > dtorOps; ///< Currently known type variable destructors
124 ResolvExpr::TypeMap< DeclarationWithType > scopedAssignOps; ///< Currently known assignment operators
125 ResolvExpr::TypeMap< DeclarationWithType > scopedCtorOps; ///< Currently known assignment operators
126 ResolvExpr::TypeMap< DeclarationWithType > scopedCopyOps; ///< Currently known assignment operators
127 ResolvExpr::TypeMap< DeclarationWithType > scopedDtorOps; ///< Currently known assignment operators
128 ScopedMap< std::string, DeclarationWithType* > adapters; ///< Set of adapter functions in the current scope
129
130 DeclarationWithType *retval;
131 bool useRetval;
132 UniqueName tempNamer;
133 };
134
135 /// * Moves polymorphic returns in function types to pointer-type parameters
136 /// * adds type size and assertion parameters to parameter lists
137 class Pass2 : public PolyMutator {
138 public:
139 template< typename DeclClass >
140 DeclClass *handleDecl( DeclClass *decl, Type *type );
141 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
142 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
143 virtual TypeDecl *mutate( TypeDecl *typeDecl );
144 virtual TypedefDecl *mutate( TypedefDecl *typedefDecl );
145 virtual Type *mutate( PointerType *pointerType );
146 virtual Type *mutate( FunctionType *funcType );
147
148 private:
149 void addAdapters( FunctionType *functionType );
150
151 std::map< UniqueId, std::string > adapterName;
152 };
153
154 /// Replaces member and size/align/offsetof expressions on polymorphic generic types with calculated expressions.
155 /// * Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference
156 /// * Calculates polymorphic offsetof expressions from offset array
157 /// * Inserts dynamic calculation of polymorphic type layouts where needed
158 class PolyGenericCalculator : public PolyMutator {
159 public:
160 typedef PolyMutator Parent;
161 using Parent::mutate;
162
163 template< typename DeclClass >
164 DeclClass *handleDecl( DeclClass *decl, Type *type );
165 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
166 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
167 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
168 virtual TypeDecl *mutate( TypeDecl *objectDecl );
169 virtual Statement *mutate( DeclStmt *declStmt );
170 virtual Type *mutate( PointerType *pointerType );
171 virtual Type *mutate( FunctionType *funcType );
172 virtual Expression *mutate( MemberExpr *memberExpr );
173 virtual Expression *mutate( SizeofExpr *sizeofExpr );
174 virtual Expression *mutate( AlignofExpr *alignofExpr );
175 virtual Expression *mutate( OffsetofExpr *offsetofExpr );
176 virtual Expression *mutate( OffsetPackExpr *offsetPackExpr );
177
178 virtual void doBeginScope();
179 virtual void doEndScope();
180
181 private:
182 /// Makes a new variable in the current scope with the given name, type & optional initializer
183 ObjectDecl *makeVar( const std::string &name, Type *type, Initializer *init = 0 );
184 /// returns true if the type has a dynamic layout; such a layout will be stored in appropriately-named local variables when the function returns
185 bool findGeneric( Type *ty );
186 /// adds type parameters to the layout call; will generate the appropriate parameters if needed
187 void addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams );
188
189 /// Enters a new scope for type-variables, adding the type variables from ty
190 void beginTypeScope( Type *ty );
191 /// Exits the type-variable scope
192 void endTypeScope();
193
194 ScopedSet< std::string > knownLayouts; ///< Set of generic type layouts known in the current scope, indexed by sizeofName
195 ScopedSet< std::string > knownOffsets; ///< Set of non-generic types for which the offset array exists in the current scope, indexed by offsetofName
196 };
197
198 /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, and sizeof expressions of polymorphic types with the proper variable
199 class Pass3 : public PolyMutator {
200 public:
201 template< typename DeclClass >
202 DeclClass *handleDecl( DeclClass *decl, Type *type );
203 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
204 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
205 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
206 virtual TypeDecl *mutate( TypeDecl *objectDecl );
207 virtual Type *mutate( PointerType *pointerType );
208 virtual Type *mutate( FunctionType *funcType );
209 private:
210 };
211
212 } // anonymous namespace
213
214 /// version of mutateAll with special handling for translation unit so you can check the end of the prelude when debugging
215 template< typename MutatorType >
216 inline void mutateTranslationUnit( std::list< Declaration* > &translationUnit, MutatorType &mutator ) {
217 bool seenIntrinsic = false;
218 SemanticError errors;
219 for ( typename std::list< Declaration* >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
220 try {
221 if ( *i ) {
222 if ( (*i)->get_linkage() == LinkageSpec::Intrinsic ) {
223 seenIntrinsic = true;
224 } else if ( seenIntrinsic ) {
225 seenIntrinsic = false; // break on this line when debugging for end of prelude
226 }
227
228 *i = dynamic_cast< Declaration* >( (*i)->acceptMutator( mutator ) );
229 assert( *i );
230 } // if
231 } catch( SemanticError &e ) {
232 errors.append( e );
233 } // try
234 } // for
235 if ( ! errors.isEmpty() ) {
236 throw errors;
237 } // if
238 }
239
240 void box( std::list< Declaration *>& translationUnit ) {
241 LayoutFunctionBuilder layoutBuilder;
242 Pass1 pass1;
243 Pass2 pass2;
244 PolyGenericCalculator polyCalculator;
245 Pass3 pass3;
246
247 layoutBuilder.mutateDeclarationList( translationUnit );
248 mutateTranslationUnit/*All*/( translationUnit, pass1 );
249 mutateTranslationUnit/*All*/( translationUnit, pass2 );
250 mutateTranslationUnit/*All*/( translationUnit, polyCalculator );
251 mutateTranslationUnit/*All*/( translationUnit, pass3 );
252 }
253
254 ////////////////////////////////// LayoutFunctionBuilder ////////////////////////////////////////////
255
256 DeclarationWithType *LayoutFunctionBuilder::mutate( FunctionDecl *functionDecl ) {
257 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
258 mutateAll( functionDecl->get_oldDecls(), *this );
259 ++functionNesting;
260 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
261 --functionNesting;
262 return functionDecl;
263 }
264
265 /// Get a list of type declarations that will affect a layout function
266 std::list< TypeDecl* > takeOtypeOnly( std::list< TypeDecl* > &decls ) {
267 std::list< TypeDecl * > otypeDecls;
268
269 for ( std::list< TypeDecl* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
270 if ( (*decl)->get_kind() == TypeDecl::Any ) {
271 otypeDecls.push_back( *decl );
272 }
273 }
274
275 return otypeDecls;
276 }
277
278 /// Adds parameters for otype layout to a function type
279 void addOtypeParams( FunctionType *layoutFnType, std::list< TypeDecl* > &otypeParams ) {
280 BasicType sizeAlignType( Type::Qualifiers(), BasicType::LongUnsignedInt );
281
282 for ( std::list< TypeDecl* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
283 TypeInstType paramType( Type::Qualifiers(), (*param)->get_name(), *param );
284 std::string paramName = mangleType( &paramType );
285 layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
286 layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
287 }
288 }
289
290 /// Builds a layout function declaration
291 FunctionDecl *buildLayoutFunctionDecl( AggregateDecl *typeDecl, unsigned int functionNesting, FunctionType *layoutFnType ) {
292 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
293 // because each unit generates copies of the default routines for each aggregate.
294 FunctionDecl *layoutDecl = new FunctionDecl(
295 layoutofName( typeDecl ), functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static, LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ), true, false );
296 layoutDecl->fixUniqueId();
297 return layoutDecl;
298 }
299
300 /// Makes a unary operation
301 Expression *makeOp( const std::string &name, Expression *arg ) {
302 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
303 expr->get_args().push_back( arg );
304 return expr;
305 }
306
307 /// Makes a binary operation
308 Expression *makeOp( const std::string &name, Expression *lhs, Expression *rhs ) {
309 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
310 expr->get_args().push_back( lhs );
311 expr->get_args().push_back( rhs );
312 return expr;
313 }
314
315 /// Returns the dereference of a local pointer variable
316 Expression *derefVar( ObjectDecl *var ) {
317 return makeOp( "*?", new VariableExpr( var ) );
318 }
319
320 /// makes an if-statement with a single-expression if-block and no then block
321 Statement *makeCond( Expression *cond, Expression *ifPart ) {
322 return new IfStmt( noLabels, cond, new ExprStmt( noLabels, ifPart ), 0 );
323 }
324
325 /// makes a statement that assigns rhs to lhs if lhs < rhs
326 Statement *makeAssignMax( Expression *lhs, Expression *rhs ) {
327 return makeCond( makeOp( "?<?", lhs, rhs ), makeOp( "?=?", lhs->clone(), rhs->clone() ) );
328 }
329
330 /// makes a statement that aligns lhs to rhs (rhs should be an integer power of two)
331 Statement *makeAlignTo( Expression *lhs, Expression *rhs ) {
332 // check that the lhs is zeroed out to the level of rhs
333 Expression *ifCond = makeOp( "?&?", lhs, makeOp( "?-?", rhs, new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "1" ) ) ) );
334 // if not aligned, increment to alignment
335 Expression *ifExpr = makeOp( "?+=?", lhs->clone(), makeOp( "?-?", rhs->clone(), ifCond->clone() ) );
336 return makeCond( ifCond, ifExpr );
337 }
338
339 /// adds an expression to a compound statement
340 void addExpr( CompoundStmt *stmts, Expression *expr ) {
341 stmts->get_kids().push_back( new ExprStmt( noLabels, expr ) );
342 }
343
344 /// adds a statement to a compound statement
345 void addStmt( CompoundStmt *stmts, Statement *stmt ) {
346 stmts->get_kids().push_back( stmt );
347 }
348
349 Declaration *LayoutFunctionBuilder::mutate( StructDecl *structDecl ) {
350 // do not generate layout function for "empty" tag structs
351 if ( structDecl->get_members().empty() ) return structDecl;
352
353 // get parameters that can change layout, exiting early if none
354 std::list< TypeDecl* > otypeParams = takeOtypeOnly( structDecl->get_parameters() );
355 if ( otypeParams.empty() ) return structDecl;
356
357 // build layout function signature
358 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
359 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
360 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
361
362 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
363 layoutFnType->get_parameters().push_back( sizeParam );
364 ObjectDecl *alignParam = new ObjectDecl( alignofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
365 layoutFnType->get_parameters().push_back( alignParam );
366 ObjectDecl *offsetParam = new ObjectDecl( offsetofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
367 layoutFnType->get_parameters().push_back( offsetParam );
368 addOtypeParams( layoutFnType, otypeParams );
369
370 // build function decl
371 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl, functionNesting, layoutFnType );
372
373 // calculate struct layout in function body
374
375 // initialize size and alignment to 0 and 1 (will have at least one member to re-edit size
376 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "0" ) ) ) );
377 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
378 unsigned long n_members = 0;
379 bool firstMember = true;
380 for ( std::list< Declaration* >::const_iterator member = structDecl->get_members().begin(); member != structDecl->get_members().end(); ++member ) {
381 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
382 assert( dwt );
383 Type *memberType = dwt->get_type();
384
385 if ( firstMember ) {
386 firstMember = false;
387 } else {
388 // make sure all members after the first (automatically aligned at 0) are properly padded for alignment
389 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), new AlignofExpr( memberType->clone() ) ) );
390 }
391
392 // place current size in the current offset index
393 addExpr( layoutDecl->get_statements(), makeOp( "?=?", makeOp( "?[?]", new VariableExpr( offsetParam ), new ConstantExpr( Constant::from_ulong( n_members ) ) ),
394 derefVar( sizeParam ) ) );
395 ++n_members;
396
397 // add member size to current size
398 addExpr( layoutDecl->get_statements(), makeOp( "?+=?", derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
399
400 // take max of member alignment and global alignment
401 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
402 }
403 // make sure the type is end-padded to a multiple of its alignment
404 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
405
406 addDeclarationAfter( layoutDecl );
407 return structDecl;
408 }
409
410 Declaration *LayoutFunctionBuilder::mutate( UnionDecl *unionDecl ) {
411 // do not generate layout function for "empty" tag unions
412 if ( unionDecl->get_members().empty() ) return unionDecl;
413
414 // get parameters that can change layout, exiting early if none
415 std::list< TypeDecl* > otypeParams = takeOtypeOnly( unionDecl->get_parameters() );
416 if ( otypeParams.empty() ) return unionDecl;
417
418 // build layout function signature
419 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
420 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
421 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
422
423 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
424 layoutFnType->get_parameters().push_back( sizeParam );
425 ObjectDecl *alignParam = new ObjectDecl( alignofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
426 layoutFnType->get_parameters().push_back( alignParam );
427 addOtypeParams( layoutFnType, otypeParams );
428
429 // build function decl
430 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl, functionNesting, layoutFnType );
431
432 // calculate union layout in function body
433 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
434 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
435 for ( std::list< Declaration* >::const_iterator member = unionDecl->get_members().begin(); member != unionDecl->get_members().end(); ++member ) {
436 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
437 assert( dwt );
438 Type *memberType = dwt->get_type();
439
440 // take max member size and global size
441 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
442
443 // take max of member alignment and global alignment
444 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
445 }
446 // make sure the type is end-padded to a multiple of its alignment
447 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
448
449 addDeclarationAfter( layoutDecl );
450 return unionDecl;
451 }
452
453 ////////////////////////////////////////// Pass1 ////////////////////////////////////////////////////
454
455 namespace {
456 std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) {
457 std::stringstream name;
458
459 // NOTE: this function previously used isPolyObj, which failed to produce
460 // the correct thing in some situations. It's not clear to me why this wasn't working.
461
462 // if the return type or a parameter type involved polymorphic types, then the adapter will need
463 // to take those polymorphic types as pointers. Therefore, there can be two different functions
464 // with the same mangled name, so we need to further mangle the names.
465 for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) {
466 if ( isPolyType( (*retval)->get_type(), tyVars ) ) {
467 name << "P";
468 } else {
469 name << "M";
470 }
471 }
472 name << "_";
473 std::list< DeclarationWithType *> &paramList = function->get_parameters();
474 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
475 if ( isPolyType( (*arg)->get_type(), tyVars ) ) {
476 name << "P";
477 } else {
478 name << "M";
479 }
480 } // for
481 return name.str();
482 }
483
484 std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) {
485 return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars );
486 }
487
488 std::string makeAdapterName( const std::string &mangleName ) {
489 return "_adapter" + mangleName;
490 }
491
492 Pass1::Pass1() : useRetval( false ), tempNamer( "_temp" ) {}
493
494 /// Returns T if the given declaration is a function with parameter (T*) for some TypeInstType T, NULL otherwise
495 TypeInstType *isTypeInstPtrFn( DeclarationWithType *decl ) {
496 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
497 if ( funType->get_parameters().size() == 1 ) {
498 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
499 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
500 return refType;
501 } // if
502 } // if
503 } // if
504 } // if
505 return 0;
506 }
507
508 /// Returns T if the given declaration is a function with parameters (T*, T) for some TypeInstType T, NULL otherwise
509 TypeInstType *isTypeInstPtrValFn( DeclarationWithType *decl ) {
510 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
511 if ( funType->get_parameters().size() == 2 ) {
512 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
513 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
514 if ( TypeInstType *refType2 = dynamic_cast< TypeInstType *>( funType->get_parameters().back()->get_type() ) ) {
515 if ( refType->get_name() == refType2->get_name() ) {
516 return refType;
517 } // if
518 } // if
519 } // if
520 } // if
521 } // if
522 } // if
523 return 0;
524 }
525
526 /// Returns T if the given declaration is (*?=?)(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
527 TypeInstType *isTypeInstAssignment( DeclarationWithType *decl ) {
528 return decl->get_name() == "?=?" ? isTypeInstPtrValFn( decl ) : 0;
529 }
530
531 /// Returns T if the given declaration is (*?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
532 TypeInstType *isTypeInstCtor( DeclarationWithType *decl ) {
533 return decl->get_name() == "?{}" ? isTypeInstPtrFn( decl ) : 0;
534 }
535
536 /// Returns T if the given declaration is (*?{})(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
537 TypeInstType *isTypeInstCopy( DeclarationWithType *decl ) {
538 return decl->get_name() == "?{}" ? isTypeInstPtrValFn( decl ) : 0;
539 }
540
541 /// Returns T if the given declaration is (*^?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
542 TypeInstType *isTypeInstDtor( DeclarationWithType *decl ) {
543 return decl->get_name() == "^?{}" ? isTypeInstPtrFn( decl ) : 0;
544 }
545
546 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified,
547 /// NULL otherwise
548 Type *isNoCvPtrFn( DeclarationWithType *decl ) {
549 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
550 if ( funType->get_parameters().size() == 1 ) {
551 Type::Qualifiers defaultQualifiers;
552 Type *paramType = funType->get_parameters().front()->get_type();
553 if ( paramType->get_qualifiers() != defaultQualifiers ) return 0;
554
555 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType ) ) {
556 Type *baseType = pointerType->get_base();
557 if ( baseType->get_qualifiers() == defaultQualifiers ) {
558 return baseType;
559 } // if
560 } // if
561 } // if
562 } // if
563 return 0;
564 }
565
566 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified,
567 /// NULL otherwise
568 Type *isNoCvPtrValFn( DeclarationWithType *decl ) {
569 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
570 if ( funType->get_parameters().size() == 2 ) {
571 Type::Qualifiers defaultQualifiers;
572 Type *paramType1 = funType->get_parameters().front()->get_type();
573 if ( paramType1->get_qualifiers() != defaultQualifiers ) return 0;
574 Type *paramType2 = funType->get_parameters().back()->get_type();
575 if ( paramType2->get_qualifiers() != defaultQualifiers ) return 0;
576
577 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType1 ) ) {
578 Type *baseType1 = pointerType->get_base();
579 if ( baseType1->get_qualifiers() != defaultQualifiers ) return 0;
580 SymTab::Indexer dummy;
581 if ( ResolvExpr::typesCompatible( baseType1, paramType2, dummy ) ) {
582 return baseType1;
583 } // if
584 } // if
585 } // if
586 } // if
587 return 0;
588 }
589
590 /// returns T if the given declaration is: (*?=?)(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
591 /// Only picks assignments where neither parameter is cv-qualified
592 Type *isAssignment( DeclarationWithType *decl ) {
593 return decl->get_name() == "?=?" ? isNoCvPtrValFn( decl ) : 0;
594 }
595
596 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise
597 /// Only picks ctors where the parameter is not cv-qualified
598 Type *isCtor( DeclarationWithType *decl ) {
599 return decl->get_name() == "?{}" ? isNoCvPtrFn( decl ) : 0;
600 }
601
602 /// returns T if the given declaration is: (*?{})(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
603 /// Only picks copy constructors where neither parameter is cv-qualified
604 Type *isCopy( DeclarationWithType *decl ) {
605 return decl->get_name() == "?{}" ? isNoCvPtrValFn( decl ) : 0;
606 }
607
608 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise
609 /// Only picks ctors where the parameter is not cv-qualified
610 Type *isDtor( DeclarationWithType *decl ) {
611 return decl->get_name() == "^?{}" ? isNoCvPtrFn( decl ) : 0;
612 }
613
614 void Pass1::findTypeOps( const Type::ForallList &forall ) {
615 // what if a nested function uses an assignment operator?
616 // assignOps.clear();
617 for ( Type::ForallList::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
618 for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) {
619 std::string typeName;
620 if ( TypeInstType *typeInst = isTypeInstAssignment( *assert ) ) {
621 assignOps[ typeInst->get_name() ] = *assert;
622 } else if ( TypeInstType *typeInst = isTypeInstCtor( *assert ) ) {
623 ctorOps[ typeInst->get_name() ] = *assert;
624 } else if ( TypeInstType *typeInst = isTypeInstCopy( *assert ) ) {
625 copyOps[ typeInst->get_name() ] = *assert;
626 } else if ( TypeInstType *typeInst = isTypeInstDtor( *assert ) ) {
627 dtorOps[ typeInst->get_name() ] = *assert;
628 } // if
629 } // for
630 } // for
631 }
632
633 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) {
634 // if this is a assignment function, put it in the map for this scope
635 if ( Type *paramType = isAssignment( functionDecl ) ) {
636 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
637 scopedAssignOps.insert( paramType, functionDecl );
638 }
639 } else if ( Type *paramType = isCtor( functionDecl ) ) {
640 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
641 scopedCtorOps.insert( paramType, functionDecl );
642 }
643 } else if ( Type *paramType = isCopy( functionDecl ) ) {
644 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
645 scopedCopyOps.insert( paramType, functionDecl );
646 }
647 } else if ( Type *paramType = isDtor( functionDecl ) ) {
648 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
649 scopedDtorOps.insert( paramType, functionDecl );
650 }
651 }
652
653 if ( functionDecl->get_statements() ) { // empty routine body ?
654 doBeginScope();
655 scopeTyVars.beginScope();
656 assignOps.beginScope();
657 ctorOps.beginScope();
658 copyOps.beginScope();
659 dtorOps.beginScope();
660
661 DeclarationWithType *oldRetval = retval;
662 bool oldUseRetval = useRetval;
663
664 // process polymorphic return value
665 retval = 0;
666 if ( isDynRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) {
667 retval = functionDecl->get_functionType()->get_returnVals().front();
668
669 // give names to unnamed return values
670 if ( retval->get_name() == "" ) {
671 retval->set_name( "_retparm" );
672 retval->set_linkage( LinkageSpec::C );
673 } // if
674 } // if
675
676 FunctionType *functionType = functionDecl->get_functionType();
677 makeTyVarMap( functionDecl->get_functionType(), scopeTyVars );
678 findTypeOps( functionDecl->get_functionType()->get_forall() );
679
680 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
681 std::list< FunctionType *> functions;
682 for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
683 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
684 findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter );
685 } // for
686 } // for
687 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
688 findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter );
689 } // for
690
691 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
692 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
693 if ( adapters.find( mangleName ) == adapters.end() ) {
694 std::string adapterName = makeAdapterName( mangleName );
695 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) ) );
696 } // if
697 } // for
698
699 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) );
700
701 scopeTyVars.endScope();
702 assignOps.endScope();
703 ctorOps.endScope();
704 copyOps.endScope();
705 dtorOps.endScope();
706 retval = oldRetval;
707 useRetval = oldUseRetval;
708 doEndScope();
709 } // if
710 return functionDecl;
711 }
712
713 TypeDecl *Pass1::mutate( TypeDecl *typeDecl ) {
714 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
715 return Mutator::mutate( typeDecl );
716 }
717
718 Expression *Pass1::mutate( CommaExpr *commaExpr ) {
719 bool oldUseRetval = useRetval;
720 useRetval = false;
721 commaExpr->set_arg1( maybeMutate( commaExpr->get_arg1(), *this ) );
722 useRetval = oldUseRetval;
723 commaExpr->set_arg2( maybeMutate( commaExpr->get_arg2(), *this ) );
724 return commaExpr;
725 }
726
727 Expression *Pass1::mutate( ConditionalExpr *condExpr ) {
728 bool oldUseRetval = useRetval;
729 useRetval = false;
730 condExpr->set_arg1( maybeMutate( condExpr->get_arg1(), *this ) );
731 useRetval = oldUseRetval;
732 condExpr->set_arg2( maybeMutate( condExpr->get_arg2(), *this ) );
733 condExpr->set_arg3( maybeMutate( condExpr->get_arg3(), *this ) );
734 return condExpr;
735
736 }
737
738 void Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) {
739 Type *polyType = isPolyType( parmType, exprTyVars );
740 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
741 std::string typeName = mangleType( polyType );
742 if ( seenTypes.count( typeName ) ) return;
743
744 arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) );
745 arg++;
746 arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) );
747 arg++;
748 if ( dynamic_cast< StructInstType* >( polyType ) ) {
749 if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) {
750 // zero-length arrays are forbidden by C, so don't pass offset for empty struct
751 if ( ! argBaseStructType->get_baseStruct()->get_members().empty() ) {
752 arg = appExpr->get_args().insert( arg, new OffsetPackExpr( argBaseStructType->clone() ) );
753 arg++;
754 }
755 } else {
756 throw SemanticError( "Cannot pass non-struct type for generic struct" );
757 }
758 }
759
760 seenTypes.insert( typeName );
761 }
762 }
763
764 void Pass1::passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
765 // pass size/align for type variables
766 for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) {
767 ResolvExpr::EqvClass eqvClass;
768 assert( env );
769 if ( tyParm->second == TypeDecl::Any ) {
770 Type *concrete = env->lookup( tyParm->first );
771 if ( concrete ) {
772 arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) );
773 arg++;
774 arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) );
775 arg++;
776 } else {
777 // xxx - should this be an assertion?
778 throw SemanticError( "unbound type variable: " + tyParm->first + " in application ", appExpr );
779 } // if
780 } // if
781 } // for
782
783 // add size/align for generic types to parameter list
784 if ( ! appExpr->get_function()->has_result() ) return;
785 FunctionType *funcType = getFunctionType( appExpr->get_function()->get_result() );
786 assert( funcType );
787
788 std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin();
789 std::list< Expression* >::const_iterator fnArg = arg;
790 std::set< std::string > seenTypes; ///< names for generic types we've seen
791
792 // a polymorphic return type may need to be added to the argument list
793 if ( polyRetType ) {
794 Type *concRetType = replaceWithConcrete( appExpr, polyRetType );
795 passArgTypeVars( appExpr, polyRetType, concRetType, arg, exprTyVars, seenTypes );
796 }
797
798 // add type information args for presently unseen types in parameter list
799 for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {
800 VariableExpr *fnArgBase = getBaseVar( *fnArg );
801 if ( ! fnArgBase ) continue; // xxx - previously had check for non-empty fnArgBase results
802 passArgTypeVars( appExpr, (*fnParm)->get_type(), fnArgBase->get_result(), arg, exprTyVars, seenTypes );
803 }
804 }
805
806 ObjectDecl *Pass1::makeTemporary( Type *type ) {
807 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, 0 );
808 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
809 return newObj;
810 }
811
812 Expression *Pass1::addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ) {
813 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
814 // if ( useRetval ) {
815 // assert( retval );
816 // arg = appExpr->get_args().insert( arg, new VariableExpr( retval ) );
817 // arg++;
818 // } else {
819
820 // Create temporary to hold return value of polymorphic function and produce that temporary as a result
821 // using a comma expression. Possibly change comma expression into statement expression "{}" for multiple
822 // return values.
823 ObjectDecl *newObj = makeTemporary( retType->clone() );
824 Expression *paramExpr = new VariableExpr( newObj );
825
826 // If the type of the temporary is not polymorphic, box temporary by taking its address;
827 // otherwise the temporary is already boxed and can be used directly.
828 if ( ! isPolyType( newObj->get_type(), scopeTyVars, env ) ) {
829 paramExpr = new AddressExpr( paramExpr );
830 } // if
831 arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call
832 arg++;
833 // Build a comma expression to call the function and emulate a normal return.
834 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) );
835 commaExpr->set_env( appExpr->get_env() );
836 appExpr->set_env( 0 );
837 return commaExpr;
838 // } // if
839 // return appExpr;
840 }
841
842 void Pass1::replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ) {
843 for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) {
844 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
845 assert(paramType && "Aggregate parameters should be type expressions");
846 paramType->set_type( replaceWithConcrete( appExpr, paramType->get_type(), false ) );
847 }
848 }
849
850 Type *Pass1::replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone ) {
851 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) {
852 Type *concrete = env->lookup( typeInst->get_name() );
853 if ( concrete == 0 ) {
854 throw SemanticError( "Unbound type variable " + typeInst->get_name() + " in ", appExpr );
855 } // if
856 return concrete;
857 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) {
858 if ( doClone ) {
859 structType = structType->clone();
860 }
861 replaceParametersWithConcrete( appExpr, structType->get_parameters() );
862 return structType;
863 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) {
864 if ( doClone ) {
865 unionType = unionType->clone();
866 }
867 replaceParametersWithConcrete( appExpr, unionType->get_parameters() );
868 return unionType;
869 }
870 return type;
871 }
872
873 Expression *Pass1::addDynRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *dynType, std::list< Expression *>::iterator &arg ) {
874 assert( env );
875 Type *concrete = replaceWithConcrete( appExpr, dynType );
876 // add out-parameter for return value
877 return addRetParam( appExpr, function, concrete, arg );
878 }
879
880 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
881 Expression *ret = appExpr;
882// if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) {
883 if ( isDynRet( function, tyVars ) ) {
884 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg );
885 } // if
886 std::string mangleName = mangleAdapterName( function, tyVars );
887 std::string adapterName = makeAdapterName( mangleName );
888
889 // cast adaptee to void (*)(), since it may have any type inside a polymorphic function
890 Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) );
891 appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) );
892 appExpr->set_function( new NameExpr( adapterName ) ); // xxx - result is never set on NameExpr
893
894 return ret;
895 }
896
897 void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) {
898 assert( arg->has_result() );
899 if ( isPolyType( param, exprTyVars ) ) {
900 if ( isPolyType( arg->get_result() ) ) {
901 // if the argument's type is polymorphic, we don't need to box again!
902 return;
903 } else if ( arg->get_result()->get_isLvalue() ) {
904 // VariableExpr and MemberExpr are lvalues; need to check this isn't coming from the second arg of a comma expression though (not an lvalue)
905 // xxx - need to test that this code is still reachable
906 if ( CommaExpr *commaArg = dynamic_cast< CommaExpr* >( arg ) ) {
907 commaArg->set_arg2( new AddressExpr( commaArg->get_arg2() ) );
908 } else {
909 arg = new AddressExpr( arg );
910 }
911 } else {
912 // use type computed in unification to declare boxed variables
913 Type * newType = param->clone();
914 if ( env ) env->apply( newType );
915 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, newType, 0 );
916 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right???
917 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
918 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
919 assign->get_args().push_back( new VariableExpr( newObj ) );
920 assign->get_args().push_back( arg );
921 stmtsToAdd.push_back( new ExprStmt( noLabels, assign ) );
922 arg = new AddressExpr( new VariableExpr( newObj ) );
923 } // if
924 } // if
925 }
926
927 /// cast parameters to polymorphic functions so that types are replaced with
928 /// void * if they are type parameters in the formal type.
929 /// this gets rid of warnings from gcc.
930 void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) {
931 if ( getFunctionType( formal ) ) {
932 Type * newType = formal->clone();
933 newType = ScrubTyVars::scrub( newType, tyVars );
934 actual = new CastExpr( actual, newType );
935 } // if
936 }
937
938 void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
939 for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->get_parameters().end(); ++param, ++arg ) {
940 assert( arg != appExpr->get_args().end() );
941 addCast( *arg, (*param)->get_type(), exprTyVars );
942 boxParam( (*param)->get_type(), *arg, exprTyVars );
943 } // for
944 }
945
946 void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
947 std::list< Expression *>::iterator cur = arg;
948 for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
949 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
950 InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() );
951 assert( inferParam != appExpr->get_inferParams().end() && "NOTE: Explicit casts of polymorphic functions to compatible monomorphic functions are currently unsupported" );
952 Expression *newExpr = inferParam->second.expr->clone();
953 addCast( newExpr, (*assert)->get_type(), tyVars );
954 boxParam( (*assert)->get_type(), newExpr, tyVars );
955 appExpr->get_args().insert( cur, newExpr );
956 } // for
957 } // for
958 }
959
960 void makeRetParm( FunctionType *funcType ) {
961 DeclarationWithType *retParm = funcType->get_returnVals().front();
962
963 // make a new parameter that is a pointer to the type of the old return value
964 retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) );
965 funcType->get_parameters().push_front( retParm );
966
967 // we don't need the return value any more
968 funcType->get_returnVals().clear();
969 }
970
971 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ) {
972 // actually make the adapter type
973 FunctionType *adapter = adaptee->clone();
974// if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) {
975 if ( isDynRet( adapter, tyVars ) ) {
976 makeRetParm( adapter );
977 } // if
978 adapter->get_parameters().push_front( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ) );
979 return adapter;
980 }
981
982 Expression *makeAdapterArg( DeclarationWithType *param, DeclarationWithType *arg, DeclarationWithType *realParam, const TyVarMap &tyVars ) {
983 assert( param );
984 assert( arg );
985 if ( isPolyType( realParam->get_type(), tyVars ) ) {
986 if ( ! isPolyType( arg->get_type() ) ) {
987 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
988 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) );
989 deref->set_result( arg->get_type()->clone() );
990 return deref;
991 } // if
992 } // if
993 return new VariableExpr( param );
994 }
995
996 void addAdapterParams( ApplicationExpr *adapteeApp, std::list< DeclarationWithType *>::iterator arg, std::list< DeclarationWithType *>::iterator param, std::list< DeclarationWithType *>::iterator paramEnd, std::list< DeclarationWithType *>::iterator realParam, const TyVarMap &tyVars ) {
997 UniqueName paramNamer( "_p" );
998 for ( ; param != paramEnd; ++param, ++arg, ++realParam ) {
999 if ( (*param)->get_name() == "" ) {
1000 (*param)->set_name( paramNamer.newName() );
1001 (*param)->set_linkage( LinkageSpec::C );
1002 } // if
1003 adapteeApp->get_args().push_back( makeAdapterArg( *param, *arg, *realParam, tyVars ) );
1004 } // for
1005 }
1006
1007 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) {
1008 FunctionType *adapterType = makeAdapterType( adaptee, tyVars );
1009 adapterType = ScrubTyVars::scrub( adapterType, tyVars );
1010 DeclarationWithType *adapteeDecl = adapterType->get_parameters().front();
1011 adapteeDecl->set_name( "_adaptee" );
1012 ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) );
1013 Statement *bodyStmt;
1014
1015 Type::ForallList::iterator tyArg = realType->get_forall().begin();
1016 Type::ForallList::iterator tyParam = adapterType->get_forall().begin();
1017 Type::ForallList::iterator realTyParam = adaptee->get_forall().begin();
1018 for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) {
1019 assert( tyArg != realType->get_forall().end() );
1020 std::list< DeclarationWithType *>::iterator assertArg = (*tyArg)->get_assertions().begin();
1021 std::list< DeclarationWithType *>::iterator assertParam = (*tyParam)->get_assertions().begin();
1022 std::list< DeclarationWithType *>::iterator realAssertParam = (*realTyParam)->get_assertions().begin();
1023 for ( ; assertParam != (*tyParam)->get_assertions().end(); ++assertArg, ++assertParam, ++realAssertParam ) {
1024 assert( assertArg != (*tyArg)->get_assertions().end() );
1025 adapteeApp->get_args().push_back( makeAdapterArg( *assertParam, *assertArg, *realAssertParam, tyVars ) );
1026 } // for
1027 } // for
1028
1029 std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin();
1030 std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin();
1031 std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin();
1032 param++; // skip adaptee parameter in the adapter type
1033 if ( realType->get_returnVals().empty() ) {
1034 // void return
1035 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1036 bodyStmt = new ExprStmt( noLabels, adapteeApp );
1037// } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
1038 } else if ( isDynType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
1039 // return type T
1040 if ( (*param)->get_name() == "" ) {
1041 (*param)->set_name( "_ret" );
1042 (*param)->set_linkage( LinkageSpec::C );
1043 } // if
1044 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
1045 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
1046 deref->get_args().push_back( new CastExpr( new VariableExpr( *param++ ), new PointerType( Type::Qualifiers(), realType->get_returnVals().front()->get_type()->clone() ) ) );
1047 assign->get_args().push_back( deref );
1048 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1049 assign->get_args().push_back( adapteeApp );
1050 bodyStmt = new ExprStmt( noLabels, assign );
1051 } else {
1052 // adapter for a function that returns a monomorphic value
1053 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1054 bodyStmt = new ReturnStmt( noLabels, adapteeApp );
1055 } // if
1056 CompoundStmt *adapterBody = new CompoundStmt( noLabels );
1057 adapterBody->get_kids().push_back( bodyStmt );
1058 std::string adapterName = makeAdapterName( mangleName );
1059 return new FunctionDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, adapterType, adapterBody, false, false );
1060 }
1061
1062 void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) {
1063 // collect a list of function types passed as parameters or implicit parameters (assertions)
1064 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1065 std::list< FunctionType *> functions;
1066 for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
1067 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
1068 findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter );
1069 } // for
1070 } // for
1071 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1072 findFunction( (*arg)->get_type(), functions, exprTyVars, needsAdapter );
1073 } // for
1074
1075 // parameter function types for which an appropriate adapter has been generated. we cannot use the types
1076 // after applying substitutions, since two different parameter types may be unified to the same type
1077 std::set< std::string > adaptersDone;
1078
1079 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1080 FunctionType *originalFunction = (*funType)->clone();
1081 FunctionType *realFunction = (*funType)->clone();
1082 std::string mangleName = SymTab::Mangler::mangle( realFunction );
1083
1084 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this
1085 // pre-substitution parameter function type.
1086 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1087 adaptersDone.insert( adaptersDone.begin(), mangleName );
1088
1089 // apply substitution to type variables to figure out what the adapter's type should look like
1090 assert( env );
1091 env->apply( realFunction );
1092 mangleName = SymTab::Mangler::mangle( realFunction );
1093 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars );
1094
1095 typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter;
1096 AdapterIter adapter = adapters.find( mangleName );
1097 if ( adapter == adapters.end() ) {
1098 // adapter has not been created yet in the current scope, so define it
1099 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars );
1100 std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) );
1101 adapter = answer.first;
1102 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) );
1103 } // if
1104 assert( adapter != adapters.end() );
1105
1106 // add the appropriate adapter as a parameter
1107 appExpr->get_args().push_front( new VariableExpr( adapter->second ) );
1108 } // if
1109 } // for
1110 } // passAdapters
1111
1112 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) {
1113 NameExpr *opExpr;
1114 if ( isIncr ) {
1115 opExpr = new NameExpr( "?+=?" );
1116 } else {
1117 opExpr = new NameExpr( "?-=?" );
1118 } // if
1119 UntypedExpr *addAssign = new UntypedExpr( opExpr );
1120 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1121 addAssign->get_args().push_back( address->get_arg() );
1122 } else {
1123 addAssign->get_args().push_back( appExpr->get_args().front() );
1124 } // if
1125 addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) ) ) );
1126 addAssign->set_result( appExpr->get_result()->clone() );
1127 if ( appExpr->get_env() ) {
1128 addAssign->set_env( appExpr->get_env() );
1129 appExpr->set_env( 0 );
1130 } // if
1131 appExpr->get_args().clear();
1132 delete appExpr;
1133 return addAssign;
1134 }
1135
1136 Expression *Pass1::handleIntrinsics( ApplicationExpr *appExpr ) {
1137 if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->get_function() ) ) {
1138 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic ) {
1139 if ( varExpr->get_var()->get_name() == "?[?]" ) {
1140 assert( appExpr->has_result() );
1141 assert( appExpr->get_args().size() == 2 );
1142 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_result(), scopeTyVars, env );
1143 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_result(), scopeTyVars, env );
1144 assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers
1145 UntypedExpr *ret = 0;
1146 if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer
1147 ret = new UntypedExpr( new NameExpr( "?+?" ) );
1148 } // if
1149 if ( baseType1 ) {
1150 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1151 multiply->get_args().push_back( appExpr->get_args().back() );
1152 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1153 ret->get_args().push_back( appExpr->get_args().front() );
1154 ret->get_args().push_back( multiply );
1155 } else if ( baseType2 ) {
1156 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1157 multiply->get_args().push_back( appExpr->get_args().front() );
1158 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1159 ret->get_args().push_back( multiply );
1160 ret->get_args().push_back( appExpr->get_args().back() );
1161 } // if
1162 if ( baseType1 || baseType2 ) {
1163 ret->set_result( appExpr->get_result()->clone() );
1164 if ( appExpr->get_env() ) {
1165 ret->set_env( appExpr->get_env() );
1166 appExpr->set_env( 0 );
1167 } // if
1168 appExpr->get_args().clear();
1169 delete appExpr;
1170 return ret;
1171 } // if
1172 } else if ( varExpr->get_var()->get_name() == "*?" ) {
1173 assert( appExpr->has_result() );
1174 assert( ! appExpr->get_args().empty() );
1175 if ( isPolyType( appExpr->get_result(), scopeTyVars, env ) ) {
1176 Expression *ret = appExpr->get_args().front();
1177 delete ret->get_result();
1178 ret->set_result( appExpr->get_result()->clone() );
1179 if ( appExpr->get_env() ) {
1180 ret->set_env( appExpr->get_env() );
1181 appExpr->set_env( 0 );
1182 } // if
1183 appExpr->get_args().clear();
1184 delete appExpr;
1185 return ret;
1186 } // if
1187 } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) {
1188 assert( appExpr->has_result() );
1189 assert( appExpr->get_args().size() == 1 );
1190 if ( Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env ) ) {
1191 Type *tempType = appExpr->get_result()->clone();
1192 if ( env ) {
1193 env->apply( tempType );
1194 } // if
1195 ObjectDecl *newObj = makeTemporary( tempType );
1196 VariableExpr *tempExpr = new VariableExpr( newObj );
1197 UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) );
1198 assignExpr->get_args().push_back( tempExpr->clone() );
1199 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1200 assignExpr->get_args().push_back( address->get_arg()->clone() );
1201 } else {
1202 assignExpr->get_args().push_back( appExpr->get_args().front()->clone() );
1203 } // if
1204 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) );
1205 return new CommaExpr( firstComma, tempExpr );
1206 } // if
1207 } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) {
1208 assert( appExpr->has_result() );
1209 assert( appExpr->get_args().size() == 1 );
1210 if ( Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env ) ) {
1211 return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );
1212 } // if
1213 } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) {
1214 assert( appExpr->has_result() );
1215 assert( appExpr->get_args().size() == 2 );
1216 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_result(), scopeTyVars, env );
1217 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_result(), scopeTyVars, env );
1218 if ( baseType1 && baseType2 ) {
1219 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) );
1220 divide->get_args().push_back( appExpr );
1221 divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1222 divide->set_result( appExpr->get_result()->clone() );
1223 if ( appExpr->get_env() ) {
1224 divide->set_env( appExpr->get_env() );
1225 appExpr->set_env( 0 );
1226 } // if
1227 return divide;
1228 } else if ( baseType1 ) {
1229 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1230 multiply->get_args().push_back( appExpr->get_args().back() );
1231 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1232 appExpr->get_args().back() = multiply;
1233 } else if ( baseType2 ) {
1234 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1235 multiply->get_args().push_back( appExpr->get_args().front() );
1236 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1237 appExpr->get_args().front() = multiply;
1238 } // if
1239 } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) {
1240 assert( appExpr->has_result() );
1241 assert( appExpr->get_args().size() == 2 );
1242 Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env );
1243 if ( baseType ) {
1244 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1245 multiply->get_args().push_back( appExpr->get_args().back() );
1246 multiply->get_args().push_back( new SizeofExpr( baseType->clone() ) );
1247 appExpr->get_args().back() = multiply;
1248 } // if
1249 } // if
1250 return appExpr;
1251 } // if
1252 } // if
1253 return 0;
1254 }
1255
1256 Expression *Pass1::mutate( ApplicationExpr *appExpr ) {
1257 // std::cerr << "mutate appExpr: ";
1258 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
1259 // std::cerr << i->first << " ";
1260 // }
1261 // std::cerr << "\n";
1262 bool oldUseRetval = useRetval;
1263 useRetval = false;
1264 appExpr->get_function()->acceptMutator( *this );
1265 mutateAll( appExpr->get_args(), *this );
1266 useRetval = oldUseRetval;
1267
1268 assert( appExpr->get_function()->has_result() );
1269 PointerType *pointer = safe_dynamic_cast< PointerType *>( appExpr->get_function()->get_result() );
1270 FunctionType *function = safe_dynamic_cast< FunctionType *>( pointer->get_base() );
1271
1272 if ( Expression *newExpr = handleIntrinsics( appExpr ) ) {
1273 return newExpr;
1274 } // if
1275
1276 Expression *ret = appExpr;
1277
1278 std::list< Expression *>::iterator arg = appExpr->get_args().begin();
1279 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin();
1280
1281 TyVarMap exprTyVars( (TypeDecl::Kind)-1 );
1282 makeTyVarMap( function, exprTyVars );
1283 ReferenceToType *dynRetType = isDynRet( function, exprTyVars );
1284
1285 if ( dynRetType ) {
1286 ret = addDynRetParam( appExpr, function, dynRetType, arg );
1287 } else if ( needsAdapter( function, scopeTyVars ) ) {
1288 // std::cerr << "needs adapter: ";
1289 // printTyVarMap( std::cerr, scopeTyVars );
1290 // std::cerr << *env << std::endl;
1291 // change the application so it calls the adapter rather than the passed function
1292 ret = applyAdapter( appExpr, function, arg, scopeTyVars );
1293 } // if
1294 arg = appExpr->get_args().begin();
1295
1296 passTypeVars( appExpr, dynRetType, arg, exprTyVars );
1297 addInferredParams( appExpr, function, arg, exprTyVars );
1298
1299 arg = paramBegin;
1300
1301 boxParams( appExpr, function, arg, exprTyVars );
1302 passAdapters( appExpr, function, exprTyVars );
1303
1304 return ret;
1305 }
1306
1307 Expression *Pass1::mutate( UntypedExpr *expr ) {
1308 if ( expr->has_result() && isPolyType( expr->get_result(), scopeTyVars, env ) ) {
1309 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1310 if ( name->get_name() == "*?" ) {
1311 Expression *ret = expr->get_args().front();
1312 expr->get_args().clear();
1313 delete expr;
1314 return ret->acceptMutator( *this );
1315 } // if
1316 } // if
1317 } // if
1318 return PolyMutator::mutate( expr );
1319 }
1320
1321 Expression *Pass1::mutate( AddressExpr *addrExpr ) {
1322 assert( addrExpr->get_arg()->has_result() && ! addrExpr->get_arg()->get_result()->isVoid() );
1323
1324 bool needs = false;
1325 if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {
1326 if ( expr->has_result() && isPolyType( expr->get_result(), scopeTyVars, env ) ) {
1327 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1328 if ( name->get_name() == "*?" ) {
1329 if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {
1330 assert( appExpr->get_function()->has_result() );
1331 PointerType *pointer = safe_dynamic_cast< PointerType *>( appExpr->get_function()->get_result() );
1332 FunctionType *function = safe_dynamic_cast< FunctionType *>( pointer->get_base() );
1333 needs = needsAdapter( function, scopeTyVars );
1334 } // if
1335 } // if
1336 } // if
1337 } // if
1338 } // if
1339 // isPolyType check needs to happen before mutating addrExpr arg, so pull it forward
1340 // out of the if condition.
1341 bool polytype = isPolyType( addrExpr->get_arg()->get_result(), scopeTyVars, env );
1342 addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) );
1343 if ( polytype || needs ) {
1344 Expression *ret = addrExpr->get_arg();
1345 delete ret->get_result();
1346 ret->set_result( addrExpr->get_result()->clone() );
1347 addrExpr->set_arg( 0 );
1348 delete addrExpr;
1349 return ret;
1350 } else {
1351 return addrExpr;
1352 } // if
1353 }
1354
1355 /// Wraps a function declaration in a new pointer-to-function variable expression
1356 VariableExpr *wrapFunctionDecl( DeclarationWithType *functionDecl ) {
1357 // line below cloned from FixFunction.cc
1358 // xxx - functionObj is never added to a list of declarations...
1359 ObjectDecl *functionObj = new ObjectDecl( functionDecl->get_name(), functionDecl->get_storageClass(), functionDecl->get_linkage(), 0,
1360 new PointerType( Type::Qualifiers(), functionDecl->get_type()->clone() ), 0 );
1361 functionObj->set_mangleName( functionDecl->get_mangleName() );
1362 functionObj->set_scopeLevel( functionDecl->get_scopeLevel() );
1363 return new VariableExpr( functionObj );
1364 }
1365
1366 /// Finds the operation declaration for a given type in one of the two maps
1367 DeclarationWithType* findOpForType( Type *formalType, const ScopedMap< std::string, DeclarationWithType* >& ops, ResolvExpr::TypeMap< DeclarationWithType >& scopedOps ) {
1368 if ( TypeInstType *formalTypeInstType = dynamic_cast< TypeInstType* >( formalType ) ) {
1369 ScopedMap< std::string, DeclarationWithType *>::const_iterator opIt = ops.find( formalTypeInstType->get_name() );
1370 return opIt == ops.end() ? 0 : opIt->second;
1371 } else {
1372 return scopedOps.find( formalType );
1373 }
1374 }
1375
1376 /// Adds an assertion parameter to the application expression for the actual assertion declaration valued with the assert op
1377 void addAssertionFor( ApplicationExpr *appExpr, DeclarationWithType *actualDecl, DeclarationWithType *assertOp ) {
1378 appExpr->get_inferParams()[ actualDecl->get_uniqueId() ]
1379 = ParamEntry( assertOp->get_uniqueId(), assertOp->get_type()->clone(), actualDecl->get_type()->clone(), wrapFunctionDecl( assertOp ) );
1380 }
1381
1382 Statement * Pass1::mutate( ReturnStmt *returnStmt ) {
1383 if ( retval && returnStmt->get_expr() ) {
1384 assert( returnStmt->get_expr()->has_result() && ! returnStmt->get_expr()->get_result()->isVoid() );
1385 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
1386 // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) {
1387 // by this point, a cast expr on a polymorphic return value is redundant
1388 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( returnStmt->get_expr() ) ) {
1389 returnStmt->set_expr( castExpr->get_arg() );
1390 returnStmt->get_expr()->set_env( castExpr->get_env() );
1391 castExpr->set_env( 0 );
1392 castExpr->set_arg( 0 );
1393 delete castExpr;
1394 } //while
1395
1396 // find assignment operator for (polymorphic) return type
1397 ApplicationExpr *assignExpr = 0;
1398 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ) ) {
1399 // find assignment operator for type variable
1400 ScopedMap< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() );
1401 if ( assignIter == assignOps.end() ) {
1402 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() );
1403 } // if
1404 assignExpr = new ApplicationExpr( new VariableExpr( assignIter->second ) );
1405 } else if ( ReferenceToType *refType = dynamic_cast< ReferenceToType *>( retval->get_type() ) ) {
1406 // find assignment operator for generic type
1407 DeclarationWithType *functionDecl = scopedAssignOps.find( refType );
1408 if ( ! functionDecl ) {
1409 throw SemanticError( "Attempt to return dtype or ftype generic object in ", returnStmt->get_expr() );
1410 }
1411
1412 // wrap it up in an application expression
1413 assignExpr = new ApplicationExpr( wrapFunctionDecl( functionDecl ) );
1414 assignExpr->set_env( env->clone() );
1415
1416 // find each of its needed secondary assignment operators
1417 std::list< Expression* > &tyParams = refType->get_parameters();
1418 Type::ForallList &forallParams = functionDecl->get_type()->get_forall();
1419 std::list< Expression* >::const_iterator tyIt = tyParams.begin();
1420 Type::ForallList::const_iterator forallIt = forallParams.begin();
1421 for ( ; tyIt != tyParams.end() && forallIt != forallParams.end(); ++tyIt, ++forallIt ) {
1422 // Add appropriate mapping to assignment expression environment
1423 TypeExpr *formalTypeExpr = dynamic_cast< TypeExpr* >( *tyIt );
1424 assert( formalTypeExpr && "type parameters must be type expressions" );
1425 Type *formalType = formalTypeExpr->get_type();
1426 assignExpr->get_env()->add( (*forallIt)->get_name(), formalType );
1427
1428 // skip non-otype parameters (ftype/dtype)
1429 if ( (*forallIt)->get_kind() != TypeDecl::Any ) continue;
1430
1431 // find otype operators for formal type
1432 DeclarationWithType *assertAssign = findOpForType( formalType, assignOps, scopedAssignOps );
1433 if ( ! assertAssign ) throw SemanticError( "No assignment operation found for ", formalType );
1434
1435 DeclarationWithType *assertCtor = findOpForType( formalType, ctorOps, scopedCtorOps );
1436 if ( ! assertCtor ) throw SemanticError( "No default constructor found for ", formalType );
1437
1438 DeclarationWithType *assertCopy = findOpForType( formalType, copyOps, scopedCopyOps );
1439 if ( ! assertCopy ) throw SemanticError( "No copy constructor found for ", formalType );
1440
1441 DeclarationWithType *assertDtor = findOpForType( formalType, dtorOps, scopedDtorOps );
1442 if ( ! assertDtor ) throw SemanticError( "No destructor found for ", formalType );
1443
1444 // add inferred parameters for otype operators to assignment expression
1445 // NOTE: Code here assumes that first four assertions are assign op, ctor, copy ctor, dtor, in that order
1446 std::list< DeclarationWithType* > &asserts = (*forallIt)->get_assertions();
1447 assert( asserts.size() >= 4 && "Type param needs otype operator assertions" );
1448
1449 std::list< DeclarationWithType* >::iterator actualIt = asserts.begin();
1450 addAssertionFor( assignExpr, *actualIt, assertAssign );
1451 ++actualIt;
1452 addAssertionFor( assignExpr, *actualIt, assertCtor );
1453 ++actualIt;
1454 addAssertionFor( assignExpr, *actualIt, assertCopy );
1455 ++actualIt;
1456 addAssertionFor( assignExpr, *actualIt, assertDtor );
1457
1458 }
1459 }
1460 assert( assignExpr );
1461
1462 // replace return statement with appropriate assignment to out parameter
1463 Expression *retParm = new NameExpr( retval->get_name() );
1464 retParm->set_result( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
1465 assignExpr->get_args().push_back( retParm );
1466 assignExpr->get_args().push_back( returnStmt->get_expr() );
1467 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) );
1468 // } else {
1469 // useRetval = true;
1470 // stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( returnStmt->get_expr() ) ) );
1471 // useRetval = false;
1472 // } // if
1473 returnStmt->set_expr( 0 );
1474 } else {
1475 returnStmt->set_expr( mutateExpression( returnStmt->get_expr() ) );
1476 } // if
1477 return returnStmt;
1478 }
1479
1480 Type * Pass1::mutate( PointerType *pointerType ) {
1481 scopeTyVars.beginScope();
1482 makeTyVarMap( pointerType, scopeTyVars );
1483
1484 Type *ret = Mutator::mutate( pointerType );
1485
1486 scopeTyVars.endScope();
1487 return ret;
1488 }
1489
1490 Type * Pass1::mutate( FunctionType *functionType ) {
1491 scopeTyVars.beginScope();
1492 makeTyVarMap( functionType, scopeTyVars );
1493
1494 Type *ret = Mutator::mutate( functionType );
1495
1496 scopeTyVars.endScope();
1497 return ret;
1498 }
1499
1500 void Pass1::doBeginScope() {
1501 adapters.beginScope();
1502 scopedAssignOps.beginScope();
1503 scopedCtorOps.beginScope();
1504 scopedCopyOps.beginScope();
1505 scopedDtorOps.beginScope();
1506 }
1507
1508 void Pass1::doEndScope() {
1509 adapters.endScope();
1510 scopedAssignOps.endScope();
1511 scopedCtorOps.endScope();
1512 scopedCopyOps.endScope();
1513 scopedDtorOps.endScope();
1514 }
1515
1516////////////////////////////////////////// Pass2 ////////////////////////////////////////////////////
1517
1518 void Pass2::addAdapters( FunctionType *functionType ) {
1519 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1520 std::list< FunctionType *> functions;
1521 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1522 Type *orig = (*arg)->get_type();
1523 findAndReplaceFunction( orig, functions, scopeTyVars, needsAdapter );
1524 (*arg)->set_type( orig );
1525 }
1526 std::set< std::string > adaptersDone;
1527 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1528 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
1529 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1530 std::string adapterName = makeAdapterName( mangleName );
1531 paramList.push_front( new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) );
1532 adaptersDone.insert( adaptersDone.begin(), mangleName );
1533 }
1534 }
1535// deleteAll( functions );
1536 }
1537
1538 template< typename DeclClass >
1539 DeclClass * Pass2::handleDecl( DeclClass *decl, Type *type ) {
1540 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1541
1542 return ret;
1543 }
1544
1545 DeclarationWithType * Pass2::mutate( FunctionDecl *functionDecl ) {
1546 return handleDecl( functionDecl, functionDecl->get_functionType() );
1547 }
1548
1549 ObjectDecl * Pass2::mutate( ObjectDecl *objectDecl ) {
1550 return handleDecl( objectDecl, objectDecl->get_type() );
1551 }
1552
1553 TypeDecl * Pass2::mutate( TypeDecl *typeDecl ) {
1554 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1555 if ( typeDecl->get_base() ) {
1556 return handleDecl( typeDecl, typeDecl->get_base() );
1557 } else {
1558 return Mutator::mutate( typeDecl );
1559 }
1560 }
1561
1562 TypedefDecl * Pass2::mutate( TypedefDecl *typedefDecl ) {
1563 return handleDecl( typedefDecl, typedefDecl->get_base() );
1564 }
1565
1566 Type * Pass2::mutate( PointerType *pointerType ) {
1567 scopeTyVars.beginScope();
1568 makeTyVarMap( pointerType, scopeTyVars );
1569
1570 Type *ret = Mutator::mutate( pointerType );
1571
1572 scopeTyVars.endScope();
1573 return ret;
1574 }
1575
1576 Type *Pass2::mutate( FunctionType *funcType ) {
1577 scopeTyVars.beginScope();
1578 makeTyVarMap( funcType, scopeTyVars );
1579
1580 // move polymorphic return type to parameter list
1581 if ( isDynRet( funcType ) ) {
1582 DeclarationWithType *ret = funcType->get_returnVals().front();
1583 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) );
1584 funcType->get_parameters().push_front( ret );
1585 funcType->get_returnVals().pop_front();
1586 }
1587
1588 // add size/align and assertions for type parameters to parameter list
1589 std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin();
1590 std::list< DeclarationWithType *> inferredParams;
1591 ObjectDecl newObj( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 );
1592 ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0,
1593 new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 );
1594 for ( Type::ForallList::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
1595 ObjectDecl *sizeParm, *alignParm;
1596 // add all size and alignment parameters to parameter list
1597 if ( (*tyParm)->get_kind() == TypeDecl::Any ) {
1598 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm );
1599 std::string parmName = mangleType( &parmType );
1600
1601 sizeParm = newObj.clone();
1602 sizeParm->set_name( sizeofName( parmName ) );
1603 last = funcType->get_parameters().insert( last, sizeParm );
1604 ++last;
1605
1606 alignParm = newObj.clone();
1607 alignParm->set_name( alignofName( parmName ) );
1608 last = funcType->get_parameters().insert( last, alignParm );
1609 ++last;
1610 }
1611 // move all assertions into parameter list
1612 for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) {
1613// *assert = (*assert)->acceptMutator( *this );
1614 inferredParams.push_back( *assert );
1615 }
1616 (*tyParm)->get_assertions().clear();
1617 }
1618
1619 // add size/align for generic parameter types to parameter list
1620 std::set< std::string > seenTypes; // sizeofName for generic types we've seen
1621 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) {
1622 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1623 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1624 std::string typeName = mangleType( polyType );
1625 if ( seenTypes.count( typeName ) ) continue;
1626
1627 ObjectDecl *sizeParm, *alignParm, *offsetParm;
1628 sizeParm = newObj.clone();
1629 sizeParm->set_name( sizeofName( typeName ) );
1630 last = funcType->get_parameters().insert( last, sizeParm );
1631 ++last;
1632
1633 alignParm = newObj.clone();
1634 alignParm->set_name( alignofName( typeName ) );
1635 last = funcType->get_parameters().insert( last, alignParm );
1636 ++last;
1637
1638 if ( StructInstType *polyBaseStruct = dynamic_cast< StructInstType* >( polyType ) ) {
1639 // NOTE zero-length arrays are illegal in C, so empty structs have no offset array
1640 if ( ! polyBaseStruct->get_baseStruct()->get_members().empty() ) {
1641 offsetParm = newPtr.clone();
1642 offsetParm->set_name( offsetofName( typeName ) );
1643 last = funcType->get_parameters().insert( last, offsetParm );
1644 ++last;
1645 }
1646 }
1647
1648 seenTypes.insert( typeName );
1649 }
1650 }
1651
1652 // splice assertion parameters into parameter list
1653 funcType->get_parameters().splice( last, inferredParams );
1654 addAdapters( funcType );
1655 mutateAll( funcType->get_returnVals(), *this );
1656 mutateAll( funcType->get_parameters(), *this );
1657
1658 scopeTyVars.endScope();
1659 return funcType;
1660 }
1661
1662////////////////////////////////////////// PolyGenericCalculator ////////////////////////////////////////////////////
1663
1664 void PolyGenericCalculator::beginTypeScope( Type *ty ) {
1665 scopeTyVars.beginScope();
1666 makeTyVarMap( ty, scopeTyVars );
1667 }
1668
1669 void PolyGenericCalculator::endTypeScope() {
1670 scopeTyVars.endScope();
1671 }
1672
1673 template< typename DeclClass >
1674 DeclClass * PolyGenericCalculator::handleDecl( DeclClass *decl, Type *type ) {
1675 beginTypeScope( type );
1676 // knownLayouts.beginScope();
1677 // knownOffsets.beginScope();
1678
1679 DeclClass *ret = static_cast< DeclClass *>( Parent::mutate( decl ) );
1680
1681 // knownOffsets.endScope();
1682 // knownLayouts.endScope();
1683 endTypeScope();
1684 return ret;
1685 }
1686
1687 ObjectDecl * PolyGenericCalculator::mutate( ObjectDecl *objectDecl ) {
1688 return handleDecl( objectDecl, objectDecl->get_type() );
1689 }
1690
1691 DeclarationWithType * PolyGenericCalculator::mutate( FunctionDecl *functionDecl ) {
1692 knownLayouts.beginScope();
1693 knownOffsets.beginScope();
1694
1695 DeclarationWithType * decl = handleDecl( functionDecl, functionDecl->get_functionType() );
1696 knownOffsets.endScope();
1697 knownLayouts.endScope();
1698 return decl;
1699 }
1700
1701 TypedefDecl * PolyGenericCalculator::mutate( TypedefDecl *typedefDecl ) {
1702 return handleDecl( typedefDecl, typedefDecl->get_base() );
1703 }
1704
1705 TypeDecl * PolyGenericCalculator::mutate( TypeDecl *typeDecl ) {
1706 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1707 return Parent::mutate( typeDecl );
1708 }
1709
1710 Type * PolyGenericCalculator::mutate( PointerType *pointerType ) {
1711 beginTypeScope( pointerType );
1712
1713 Type *ret = Parent::mutate( pointerType );
1714
1715 endTypeScope();
1716 return ret;
1717 }
1718
1719 Type * PolyGenericCalculator::mutate( FunctionType *funcType ) {
1720 beginTypeScope( funcType );
1721
1722 // make sure that any type information passed into the function is accounted for
1723 for ( std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); fnParm != funcType->get_parameters().end(); ++fnParm ) {
1724 // condition here duplicates that in Pass2::mutate( FunctionType* )
1725 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1726 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1727 knownLayouts.insert( mangleType( polyType ) );
1728 }
1729 }
1730
1731 Type *ret = Parent::mutate( funcType );
1732
1733 endTypeScope();
1734 return ret;
1735 }
1736
1737 Statement *PolyGenericCalculator::mutate( DeclStmt *declStmt ) {
1738 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) {
1739 if ( findGeneric( objectDecl->get_type() ) ) {
1740 // change initialization of a polymorphic value object
1741 // to allocate storage with alloca
1742 Type *declType = objectDecl->get_type();
1743 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) );
1744 alloc->get_args().push_back( new NameExpr( sizeofName( mangleType( declType ) ) ) );
1745
1746 delete objectDecl->get_init();
1747
1748 std::list<Expression*> designators;
1749 objectDecl->set_init( new SingleInit( alloc, designators, false ) ); // not constructed
1750 }
1751 }
1752 return Parent::mutate( declStmt );
1753 }
1754
1755 /// Finds the member in the base list that matches the given declaration; returns its index, or -1 if not present
1756 long findMember( DeclarationWithType *memberDecl, std::list< Declaration* > &baseDecls ) {
1757 long i = 0;
1758 for(std::list< Declaration* >::const_iterator decl = baseDecls.begin(); decl != baseDecls.end(); ++decl, ++i ) {
1759 if ( memberDecl->get_name() != (*decl)->get_name() ) continue;
1760
1761 if ( DeclarationWithType *declWithType = dynamic_cast< DeclarationWithType* >( *decl ) ) {
1762 if ( memberDecl->get_mangleName().empty() || declWithType->get_mangleName().empty()
1763 || memberDecl->get_mangleName() == declWithType->get_mangleName() ) return i;
1764 else continue;
1765 } else return i;
1766 }
1767 return -1;
1768 }
1769
1770 /// Returns an index expression into the offset array for a type
1771 Expression *makeOffsetIndex( Type *objectType, long i ) {
1772 std::stringstream offset_namer;
1773 offset_namer << i;
1774 ConstantExpr *fieldIndex = new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), offset_namer.str() ) );
1775 UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) );
1776 fieldOffset->get_args().push_back( new NameExpr( offsetofName( mangleType( objectType ) ) ) );
1777 fieldOffset->get_args().push_back( fieldIndex );
1778 return fieldOffset;
1779 }
1780
1781 /// Returns an expression dereferenced n times
1782 Expression *makeDerefdVar( Expression *derefdVar, long n ) {
1783 for ( int i = 1; i < n; ++i ) {
1784 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1785 derefExpr->get_args().push_back( derefdVar );
1786 // xxx - should set results on derefExpr
1787 derefdVar = derefExpr;
1788 }
1789 return derefdVar;
1790 }
1791
1792 Expression *PolyGenericCalculator::mutate( MemberExpr *memberExpr ) {
1793 // mutate, exiting early if no longer MemberExpr
1794 Expression *expr = Parent::mutate( memberExpr );
1795 memberExpr = dynamic_cast< MemberExpr* >( expr );
1796 if ( ! memberExpr ) return expr;
1797
1798 // get declaration for base struct, exiting early if not found
1799 int varDepth;
1800 VariableExpr *varExpr = getBaseVar( memberExpr->get_aggregate(), &varDepth );
1801 if ( ! varExpr ) return memberExpr;
1802 ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1803 if ( ! objectDecl ) return memberExpr;
1804
1805 // only mutate member expressions for polymorphic types
1806 int tyDepth;
1807 Type *objectType = hasPolyBase( objectDecl->get_type(), scopeTyVars, &tyDepth );
1808 if ( ! objectType ) return memberExpr;
1809 findGeneric( objectType ); // ensure layout for this type is available
1810
1811 // replace member expression with dynamically-computed layout expression
1812 Expression *newMemberExpr = 0;
1813 if ( StructInstType *structType = dynamic_cast< StructInstType* >( objectType ) ) {
1814 // look up offset index
1815 long i = findMember( memberExpr->get_member(), structType->get_baseStruct()->get_members() );
1816 if ( i == -1 ) return memberExpr;
1817
1818 // replace member expression with pointer to base plus offset
1819 UntypedExpr *fieldLoc = new UntypedExpr( new NameExpr( "?+?" ) );
1820 fieldLoc->get_args().push_back( makeDerefdVar( varExpr->clone(), varDepth ) );
1821 fieldLoc->get_args().push_back( makeOffsetIndex( objectType, i ) );
1822 newMemberExpr = fieldLoc;
1823 } else if ( dynamic_cast< UnionInstType* >( objectType ) ) {
1824 // union members are all at offset zero, so build appropriately-dereferenced variable
1825 newMemberExpr = makeDerefdVar( varExpr->clone(), varDepth );
1826 } else return memberExpr;
1827 assert( newMemberExpr );
1828
1829 Type *memberType = memberExpr->get_member()->get_type();
1830 if ( ! isPolyType( memberType, scopeTyVars ) ) {
1831 // Not all members of a polymorphic type are themselves of polymorphic type; in this case the member expression should be wrapped and dereferenced to form an lvalue
1832 CastExpr *ptrCastExpr = new CastExpr( newMemberExpr, new PointerType( Type::Qualifiers(), memberType->clone() ) );
1833 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1834 derefExpr->get_args().push_back( ptrCastExpr );
1835 newMemberExpr = derefExpr;
1836 }
1837
1838 delete memberExpr;
1839 return newMemberExpr;
1840 }
1841
1842 ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) {
1843 ObjectDecl *newObj = new ObjectDecl( name, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, init );
1844 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
1845 return newObj;
1846 }
1847
1848 void PolyGenericCalculator::addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ) {
1849 for ( std::list< Type* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
1850 if ( findGeneric( *param ) ) {
1851 // push size/align vars for a generic parameter back
1852 std::string paramName = mangleType( *param );
1853 layoutCall->get_args().push_back( new NameExpr( sizeofName( paramName ) ) );
1854 layoutCall->get_args().push_back( new NameExpr( alignofName( paramName ) ) );
1855 } else {
1856 layoutCall->get_args().push_back( new SizeofExpr( (*param)->clone() ) );
1857 layoutCall->get_args().push_back( new AlignofExpr( (*param)->clone() ) );
1858 }
1859 }
1860 }
1861
1862 /// returns true if any of the otype parameters have a dynamic layout and puts all otype parameters in the output list
1863 bool findGenericParams( std::list< TypeDecl* > &baseParams, std::list< Expression* > &typeParams, std::list< Type* > &out ) {
1864 bool hasDynamicLayout = false;
1865
1866 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
1867 std::list< Expression* >::const_iterator typeParam = typeParams.begin();
1868 for ( ; baseParam != baseParams.end() && typeParam != typeParams.end(); ++baseParam, ++typeParam ) {
1869 // skip non-otype parameters
1870 if ( (*baseParam)->get_kind() != TypeDecl::Any ) continue;
1871 TypeExpr *typeExpr = dynamic_cast< TypeExpr* >( *typeParam );
1872 assert( typeExpr && "all otype parameters should be type expressions" );
1873
1874 Type *type = typeExpr->get_type();
1875 out.push_back( type );
1876 if ( isPolyType( type ) ) hasDynamicLayout = true;
1877 }
1878 assert( baseParam == baseParams.end() && typeParam == typeParams.end() );
1879
1880 return hasDynamicLayout;
1881 }
1882
1883 bool PolyGenericCalculator::findGeneric( Type *ty ) {
1884 ty = replaceTypeInst( ty, env );
1885
1886 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) {
1887 if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() ) {
1888 // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set
1889 return true;
1890 }
1891 return false;
1892 } else if ( StructInstType *structTy = dynamic_cast< StructInstType* >( ty ) ) {
1893 // check if this type already has a layout generated for it
1894 std::string typeName = mangleType( ty );
1895 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
1896
1897 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
1898 std::list< Type* > otypeParams;
1899 if ( ! findGenericParams( *structTy->get_baseParameters(), structTy->get_parameters(), otypeParams ) ) return false;
1900
1901 // insert local variables for layout and generate call to layout function
1902 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
1903 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1904
1905 int n_members = structTy->get_baseStruct()->get_members().size();
1906 if ( n_members == 0 ) {
1907 // all empty structs have the same layout - size 1, align 1
1908 makeVar( sizeofName( typeName ), layoutType, new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
1909 makeVar( alignofName( typeName ), layoutType->clone(), new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
1910 // NOTE zero-length arrays are forbidden in C, so empty structs have no offsetof array
1911 } else {
1912 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
1913 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
1914 ObjectDecl *offsetVar = makeVar( offsetofName( typeName ), new ArrayType( Type::Qualifiers(), layoutType->clone(), new ConstantExpr( Constant::from_int( n_members ) ), false, false ) );
1915
1916 // generate call to layout function
1917 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( structTy->get_baseStruct() ) ) );
1918 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
1919 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
1920 layoutCall->get_args().push_back( new VariableExpr( offsetVar ) );
1921 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
1922
1923 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
1924 }
1925
1926 return true;
1927 } else if ( UnionInstType *unionTy = dynamic_cast< UnionInstType* >( ty ) ) {
1928 // check if this type already has a layout generated for it
1929 std::string typeName = mangleType( ty );
1930 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
1931
1932 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
1933 std::list< Type* > otypeParams;
1934 if ( ! findGenericParams( *unionTy->get_baseParameters(), unionTy->get_parameters(), otypeParams ) ) return false;
1935
1936 // insert local variables for layout and generate call to layout function
1937 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
1938 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1939
1940 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
1941 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
1942
1943 // generate call to layout function
1944 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( unionTy->get_baseUnion() ) ) );
1945 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
1946 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
1947 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
1948
1949 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
1950
1951 return true;
1952 }
1953
1954 return false;
1955 }
1956
1957 Expression *PolyGenericCalculator::mutate( SizeofExpr *sizeofExpr ) {
1958 Type *ty = sizeofExpr->get_type();
1959 if ( findGeneric( ty ) ) {
1960 Expression *ret = new NameExpr( sizeofName( mangleType( ty ) ) );
1961 delete sizeofExpr;
1962 return ret;
1963 }
1964 return sizeofExpr;
1965 }
1966
1967 Expression *PolyGenericCalculator::mutate( AlignofExpr *alignofExpr ) {
1968 Type *ty = alignofExpr->get_type();
1969 if ( findGeneric( ty ) ) {
1970 Expression *ret = new NameExpr( alignofName( mangleType( ty ) ) );
1971 delete alignofExpr;
1972 return ret;
1973 }
1974 return alignofExpr;
1975 }
1976
1977 Expression *PolyGenericCalculator::mutate( OffsetofExpr *offsetofExpr ) {
1978 // mutate, exiting early if no longer OffsetofExpr
1979 Expression *expr = Parent::mutate( offsetofExpr );
1980 offsetofExpr = dynamic_cast< OffsetofExpr* >( expr );
1981 if ( ! offsetofExpr ) return expr;
1982
1983 // only mutate expressions for polymorphic structs/unions
1984 Type *ty = offsetofExpr->get_type();
1985 if ( ! findGeneric( ty ) ) return offsetofExpr;
1986
1987 if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) {
1988 // replace offsetof expression by index into offset array
1989 long i = findMember( offsetofExpr->get_member(), structType->get_baseStruct()->get_members() );
1990 if ( i == -1 ) return offsetofExpr;
1991
1992 Expression *offsetInd = makeOffsetIndex( ty, i );
1993 delete offsetofExpr;
1994 return offsetInd;
1995 } else if ( dynamic_cast< UnionInstType* >( ty ) ) {
1996 // all union members are at offset zero
1997 delete offsetofExpr;
1998 return new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "0" ) );
1999 } else return offsetofExpr;
2000 }
2001
2002 Expression *PolyGenericCalculator::mutate( OffsetPackExpr *offsetPackExpr ) {
2003 StructInstType *ty = offsetPackExpr->get_type();
2004
2005 Expression *ret = 0;
2006 if ( findGeneric( ty ) ) {
2007 // pull offset back from generated type information
2008 ret = new NameExpr( offsetofName( mangleType( ty ) ) );
2009 } else {
2010 std::string offsetName = offsetofName( mangleType( ty ) );
2011 if ( knownOffsets.find( offsetName ) != knownOffsets.end() ) {
2012 // use the already-generated offsets for this type
2013 ret = new NameExpr( offsetName );
2014 } else {
2015 knownOffsets.insert( offsetName );
2016
2017 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members();
2018 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2019
2020 // build initializer list for offset array
2021 std::list< Initializer* > inits;
2022 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) {
2023 DeclarationWithType *memberDecl;
2024 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) {
2025 memberDecl = origMember->clone();
2026 } else {
2027 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 );
2028 }
2029 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) );
2030 }
2031
2032 // build the offset array and replace the pack with a reference to it
2033 ObjectDecl *offsetArray = makeVar( offsetName, new ArrayType( Type::Qualifiers(), offsetType, new ConstantExpr( Constant::from_ulong( baseMembers.size() ) ), false, false ),
2034 new ListInit( inits ) );
2035 ret = new VariableExpr( offsetArray );
2036 }
2037 }
2038
2039 delete offsetPackExpr;
2040 return ret;
2041 }
2042
2043 void PolyGenericCalculator::doBeginScope() {
2044 knownLayouts.beginScope();
2045 knownOffsets.beginScope();
2046 }
2047
2048 void PolyGenericCalculator::doEndScope() {
2049 knownLayouts.endScope();
2050 knownOffsets.endScope();
2051 }
2052
2053////////////////////////////////////////// Pass3 ////////////////////////////////////////////////////
2054
2055 template< typename DeclClass >
2056 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) {
2057 scopeTyVars.beginScope();
2058 makeTyVarMap( type, scopeTyVars );
2059
2060 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
2061 ScrubTyVars::scrub( decl, scopeTyVars );
2062
2063 scopeTyVars.endScope();
2064 return ret;
2065 }
2066
2067 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) {
2068 return handleDecl( objectDecl, objectDecl->get_type() );
2069 }
2070
2071 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) {
2072 return handleDecl( functionDecl, functionDecl->get_functionType() );
2073 }
2074
2075 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) {
2076 return handleDecl( typedefDecl, typedefDecl->get_base() );
2077 }
2078
2079 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) {
2080// Initializer *init = 0;
2081// std::list< Expression *> designators;
2082// scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2083// if ( typeDecl->get_base() ) {
2084// init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators );
2085// }
2086// return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init );
2087
2088 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2089 return Mutator::mutate( typeDecl );
2090 }
2091
2092 Type * Pass3::mutate( PointerType *pointerType ) {
2093 scopeTyVars.beginScope();
2094 makeTyVarMap( pointerType, scopeTyVars );
2095
2096 Type *ret = Mutator::mutate( pointerType );
2097
2098 scopeTyVars.endScope();
2099 return ret;
2100 }
2101
2102 Type * Pass3::mutate( FunctionType *functionType ) {
2103 scopeTyVars.beginScope();
2104 makeTyVarMap( functionType, scopeTyVars );
2105
2106 Type *ret = Mutator::mutate( functionType );
2107
2108 scopeTyVars.endScope();
2109 return ret;
2110 }
2111 } // anonymous namespace
2112} // namespace GenPoly
2113
2114// Local Variables: //
2115// tab-width: 4 //
2116// mode: c++ //
2117// compile-command: "make install" //
2118// End: //
Note: See TracBrowser for help on using the repository browser.