source: src/GenPoly/Box.cc@ 83de11e

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay gc_noraii jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 83de11e was 189243c, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

Merge branch 'master' into ctor

Conflicts:

src/GenPoly/Box.cc

  • Property mode set to 100644
File size: 102.9 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Rob Schluntz
12// Last Modified On : Fri May 13 14:51:21 2016
13// Update Count : 295
14//
15
16#include <algorithm>
17#include <iterator>
18#include <list>
19#include <map>
20#include <set>
21#include <stack>
22#include <string>
23#include <utility>
24#include <vector>
25#include <cassert>
26
27#include "Box.h"
28#include "DeclMutator.h"
29#include "PolyMutator.h"
30#include "FindFunction.h"
31#include "ScopedMap.h"
32#include "ScopedSet.h"
33#include "ScrubTyVars.h"
34
35#include "Parser/ParseNode.h"
36
37#include "SynTree/Constant.h"
38#include "SynTree/Declaration.h"
39#include "SynTree/Expression.h"
40#include "SynTree/Initializer.h"
41#include "SynTree/Mutator.h"
42#include "SynTree/Statement.h"
43#include "SynTree/Type.h"
44#include "SynTree/TypeSubstitution.h"
45
46#include "ResolvExpr/TypeEnvironment.h"
47#include "ResolvExpr/TypeMap.h"
48#include "ResolvExpr/typeops.h"
49
50#include "SymTab/Indexer.h"
51#include "SymTab/Mangler.h"
52
53#include "Common/SemanticError.h"
54#include "Common/UniqueName.h"
55#include "Common/utility.h"
56
57#include <ext/functional> // temporary
58
59namespace GenPoly {
60 namespace {
61 const std::list<Label> noLabels;
62
63 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars );
64
65 /// Abstracts type equality for a list of parameter types
66 struct TypeList {
67 TypeList() : params() {}
68 TypeList( const std::list< Type* > &_params ) : params() { cloneAll(_params, params); }
69 TypeList( std::list< Type* > &&_params ) : params( _params ) {}
70
71 TypeList( const TypeList &that ) : params() { cloneAll(that.params, params); }
72 TypeList( TypeList &&that ) : params( std::move( that.params ) ) {}
73
74 /// Extracts types from a list of TypeExpr*
75 TypeList( const std::list< TypeExpr* >& _params ) : params() {
76 for ( std::list< TypeExpr* >::const_iterator param = _params.begin(); param != _params.end(); ++param ) {
77 params.push_back( (*param)->get_type()->clone() );
78 }
79 }
80
81 TypeList& operator= ( const TypeList &that ) {
82 deleteAll( params );
83
84 params.clear();
85 cloneAll( that.params, params );
86
87 return *this;
88 }
89
90 TypeList& operator= ( TypeList &&that ) {
91 deleteAll( params );
92
93 params = std::move( that.params );
94
95 return *this;
96 }
97
98 ~TypeList() { deleteAll( params ); }
99
100 bool operator== ( const TypeList& that ) const {
101 if ( params.size() != that.params.size() ) return false;
102
103 SymTab::Indexer dummy;
104 for ( std::list< Type* >::const_iterator it = params.begin(), jt = that.params.begin(); it != params.end(); ++it, ++jt ) {
105 if ( ! ResolvExpr::typesCompatible( *it, *jt, dummy ) ) return false;
106 }
107 return true;
108 }
109
110 std::list< Type* > params; ///< Instantiation parameters
111 };
112
113 /// Maps a key and a TypeList to the some value, accounting for scope
114 template< typename Key, typename Value >
115 class InstantiationMap {
116 /// Wraps value for a specific (Key, TypeList) combination
117 typedef std::pair< TypeList, Value* > Instantiation;
118 /// List of TypeLists paired with their appropriate values
119 typedef std::vector< Instantiation > ValueList;
120 /// Underlying map type; maps keys to a linear list of corresponding TypeLists and values
121 typedef ScopedMap< Key*, ValueList > InnerMap;
122
123 InnerMap instantiations; ///< instantiations
124
125 public:
126 /// Starts a new scope
127 void beginScope() { instantiations.beginScope(); }
128
129 /// Ends a scope
130 void endScope() { instantiations.endScope(); }
131
132 /// Gets the value for the (key, typeList) pair, returns NULL on none such.
133 Value *lookup( Key *key, const std::list< TypeExpr* >& params ) const {
134 TypeList typeList( params );
135
136 // scan scopes for matches to the key
137 for ( typename InnerMap::const_iterator insts = instantiations.find( key ); insts != instantiations.end(); insts = instantiations.findNext( insts, key ) ) {
138 for ( typename ValueList::const_reverse_iterator inst = insts->second.rbegin(); inst != insts->second.rend(); ++inst ) {
139 if ( inst->first == typeList ) return inst->second;
140 }
141 }
142 // no matching instantiations found
143 return 0;
144 }
145
146 /// Adds a value for a (key, typeList) pair to the current scope
147 void insert( Key *key, const std::list< TypeExpr* > &params, Value *value ) {
148 instantiations[ key ].push_back( Instantiation( TypeList( params ), value ) );
149 }
150 };
151
152 /// Adds layout-generation functions to polymorphic types
153 class LayoutFunctionBuilder : public DeclMutator {
154 unsigned int functionNesting; // current level of nested functions
155 public:
156 LayoutFunctionBuilder() : functionNesting( 0 ) {}
157
158 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
159 virtual Declaration *mutate( StructDecl *structDecl );
160 virtual Declaration *mutate( UnionDecl *unionDecl );
161 };
162
163 /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call
164 class Pass1 : public PolyMutator {
165 public:
166 Pass1();
167 virtual Expression *mutate( ApplicationExpr *appExpr );
168 virtual Expression *mutate( AddressExpr *addrExpr );
169 virtual Expression *mutate( UntypedExpr *expr );
170 virtual DeclarationWithType* mutate( FunctionDecl *functionDecl );
171 virtual TypeDecl *mutate( TypeDecl *typeDecl );
172 virtual Expression *mutate( CommaExpr *commaExpr );
173 virtual Expression *mutate( ConditionalExpr *condExpr );
174 virtual Statement * mutate( ReturnStmt *returnStmt );
175 virtual Type *mutate( PointerType *pointerType );
176 virtual Type * mutate( FunctionType *functionType );
177
178 virtual void doBeginScope();
179 virtual void doEndScope();
180 private:
181 /// Pass the extra type parameters from polymorphic generic arguments or return types into a function application
182 void passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes );
183 /// passes extra type parameters into a polymorphic function application
184 void passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
185 /// wraps a function application with a new temporary for the out-parameter return value
186 Expression *addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg );
187 /// Replaces all the type parameters of a generic type with their concrete equivalents under the current environment
188 void replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params );
189 /// Replaces a polymorphic type with its concrete equivalant under the current environment (returns itself if concrete).
190 /// If `doClone` is set to false, will not clone interior types
191 Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true );
192 /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value
193 Expression *addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg );
194 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
195 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars );
196 void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
197 void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars );
198 /// Stores assignment operators from assertion list in local map of assignment operations
199 void findAssignOps( const std::list< TypeDecl *> &forall );
200 void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars );
201 FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars );
202 /// Replaces intrinsic operator functions with their arithmetic desugaring
203 Expression *handleIntrinsics( ApplicationExpr *appExpr );
204 /// Inserts a new temporary variable into the current scope with an auto-generated name
205 ObjectDecl *makeTemporary( Type *type );
206
207 ScopedMap< std::string, DeclarationWithType *> assignOps; ///< Currently known type variable assignment operators
208 ResolvExpr::TypeMap< DeclarationWithType > scopedAssignOps; ///< Currently known assignment operators
209 ScopedMap< std::string, DeclarationWithType* > adapters; ///< Set of adapter functions in the current scope
210
211 DeclarationWithType *retval;
212 bool useRetval;
213 UniqueName tempNamer;
214 };
215
216 /// * Moves polymorphic returns in function types to pointer-type parameters
217 /// * adds type size and assertion parameters to parameter lists
218 class Pass2 : public PolyMutator {
219 public:
220 template< typename DeclClass >
221 DeclClass *handleDecl( DeclClass *decl, Type *type );
222 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
223 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
224 virtual TypeDecl *mutate( TypeDecl *typeDecl );
225 virtual TypedefDecl *mutate( TypedefDecl *typedefDecl );
226 virtual Type *mutate( PointerType *pointerType );
227 virtual Type *mutate( FunctionType *funcType );
228
229 private:
230 void addAdapters( FunctionType *functionType );
231
232 std::map< UniqueId, std::string > adapterName;
233 };
234
235 /// Mutator pass that replaces concrete instantiations of generic types with actual struct declarations, scoped appropriately
236 class GenericInstantiator : public DeclMutator {
237 /// Map of (generic type, parameter list) pairs to concrete type instantiations
238 InstantiationMap< AggregateDecl, AggregateDecl > instantiations;
239 /// Namer for concrete types
240 UniqueName typeNamer;
241
242 public:
243 GenericInstantiator() : DeclMutator(), instantiations(), typeNamer("_conc_") {}
244
245 virtual Type* mutate( StructInstType *inst );
246 virtual Type* mutate( UnionInstType *inst );
247
248 // virtual Expression* mutate( MemberExpr *memberExpr );
249
250 virtual void doBeginScope();
251 virtual void doEndScope();
252 private:
253 /// Wrap instantiation lookup for structs
254 StructDecl* lookup( StructInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (StructDecl*)instantiations.lookup( inst->get_baseStruct(), typeSubs ); }
255 /// Wrap instantiation lookup for unions
256 UnionDecl* lookup( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (UnionDecl*)instantiations.lookup( inst->get_baseUnion(), typeSubs ); }
257 /// Wrap instantiation insertion for structs
258 void insert( StructInstType *inst, const std::list< TypeExpr* > &typeSubs, StructDecl *decl ) { instantiations.insert( inst->get_baseStruct(), typeSubs, decl ); }
259 /// Wrap instantiation insertion for unions
260 void insert( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs, UnionDecl *decl ) { instantiations.insert( inst->get_baseUnion(), typeSubs, decl ); }
261 };
262
263 /// Replaces member and size/align/offsetof expressions on polymorphic generic types with calculated expressions.
264 /// * Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference
265 /// * Calculates polymorphic offsetof expressions from offset array
266 /// * Inserts dynamic calculation of polymorphic type layouts where needed
267 class PolyGenericCalculator : public PolyMutator {
268 public:
269 template< typename DeclClass >
270 DeclClass *handleDecl( DeclClass *decl, Type *type );
271 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
272 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
273 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
274 virtual TypeDecl *mutate( TypeDecl *objectDecl );
275 virtual Statement *mutate( DeclStmt *declStmt );
276 virtual Type *mutate( PointerType *pointerType );
277 virtual Type *mutate( FunctionType *funcType );
278 virtual Expression *mutate( MemberExpr *memberExpr );
279 virtual Expression *mutate( SizeofExpr *sizeofExpr );
280 virtual Expression *mutate( AlignofExpr *alignofExpr );
281 virtual Expression *mutate( OffsetofExpr *offsetofExpr );
282 virtual Expression *mutate( OffsetPackExpr *offsetPackExpr );
283
284 virtual void doBeginScope();
285 virtual void doEndScope();
286
287 private:
288 /// Makes a new variable in the current scope with the given name, type & optional initializer
289 ObjectDecl *makeVar( const std::string &name, Type *type, Initializer *init = 0 );
290 /// returns true if the type has a dynamic layout; such a layout will be stored in appropriately-named local variables when the function returns
291 bool findGeneric( Type *ty );
292 /// adds type parameters to the layout call; will generate the appropriate parameters if needed
293 void addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams );
294
295 /// Enters a new scope for type-variables, adding the type variables from ty
296 void beginTypeScope( Type *ty );
297 /// Exits the type-variable scope
298 void endTypeScope();
299
300 ScopedSet< std::string > knownLayouts; ///< Set of generic type layouts known in the current scope, indexed by sizeofName
301 ScopedSet< std::string > knownOffsets; ///< Set of non-generic types for which the offset array exists in the current scope, indexed by offsetofName
302 };
303
304 /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, and sizeof expressions of polymorphic types with the proper variable
305 class Pass3 : public PolyMutator {
306 public:
307 template< typename DeclClass >
308 DeclClass *handleDecl( DeclClass *decl, Type *type );
309 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
310 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
311 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
312 virtual TypeDecl *mutate( TypeDecl *objectDecl );
313 virtual Type *mutate( PointerType *pointerType );
314 virtual Type *mutate( FunctionType *funcType );
315 private:
316 };
317
318 } // anonymous namespace
319
320 /// version of mutateAll with special handling for translation unit so you can check the end of the prelude when debugging
321 template< typename MutatorType >
322 inline void mutateTranslationUnit( std::list< Declaration* > &translationUnit, MutatorType &mutator ) {
323 bool seenIntrinsic = false;
324 SemanticError errors;
325 for ( typename std::list< Declaration* >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
326 try {
327 if ( *i ) {
328 if ( (*i)->get_linkage() == LinkageSpec::Intrinsic ) {
329 seenIntrinsic = true;
330 } else if ( seenIntrinsic ) {
331 seenIntrinsic = false; // break on this line when debugging for end of prelude
332 }
333
334 *i = dynamic_cast< Declaration* >( (*i)->acceptMutator( mutator ) );
335 assert( *i );
336 } // if
337 } catch( SemanticError &e ) {
338 errors.append( e );
339 } // try
340 } // for
341 if ( ! errors.isEmpty() ) {
342 throw errors;
343 } // if
344 }
345
346 void box( std::list< Declaration *>& translationUnit ) {
347 LayoutFunctionBuilder layoutBuilder;
348 Pass1 pass1;
349 Pass2 pass2;
350 GenericInstantiator instantiator;
351 PolyGenericCalculator polyCalculator;
352 Pass3 pass3;
353
354 layoutBuilder.mutateDeclarationList( translationUnit );
355 mutateTranslationUnit/*All*/( translationUnit, pass1 );
356 mutateTranslationUnit/*All*/( translationUnit, pass2 );
357 instantiator.mutateDeclarationList( translationUnit );
358 mutateTranslationUnit/*All*/( translationUnit, polyCalculator );
359 mutateTranslationUnit/*All*/( translationUnit, pass3 );
360 }
361
362 ////////////////////////////////// LayoutFunctionBuilder ////////////////////////////////////////////
363
364 DeclarationWithType *LayoutFunctionBuilder::mutate( FunctionDecl *functionDecl ) {
365 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
366 mutateAll( functionDecl->get_oldDecls(), *this );
367 ++functionNesting;
368 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
369 --functionNesting;
370 return functionDecl;
371 }
372
373 /// Get a list of type declarations that will affect a layout function
374 std::list< TypeDecl* > takeOtypeOnly( std::list< TypeDecl* > &decls ) {
375 std::list< TypeDecl * > otypeDecls;
376
377 for ( std::list< TypeDecl* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
378 if ( (*decl)->get_kind() == TypeDecl::Any ) {
379 otypeDecls.push_back( *decl );
380 }
381 }
382
383 return otypeDecls;
384 }
385
386 /// Adds parameters for otype layout to a function type
387 void addOtypeParams( FunctionType *layoutFnType, std::list< TypeDecl* > &otypeParams ) {
388 BasicType sizeAlignType( Type::Qualifiers(), BasicType::LongUnsignedInt );
389
390 for ( std::list< TypeDecl* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
391 TypeInstType paramType( Type::Qualifiers(), (*param)->get_name(), *param );
392 std::string paramName = mangleType( &paramType );
393 layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
394 layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
395 }
396 }
397
398 /// Builds a layout function declaration
399 FunctionDecl *buildLayoutFunctionDecl( AggregateDecl *typeDecl, unsigned int functionNesting, FunctionType *layoutFnType ) {
400 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
401 // because each unit generates copies of the default routines for each aggregate.
402 FunctionDecl *layoutDecl = new FunctionDecl(
403 layoutofName( typeDecl ), functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static, LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ), true, false );
404 layoutDecl->fixUniqueId();
405 return layoutDecl;
406 }
407
408 /// Makes a unary operation
409 Expression *makeOp( const std::string &name, Expression *arg ) {
410 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
411 expr->get_args().push_back( arg );
412 return expr;
413 }
414
415 /// Makes a binary operation
416 Expression *makeOp( const std::string &name, Expression *lhs, Expression *rhs ) {
417 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
418 expr->get_args().push_back( lhs );
419 expr->get_args().push_back( rhs );
420 return expr;
421 }
422
423 /// Returns the dereference of a local pointer variable
424 Expression *derefVar( ObjectDecl *var ) {
425 return makeOp( "*?", new VariableExpr( var ) );
426 }
427
428 /// makes an if-statement with a single-expression if-block and no then block
429 Statement *makeCond( Expression *cond, Expression *ifPart ) {
430 return new IfStmt( noLabels, cond, new ExprStmt( noLabels, ifPart ), 0 );
431 }
432
433 /// makes a statement that assigns rhs to lhs if lhs < rhs
434 Statement *makeAssignMax( Expression *lhs, Expression *rhs ) {
435 return makeCond( makeOp( "?<?", lhs, rhs ), makeOp( "?=?", lhs->clone(), rhs->clone() ) );
436 }
437
438 /// makes a statement that aligns lhs to rhs (rhs should be an integer power of two)
439 Statement *makeAlignTo( Expression *lhs, Expression *rhs ) {
440 // check that the lhs is zeroed out to the level of rhs
441 Expression *ifCond = makeOp( "?&?", lhs, makeOp( "?-?", rhs, new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "1" ) ) ) );
442 // if not aligned, increment to alignment
443 Expression *ifExpr = makeOp( "?+=?", lhs->clone(), makeOp( "?-?", rhs->clone(), ifCond->clone() ) );
444 return makeCond( ifCond, ifExpr );
445 }
446
447 /// adds an expression to a compound statement
448 void addExpr( CompoundStmt *stmts, Expression *expr ) {
449 stmts->get_kids().push_back( new ExprStmt( noLabels, expr ) );
450 }
451
452 /// adds a statement to a compound statement
453 void addStmt( CompoundStmt *stmts, Statement *stmt ) {
454 stmts->get_kids().push_back( stmt );
455 }
456
457 Declaration *LayoutFunctionBuilder::mutate( StructDecl *structDecl ) {
458 // do not generate layout function for "empty" tag structs
459 if ( structDecl->get_members().empty() ) return structDecl;
460
461 // get parameters that can change layout, exiting early if none
462 std::list< TypeDecl* > otypeParams = takeOtypeOnly( structDecl->get_parameters() );
463 if ( otypeParams.empty() ) return structDecl;
464
465 // build layout function signature
466 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
467 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
468 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
469
470 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
471 layoutFnType->get_parameters().push_back( sizeParam );
472 ObjectDecl *alignParam = new ObjectDecl( alignofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
473 layoutFnType->get_parameters().push_back( alignParam );
474 ObjectDecl *offsetParam = new ObjectDecl( offsetofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
475 layoutFnType->get_parameters().push_back( offsetParam );
476 addOtypeParams( layoutFnType, otypeParams );
477
478 // build function decl
479 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl, functionNesting, layoutFnType );
480
481 // calculate struct layout in function body
482
483 // initialize size and alignment to 0 and 1 (will have at least one member to re-edit size
484 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "0" ) ) ) );
485 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
486 unsigned long n_members = 0;
487 bool firstMember = true;
488 for ( std::list< Declaration* >::const_iterator member = structDecl->get_members().begin(); member != structDecl->get_members().end(); ++member ) {
489 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
490 assert( dwt );
491 Type *memberType = dwt->get_type();
492
493 if ( firstMember ) {
494 firstMember = false;
495 } else {
496 // make sure all members after the first (automatically aligned at 0) are properly padded for alignment
497 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), new AlignofExpr( memberType->clone() ) ) );
498 }
499
500 // place current size in the current offset index
501 addExpr( layoutDecl->get_statements(), makeOp( "?=?", makeOp( "?[?]", new VariableExpr( offsetParam ), new ConstantExpr( Constant::from_ulong( n_members ) ) ),
502 derefVar( sizeParam ) ) );
503 ++n_members;
504
505 // add member size to current size
506 addExpr( layoutDecl->get_statements(), makeOp( "?+=?", derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
507
508 // take max of member alignment and global alignment
509 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
510 }
511 // make sure the type is end-padded to a multiple of its alignment
512 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
513
514 addDeclarationAfter( layoutDecl );
515 return structDecl;
516 }
517
518 Declaration *LayoutFunctionBuilder::mutate( UnionDecl *unionDecl ) {
519 // do not generate layout function for "empty" tag unions
520 if ( unionDecl->get_members().empty() ) return unionDecl;
521
522 // get parameters that can change layout, exiting early if none
523 std::list< TypeDecl* > otypeParams = takeOtypeOnly( unionDecl->get_parameters() );
524 if ( otypeParams.empty() ) return unionDecl;
525
526 // build layout function signature
527 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
528 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
529 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
530
531 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
532 layoutFnType->get_parameters().push_back( sizeParam );
533 ObjectDecl *alignParam = new ObjectDecl( alignofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
534 layoutFnType->get_parameters().push_back( alignParam );
535 addOtypeParams( layoutFnType, otypeParams );
536
537 // build function decl
538 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl, functionNesting, layoutFnType );
539
540 // calculate union layout in function body
541 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
542 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
543 for ( std::list< Declaration* >::const_iterator member = unionDecl->get_members().begin(); member != unionDecl->get_members().end(); ++member ) {
544 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
545 assert( dwt );
546 Type *memberType = dwt->get_type();
547
548 // take max member size and global size
549 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
550
551 // take max of member alignment and global alignment
552 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
553 }
554 // make sure the type is end-padded to a multiple of its alignment
555 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
556
557 addDeclarationAfter( layoutDecl );
558 return unionDecl;
559 }
560
561 ////////////////////////////////////////// Pass1 ////////////////////////////////////////////////////
562
563 namespace {
564 std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) {
565 std::stringstream name;
566
567 // NOTE: this function previously used isPolyObj, which failed to produce
568 // the correct thing in some situations. It's not clear to me why this wasn't working.
569
570 // if the return type or a parameter type involved polymorphic types, then the adapter will need
571 // to take those polymorphic types as pointers. Therefore, there can be two different functions
572 // with the same mangled name, so we need to further mangle the names.
573 for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) {
574 if ( isPolyType( (*retval)->get_type(), tyVars ) ) {
575 name << "P";
576 } else {
577 name << "M";
578 }
579 }
580 name << "_";
581 std::list< DeclarationWithType *> &paramList = function->get_parameters();
582 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
583 if ( isPolyType( (*arg)->get_type(), tyVars ) ) {
584 name << "P";
585 } else {
586 name << "M";
587 }
588 } // for
589 return name.str();
590 }
591
592 std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) {
593 return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars );
594 }
595
596 std::string makeAdapterName( const std::string &mangleName ) {
597 return "_adapter" + mangleName;
598 }
599
600 Pass1::Pass1() : useRetval( false ), tempNamer( "_temp" ) {}
601
602 /// Returns T if the given declaration is (*?=?)(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
603 TypeInstType *isTypeInstAssignment( DeclarationWithType *decl ) {
604 if ( decl->get_name() == "?=?" ) {
605 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
606 if ( funType->get_parameters().size() == 2 ) {
607 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
608 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
609 if ( TypeInstType *refType2 = dynamic_cast< TypeInstType *>( funType->get_parameters().back()->get_type() ) ) {
610 if ( refType->get_name() == refType2->get_name() ) {
611 return refType;
612 } // if
613 } // if
614 } // if
615 } // if
616 } // if
617 } // if
618 } // if
619 return 0;
620 }
621
622 /// returns T if the given declaration is: (*?=?)(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
623 /// Only picks assignments where neither parameter is cv-qualified
624 Type *isAssignment( DeclarationWithType *decl ) {
625 if ( decl->get_name() == "?=?" ) {
626 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
627 if ( funType->get_parameters().size() == 2 ) {
628 Type::Qualifiers defaultQualifiers;
629 Type *paramType1 = funType->get_parameters().front()->get_type();
630 if ( paramType1->get_qualifiers() != defaultQualifiers ) return 0;
631 Type *paramType2 = funType->get_parameters().back()->get_type();
632 if ( paramType2->get_qualifiers() != defaultQualifiers ) return 0;
633
634 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType1 ) ) {
635 Type *baseType1 = pointerType->get_base();
636 if ( baseType1->get_qualifiers() != defaultQualifiers ) return 0;
637 SymTab::Indexer dummy;
638 if ( ResolvExpr::typesCompatible( baseType1, paramType2, dummy ) ) {
639 return baseType1;
640 } // if
641 } // if
642 } // if
643 } // if
644 } // if
645 return 0;
646 }
647
648 void Pass1::findAssignOps( const std::list< TypeDecl *> &forall ) {
649 // what if a nested function uses an assignment operator?
650 // assignOps.clear();
651 for ( std::list< TypeDecl *>::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
652 for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) {
653 std::string typeName;
654 if ( TypeInstType *typeInst = isTypeInstAssignment( *assert ) ) {
655 assignOps[ typeInst->get_name() ] = *assert;
656 } // if
657 } // for
658 } // for
659 }
660
661 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) {
662 // if this is a assignment function, put it in the map for this scope
663 if ( Type *assignedType = isAssignment( functionDecl ) ) {
664 if ( ! dynamic_cast< TypeInstType* >( assignedType ) ) {
665 scopedAssignOps.insert( assignedType, functionDecl );
666 }
667 }
668
669 if ( functionDecl->get_statements() ) { // empty routine body ?
670 doBeginScope();
671 scopeTyVars.beginScope();
672 assignOps.beginScope();
673 DeclarationWithType *oldRetval = retval;
674 bool oldUseRetval = useRetval;
675
676 // process polymorphic return value
677 retval = 0;
678 if ( isPolyRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) {
679 retval = functionDecl->get_functionType()->get_returnVals().front();
680
681 // give names to unnamed return values
682 if ( retval->get_name() == "" ) {
683 retval->set_name( "_retparm" );
684 retval->set_linkage( LinkageSpec::C );
685 } // if
686 } // if
687
688 FunctionType *functionType = functionDecl->get_functionType();
689 makeTyVarMap( functionDecl->get_functionType(), scopeTyVars );
690 findAssignOps( functionDecl->get_functionType()->get_forall() );
691
692 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
693 std::list< FunctionType *> functions;
694 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
695 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
696 findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter );
697 } // for
698 } // for
699 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
700 findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter );
701 } // for
702
703 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
704 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
705 if ( adapters.find( mangleName ) == adapters.end() ) {
706 std::string adapterName = makeAdapterName( mangleName );
707 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) ) );
708 } // if
709 } // for
710
711 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) );
712
713 scopeTyVars.endScope();
714 assignOps.endScope();
715 retval = oldRetval;
716 useRetval = oldUseRetval;
717 doEndScope();
718 } // if
719 return functionDecl;
720 }
721
722 TypeDecl *Pass1::mutate( TypeDecl *typeDecl ) {
723 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
724 return Mutator::mutate( typeDecl );
725 }
726
727 Expression *Pass1::mutate( CommaExpr *commaExpr ) {
728 bool oldUseRetval = useRetval;
729 useRetval = false;
730 commaExpr->set_arg1( maybeMutate( commaExpr->get_arg1(), *this ) );
731 useRetval = oldUseRetval;
732 commaExpr->set_arg2( maybeMutate( commaExpr->get_arg2(), *this ) );
733 return commaExpr;
734 }
735
736 Expression *Pass1::mutate( ConditionalExpr *condExpr ) {
737 bool oldUseRetval = useRetval;
738 useRetval = false;
739 condExpr->set_arg1( maybeMutate( condExpr->get_arg1(), *this ) );
740 useRetval = oldUseRetval;
741 condExpr->set_arg2( maybeMutate( condExpr->get_arg2(), *this ) );
742 condExpr->set_arg3( maybeMutate( condExpr->get_arg3(), *this ) );
743 return condExpr;
744
745 }
746
747 void Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) {
748 Type *polyType = isPolyType( parmType, exprTyVars );
749 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
750 std::string typeName = mangleType( polyType );
751 if ( seenTypes.count( typeName ) ) return;
752
753 arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) );
754 arg++;
755 arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) );
756 arg++;
757 if ( dynamic_cast< StructInstType* >( polyType ) ) {
758 if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) {
759 // zero-length arrays are forbidden by C, so don't pass offset for empty struct
760 if ( ! argBaseStructType->get_baseStruct()->get_members().empty() ) {
761 arg = appExpr->get_args().insert( arg, new OffsetPackExpr( argBaseStructType->clone() ) );
762 arg++;
763 }
764 } else {
765 throw SemanticError( "Cannot pass non-struct type for generic struct" );
766 }
767 }
768
769 seenTypes.insert( typeName );
770 }
771 }
772
773 void Pass1::passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
774 // pass size/align for type variables
775 for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) {
776 ResolvExpr::EqvClass eqvClass;
777 assert( env );
778 if ( tyParm->second == TypeDecl::Any ) {
779 Type *concrete = env->lookup( tyParm->first );
780 if ( concrete ) {
781 arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) );
782 arg++;
783 arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) );
784 arg++;
785 } else {
786 /// xxx - should this be an assertion?
787 throw SemanticError( "unbound type variable: " + tyParm->first + " in application ", appExpr );
788 } // if
789 } // if
790 } // for
791
792 // add size/align for generic types to parameter list
793 if ( appExpr->get_function()->get_results().empty() ) return;
794 FunctionType *funcType = getFunctionType( appExpr->get_function()->get_results().front() );
795 assert( funcType );
796
797 std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin();
798 std::list< Expression* >::const_iterator fnArg = arg;
799 std::set< std::string > seenTypes; //< names for generic types we've seen
800
801 // a polymorphic return type may need to be added to the argument list
802 if ( polyRetType ) {
803 Type *concRetType = replaceWithConcrete( appExpr, polyRetType );
804 passArgTypeVars( appExpr, polyRetType, concRetType, arg, exprTyVars, seenTypes );
805 }
806
807 // add type information args for presently unseen types in parameter list
808 for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {
809 VariableExpr *fnArgBase = getBaseVar( *fnArg );
810 if ( ! fnArgBase || fnArgBase->get_results().empty() ) continue;
811 passArgTypeVars( appExpr, (*fnParm)->get_type(), fnArgBase->get_results().front(), arg, exprTyVars, seenTypes );
812 }
813 }
814
815 ObjectDecl *Pass1::makeTemporary( Type *type ) {
816 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, 0 );
817 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
818 return newObj;
819 }
820
821 Expression *Pass1::addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ) {
822 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
823 // if ( useRetval ) {
824 // assert( retval );
825 // arg = appExpr->get_args().insert( arg, new VariableExpr( retval ) );
826 // arg++;
827 // } else {
828
829 // Create temporary to hold return value of polymorphic function and produce that temporary as a result
830 // using a comma expression. Possibly change comma expression into statement expression "{}" for multiple
831 // return values.
832 ObjectDecl *newObj = makeTemporary( retType->clone() );
833 Expression *paramExpr = new VariableExpr( newObj );
834
835 // If the type of the temporary is not polymorphic, box temporary by taking its address;
836 // otherwise the temporary is already boxed and can be used directly.
837 if ( ! isPolyType( newObj->get_type(), scopeTyVars, env ) ) {
838 paramExpr = new AddressExpr( paramExpr );
839 } // if
840 arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call
841 arg++;
842 // Build a comma expression to call the function and emulate a normal return.
843 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) );
844 commaExpr->set_env( appExpr->get_env() );
845 appExpr->set_env( 0 );
846 return commaExpr;
847 // } // if
848 // return appExpr;
849 }
850
851 void Pass1::replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ) {
852 for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) {
853 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
854 assert(paramType && "Aggregate parameters should be type expressions");
855 paramType->set_type( replaceWithConcrete( appExpr, paramType->get_type(), false ) );
856 }
857 }
858
859 Type *Pass1::replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone ) {
860 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) {
861 Type *concrete = env->lookup( typeInst->get_name() );
862 if ( concrete == 0 ) {
863 throw SemanticError( "Unbound type variable " + typeInst->get_name() + " in ", appExpr );
864 } // if
865 return concrete;
866 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) {
867 if ( doClone ) {
868 structType = structType->clone();
869 }
870 replaceParametersWithConcrete( appExpr, structType->get_parameters() );
871 return structType;
872 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) {
873 if ( doClone ) {
874 unionType = unionType->clone();
875 }
876 replaceParametersWithConcrete( appExpr, unionType->get_parameters() );
877 return unionType;
878 }
879 return type;
880 }
881
882 Expression *Pass1::addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg ) {
883 assert( env );
884 Type *concrete = replaceWithConcrete( appExpr, polyType );
885 // add out-parameter for return value
886 return addRetParam( appExpr, function, concrete, arg );
887 }
888
889 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
890 Expression *ret = appExpr;
891 if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) {
892 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg );
893 } // if
894 std::string mangleName = mangleAdapterName( function, tyVars );
895 std::string adapterName = makeAdapterName( mangleName );
896
897 // cast adaptee to void (*)(), since it may have any type inside a polymorphic function
898 Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) );
899 appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) );
900 appExpr->set_function( new NameExpr( adapterName ) );
901
902 return ret;
903 }
904
905 void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) {
906 assert( ! arg->get_results().empty() );
907 if ( isPolyType( param, exprTyVars ) ) {
908 if ( isPolyType( arg->get_results().front() ) ) {
909 // if the argument's type is polymorphic, we don't need to box again!
910 return;
911 } else if ( arg->get_results().front()->get_isLvalue() ) {
912 // VariableExpr and MemberExpr are lvalues; need to check this isn't coming from the second arg of a comma expression though (not an lvalue)
913 // xxx - need to test that this code is still reachable
914 if ( CommaExpr *commaArg = dynamic_cast< CommaExpr* >( arg ) ) {
915 commaArg->set_arg2( new AddressExpr( commaArg->get_arg2() ) );
916 } else {
917 arg = new AddressExpr( arg );
918 }
919 } else {
920 // use type computed in unification to declare boxed variables
921 Type * newType = param->clone();
922 if ( env ) env->apply( newType );
923 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, newType, 0 );
924 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right???
925 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
926 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
927 assign->get_args().push_back( new VariableExpr( newObj ) );
928 assign->get_args().push_back( arg );
929 stmtsToAdd.push_back( new ExprStmt( noLabels, assign ) );
930 arg = new AddressExpr( new VariableExpr( newObj ) );
931 } // if
932 } // if
933 }
934
935 /// cast parameters to polymorphic functions so that types are replaced with
936 /// void * if they are type parameters in the formal type.
937 /// this gets rid of warnings from gcc.
938 void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) {
939 Type * newType = formal->clone();
940 if ( getFunctionType( newType ) ) {
941 newType = ScrubTyVars::scrub( newType, tyVars );
942 actual = new CastExpr( actual, newType );
943 } // if
944 }
945
946 void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
947 for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->get_parameters().end(); ++param, ++arg ) {
948 assert( arg != appExpr->get_args().end() );
949 addCast( *arg, (*param)->get_type(), exprTyVars );
950 boxParam( (*param)->get_type(), *arg, exprTyVars );
951 } // for
952 }
953
954 void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
955 std::list< Expression *>::iterator cur = arg;
956 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
957 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
958 InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() );
959 assert( inferParam != appExpr->get_inferParams().end() && "NOTE: Explicit casts of polymorphic functions to compatible monomorphic functions are currently unsupported" );
960 Expression *newExpr = inferParam->second.expr->clone();
961 addCast( newExpr, (*assert)->get_type(), tyVars );
962 boxParam( (*assert)->get_type(), newExpr, tyVars );
963 appExpr->get_args().insert( cur, newExpr );
964 } // for
965 } // for
966 }
967
968 void makeRetParm( FunctionType *funcType ) {
969 DeclarationWithType *retParm = funcType->get_returnVals().front();
970
971 // make a new parameter that is a pointer to the type of the old return value
972 retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) );
973 funcType->get_parameters().push_front( retParm );
974
975 // we don't need the return value any more
976 funcType->get_returnVals().clear();
977 }
978
979 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ) {
980 // actually make the adapter type
981 FunctionType *adapter = adaptee->clone();
982 if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) {
983 makeRetParm( adapter );
984 } // if
985 adapter->get_parameters().push_front( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ) );
986 return adapter;
987 }
988
989 Expression *makeAdapterArg( DeclarationWithType *param, DeclarationWithType *arg, DeclarationWithType *realParam, const TyVarMap &tyVars ) {
990 assert( param );
991 assert( arg );
992 if ( isPolyType( realParam->get_type(), tyVars ) ) {
993 if ( ! isPolyType( arg->get_type() ) ) {
994 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
995 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) );
996 deref->get_results().push_back( arg->get_type()->clone() );
997 return deref;
998 } // if
999 } // if
1000 return new VariableExpr( param );
1001 }
1002
1003 void addAdapterParams( ApplicationExpr *adapteeApp, std::list< DeclarationWithType *>::iterator arg, std::list< DeclarationWithType *>::iterator param, std::list< DeclarationWithType *>::iterator paramEnd, std::list< DeclarationWithType *>::iterator realParam, const TyVarMap &tyVars ) {
1004 UniqueName paramNamer( "_p" );
1005 for ( ; param != paramEnd; ++param, ++arg, ++realParam ) {
1006 if ( (*param)->get_name() == "" ) {
1007 (*param)->set_name( paramNamer.newName() );
1008 (*param)->set_linkage( LinkageSpec::C );
1009 } // if
1010 adapteeApp->get_args().push_back( makeAdapterArg( *param, *arg, *realParam, tyVars ) );
1011 } // for
1012 }
1013
1014 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) {
1015 FunctionType *adapterType = makeAdapterType( adaptee, tyVars );
1016 adapterType = ScrubTyVars::scrub( adapterType, tyVars );
1017 DeclarationWithType *adapteeDecl = adapterType->get_parameters().front();
1018 adapteeDecl->set_name( "_adaptee" );
1019 ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) );
1020 Statement *bodyStmt;
1021
1022 std::list< TypeDecl *>::iterator tyArg = realType->get_forall().begin();
1023 std::list< TypeDecl *>::iterator tyParam = adapterType->get_forall().begin();
1024 std::list< TypeDecl *>::iterator realTyParam = adaptee->get_forall().begin();
1025 for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) {
1026 assert( tyArg != realType->get_forall().end() );
1027 std::list< DeclarationWithType *>::iterator assertArg = (*tyArg)->get_assertions().begin();
1028 std::list< DeclarationWithType *>::iterator assertParam = (*tyParam)->get_assertions().begin();
1029 std::list< DeclarationWithType *>::iterator realAssertParam = (*realTyParam)->get_assertions().begin();
1030 for ( ; assertParam != (*tyParam)->get_assertions().end(); ++assertArg, ++assertParam, ++realAssertParam ) {
1031 assert( assertArg != (*tyArg)->get_assertions().end() );
1032 adapteeApp->get_args().push_back( makeAdapterArg( *assertParam, *assertArg, *realAssertParam, tyVars ) );
1033 } // for
1034 } // for
1035
1036 std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin();
1037 std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin();
1038 std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin();
1039 param++; // skip adaptee parameter in the adapter type
1040 if ( realType->get_returnVals().empty() ) {
1041 // void return
1042 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1043 bodyStmt = new ExprStmt( noLabels, adapteeApp );
1044 } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
1045 // return type T
1046 if ( (*param)->get_name() == "" ) {
1047 (*param)->set_name( "_ret" );
1048 (*param)->set_linkage( LinkageSpec::C );
1049 } // if
1050 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
1051 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
1052 deref->get_args().push_back( new CastExpr( new VariableExpr( *param++ ), new PointerType( Type::Qualifiers(), realType->get_returnVals().front()->get_type()->clone() ) ) );
1053 assign->get_args().push_back( deref );
1054 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1055 assign->get_args().push_back( adapteeApp );
1056 bodyStmt = new ExprStmt( noLabels, assign );
1057 } else {
1058 // adapter for a function that returns a monomorphic value
1059 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1060 bodyStmt = new ReturnStmt( noLabels, adapteeApp );
1061 } // if
1062 CompoundStmt *adapterBody = new CompoundStmt( noLabels );
1063 adapterBody->get_kids().push_back( bodyStmt );
1064 std::string adapterName = makeAdapterName( mangleName );
1065 return new FunctionDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, adapterType, adapterBody, false, false );
1066 }
1067
1068 void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) {
1069 // collect a list of function types passed as parameters or implicit parameters (assertions)
1070 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1071 std::list< FunctionType *> functions;
1072 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
1073 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
1074 findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter );
1075 } // for
1076 } // for
1077 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1078 findFunction( (*arg)->get_type(), functions, exprTyVars, needsAdapter );
1079 } // for
1080
1081 // parameter function types for which an appropriate adapter has been generated. we cannot use the types
1082 // after applying substitutions, since two different parameter types may be unified to the same type
1083 std::set< std::string > adaptersDone;
1084
1085 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1086 FunctionType *originalFunction = (*funType)->clone();
1087 FunctionType *realFunction = (*funType)->clone();
1088 std::string mangleName = SymTab::Mangler::mangle( realFunction );
1089
1090 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this
1091 // pre-substitution parameter function type.
1092 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1093 adaptersDone.insert( adaptersDone.begin(), mangleName );
1094
1095 // apply substitution to type variables to figure out what the adapter's type should look like
1096 assert( env );
1097 env->apply( realFunction );
1098 mangleName = SymTab::Mangler::mangle( realFunction );
1099 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars );
1100
1101 typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter;
1102 AdapterIter adapter = adapters.find( mangleName );
1103 if ( adapter == adapters.end() ) {
1104 // adapter has not been created yet in the current scope, so define it
1105 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars );
1106 std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) );
1107 adapter = answer.first;
1108 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) );
1109 } // if
1110 assert( adapter != adapters.end() );
1111
1112 // add the appropriate adapter as a parameter
1113 appExpr->get_args().push_front( new VariableExpr( adapter->second ) );
1114 } // if
1115 } // for
1116 } // passAdapters
1117
1118 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) {
1119 NameExpr *opExpr;
1120 if ( isIncr ) {
1121 opExpr = new NameExpr( "?+=?" );
1122 } else {
1123 opExpr = new NameExpr( "?-=?" );
1124 } // if
1125 UntypedExpr *addAssign = new UntypedExpr( opExpr );
1126 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1127 addAssign->get_args().push_back( address->get_arg() );
1128 } else {
1129 addAssign->get_args().push_back( appExpr->get_args().front() );
1130 } // if
1131 addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) ) ) );
1132 addAssign->get_results().front() = appExpr->get_results().front()->clone();
1133 if ( appExpr->get_env() ) {
1134 addAssign->set_env( appExpr->get_env() );
1135 appExpr->set_env( 0 );
1136 } // if
1137 appExpr->get_args().clear();
1138 delete appExpr;
1139 return addAssign;
1140 }
1141
1142 Expression *Pass1::handleIntrinsics( ApplicationExpr *appExpr ) {
1143 if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->get_function() ) ) {
1144 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic ) {
1145 if ( varExpr->get_var()->get_name() == "?[?]" ) {
1146 assert( ! appExpr->get_results().empty() );
1147 assert( appExpr->get_args().size() == 2 );
1148 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
1149 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
1150 assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers
1151 UntypedExpr *ret = 0;
1152 if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer
1153 ret = new UntypedExpr( new NameExpr( "?+?" ) );
1154 } // if
1155 if ( baseType1 ) {
1156 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1157 multiply->get_args().push_back( appExpr->get_args().back() );
1158 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1159 ret->get_args().push_back( appExpr->get_args().front() );
1160 ret->get_args().push_back( multiply );
1161 } else if ( baseType2 ) {
1162 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1163 multiply->get_args().push_back( appExpr->get_args().front() );
1164 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1165 ret->get_args().push_back( multiply );
1166 ret->get_args().push_back( appExpr->get_args().back() );
1167 } // if
1168 if ( baseType1 || baseType2 ) {
1169 ret->get_results().push_front( appExpr->get_results().front()->clone() );
1170 if ( appExpr->get_env() ) {
1171 ret->set_env( appExpr->get_env() );
1172 appExpr->set_env( 0 );
1173 } // if
1174 appExpr->get_args().clear();
1175 delete appExpr;
1176 return ret;
1177 } // if
1178 } else if ( varExpr->get_var()->get_name() == "*?" ) {
1179 assert( ! appExpr->get_results().empty() );
1180 assert( ! appExpr->get_args().empty() );
1181 if ( isPolyType( appExpr->get_results().front(), scopeTyVars, env ) ) {
1182 Expression *ret = appExpr->get_args().front();
1183 delete ret->get_results().front();
1184 ret->get_results().front() = appExpr->get_results().front()->clone();
1185 if ( appExpr->get_env() ) {
1186 ret->set_env( appExpr->get_env() );
1187 appExpr->set_env( 0 );
1188 } // if
1189 appExpr->get_args().clear();
1190 delete appExpr;
1191 return ret;
1192 } // if
1193 } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) {
1194 assert( ! appExpr->get_results().empty() );
1195 assert( appExpr->get_args().size() == 1 );
1196 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
1197 Type *tempType = appExpr->get_results().front()->clone();
1198 if ( env ) {
1199 env->apply( tempType );
1200 } // if
1201 ObjectDecl *newObj = makeTemporary( tempType );
1202 VariableExpr *tempExpr = new VariableExpr( newObj );
1203 UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) );
1204 assignExpr->get_args().push_back( tempExpr->clone() );
1205 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1206 assignExpr->get_args().push_back( address->get_arg()->clone() );
1207 } else {
1208 assignExpr->get_args().push_back( appExpr->get_args().front()->clone() );
1209 } // if
1210 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) );
1211 return new CommaExpr( firstComma, tempExpr );
1212 } // if
1213 } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) {
1214 assert( ! appExpr->get_results().empty() );
1215 assert( appExpr->get_args().size() == 1 );
1216 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
1217 return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );
1218 } // if
1219 } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) {
1220 assert( ! appExpr->get_results().empty() );
1221 assert( appExpr->get_args().size() == 2 );
1222 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
1223 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
1224 if ( baseType1 && baseType2 ) {
1225 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) );
1226 divide->get_args().push_back( appExpr );
1227 divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1228 divide->get_results().push_front( appExpr->get_results().front()->clone() );
1229 if ( appExpr->get_env() ) {
1230 divide->set_env( appExpr->get_env() );
1231 appExpr->set_env( 0 );
1232 } // if
1233 return divide;
1234 } else if ( baseType1 ) {
1235 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1236 multiply->get_args().push_back( appExpr->get_args().back() );
1237 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1238 appExpr->get_args().back() = multiply;
1239 } else if ( baseType2 ) {
1240 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1241 multiply->get_args().push_back( appExpr->get_args().front() );
1242 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1243 appExpr->get_args().front() = multiply;
1244 } // if
1245 } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) {
1246 assert( ! appExpr->get_results().empty() );
1247 assert( appExpr->get_args().size() == 2 );
1248 Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env );
1249 if ( baseType ) {
1250 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1251 multiply->get_args().push_back( appExpr->get_args().back() );
1252 multiply->get_args().push_back( new SizeofExpr( baseType->clone() ) );
1253 appExpr->get_args().back() = multiply;
1254 } // if
1255 } // if
1256 return appExpr;
1257 } // if
1258 } // if
1259 return 0;
1260 }
1261
1262 Expression *Pass1::mutate( ApplicationExpr *appExpr ) {
1263 // std::cerr << "mutate appExpr: ";
1264 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
1265 // std::cerr << i->first << " ";
1266 // }
1267 // std::cerr << "\n";
1268 bool oldUseRetval = useRetval;
1269 useRetval = false;
1270 appExpr->get_function()->acceptMutator( *this );
1271 mutateAll( appExpr->get_args(), *this );
1272 useRetval = oldUseRetval;
1273
1274 assert( ! appExpr->get_function()->get_results().empty() );
1275 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
1276 assert( pointer );
1277 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
1278 assert( function );
1279
1280 if ( Expression *newExpr = handleIntrinsics( appExpr ) ) {
1281 return newExpr;
1282 } // if
1283
1284 Expression *ret = appExpr;
1285
1286 std::list< Expression *>::iterator arg = appExpr->get_args().begin();
1287 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin();
1288
1289 TyVarMap exprTyVars( (TypeDecl::Kind)-1 );
1290 makeTyVarMap( function, exprTyVars );
1291 ReferenceToType *polyRetType = isPolyRet( function );
1292
1293 if ( polyRetType ) {
1294 ret = addPolyRetParam( appExpr, function, polyRetType, arg );
1295 } else if ( needsAdapter( function, scopeTyVars ) ) {
1296 // std::cerr << "needs adapter: ";
1297 // printTyVarMap( std::cerr, scopeTyVars );
1298 // std::cerr << *env << std::endl;
1299 // change the application so it calls the adapter rather than the passed function
1300 ret = applyAdapter( appExpr, function, arg, scopeTyVars );
1301 } // if
1302 arg = appExpr->get_args().begin();
1303
1304 passTypeVars( appExpr, polyRetType, arg, exprTyVars );
1305 addInferredParams( appExpr, function, arg, exprTyVars );
1306
1307 arg = paramBegin;
1308
1309 boxParams( appExpr, function, arg, exprTyVars );
1310 passAdapters( appExpr, function, exprTyVars );
1311
1312 return ret;
1313 }
1314
1315 Expression *Pass1::mutate( UntypedExpr *expr ) {
1316 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
1317 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1318 if ( name->get_name() == "*?" ) {
1319 Expression *ret = expr->get_args().front();
1320 expr->get_args().clear();
1321 delete expr;
1322 return ret->acceptMutator( *this );
1323 } // if
1324 } // if
1325 } // if
1326 return PolyMutator::mutate( expr );
1327 }
1328
1329 Expression *Pass1::mutate( AddressExpr *addrExpr ) {
1330 assert( ! addrExpr->get_arg()->get_results().empty() );
1331
1332 bool needs = false;
1333 if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {
1334 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
1335 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1336 if ( name->get_name() == "*?" ) {
1337 if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {
1338 assert( ! appExpr->get_function()->get_results().empty() );
1339 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
1340 assert( pointer );
1341 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
1342 assert( function );
1343 needs = needsAdapter( function, scopeTyVars );
1344 } // if
1345 } // if
1346 } // if
1347 } // if
1348 } // if
1349 // isPolyType check needs to happen before mutating addrExpr arg, so pull it forward
1350 // out of the if condition.
1351 bool polytype = isPolyType( addrExpr->get_arg()->get_results().front(), scopeTyVars, env );
1352 addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) );
1353 if ( polytype || needs ) {
1354 Expression *ret = addrExpr->get_arg();
1355 delete ret->get_results().front();
1356 ret->get_results().front() = addrExpr->get_results().front()->clone();
1357 addrExpr->set_arg( 0 );
1358 delete addrExpr;
1359 return ret;
1360 } else {
1361 return addrExpr;
1362 } // if
1363 }
1364
1365 /// Wraps a function declaration in a new pointer-to-function variable expression
1366 VariableExpr *wrapFunctionDecl( DeclarationWithType *functionDecl ) {
1367 // line below cloned from FixFunction.cc
1368 ObjectDecl *functionObj = new ObjectDecl( functionDecl->get_name(), functionDecl->get_storageClass(), functionDecl->get_linkage(), 0,
1369 new PointerType( Type::Qualifiers(), functionDecl->get_type()->clone() ), 0 );
1370 functionObj->set_mangleName( functionDecl->get_mangleName() );
1371 return new VariableExpr( functionObj );
1372 }
1373
1374 Statement * Pass1::mutate( ReturnStmt *returnStmt ) {
1375 if ( retval && returnStmt->get_expr() ) {
1376 assert( ! returnStmt->get_expr()->get_results().empty() );
1377 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
1378 // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) {
1379 // by this point, a cast expr on a polymorphic return value is redundant
1380 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( returnStmt->get_expr() ) ) {
1381 returnStmt->set_expr( castExpr->get_arg() );
1382 returnStmt->get_expr()->set_env( castExpr->get_env() );
1383 castExpr->set_env( 0 );
1384 castExpr->set_arg( 0 );
1385 delete castExpr;
1386 } //while
1387
1388 // find assignment operator for (polymorphic) return type
1389 ApplicationExpr *assignExpr = 0;
1390 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ) ) {
1391 // find assignment operator for type variable
1392 ScopedMap< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() );
1393 if ( assignIter == assignOps.end() ) {
1394 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() );
1395 } // if
1396 assignExpr = new ApplicationExpr( new VariableExpr( assignIter->second ) );
1397 } else if ( ReferenceToType *refType = dynamic_cast< ReferenceToType *>( retval->get_type() ) ) {
1398 // find assignment operator for generic type
1399 DeclarationWithType *functionDecl = scopedAssignOps.find( refType );
1400 if ( ! functionDecl ) {
1401 throw SemanticError( "Attempt to return dtype or ftype generic object in ", returnStmt->get_expr() );
1402 }
1403
1404 // wrap it up in an application expression
1405 assignExpr = new ApplicationExpr( wrapFunctionDecl( functionDecl ) );
1406 assignExpr->set_env( env->clone() );
1407
1408 // find each of its needed secondary assignment operators
1409 std::list< Expression* > &tyParams = refType->get_parameters();
1410 std::list< TypeDecl* > &forallParams = functionDecl->get_type()->get_forall();
1411 std::list< Expression* >::const_iterator tyIt = tyParams.begin();
1412 std::list< TypeDecl* >::const_iterator forallIt = forallParams.begin();
1413 for ( ; tyIt != tyParams.end() && forallIt != forallParams.end(); ++tyIt, ++forallIt ) {
1414 // Add appropriate mapping to assignment expression environment
1415 TypeExpr *formalTypeExpr = dynamic_cast< TypeExpr* >( *tyIt );
1416 assert( formalTypeExpr && "type parameters must be type expressions" );
1417 Type *formalType = formalTypeExpr->get_type();
1418 assignExpr->get_env()->add( (*forallIt)->get_name(), formalType );
1419
1420 // skip types with no assign op (ftype/dtype)
1421 if ( (*forallIt)->get_kind() != TypeDecl::Any ) continue;
1422
1423 // find assignment operator for formal type
1424 DeclarationWithType *assertAssign = 0;
1425 if ( TypeInstType *formalTypeInstType = dynamic_cast< TypeInstType* >( formalType ) ) {
1426 ScopedMap< std::string, DeclarationWithType *>::const_iterator assertAssignIt = assignOps.find( formalTypeInstType->get_name() );
1427 if ( assertAssignIt == assignOps.end() ) {
1428 throw SemanticError( "No assignment operation found for ", formalTypeInstType );
1429 }
1430 assertAssign = assertAssignIt->second;
1431 } else {
1432 assertAssign = scopedAssignOps.find( formalType );
1433 if ( ! assertAssign ) {
1434 throw SemanticError( "No assignment operation found for ", formalType );
1435 }
1436 }
1437
1438 // add inferred parameter for field assignment operator to assignment expression
1439 std::list< DeclarationWithType* > &asserts = (*forallIt)->get_assertions();
1440 assert( ! asserts.empty() && "Type param needs assignment operator assertion" );
1441 DeclarationWithType *actualDecl = asserts.front();
1442 assignExpr->get_inferParams()[ actualDecl->get_uniqueId() ]
1443 = ParamEntry( assertAssign->get_uniqueId(), assertAssign->get_type()->clone(), actualDecl->get_type()->clone(), wrapFunctionDecl( assertAssign ) );
1444 }
1445 }
1446 assert( assignExpr );
1447
1448 // replace return statement with appropriate assignment to out parameter
1449 Expression *retParm = new NameExpr( retval->get_name() );
1450 retParm->get_results().push_back( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
1451 assignExpr->get_args().push_back( retParm );
1452 assignExpr->get_args().push_back( returnStmt->get_expr() );
1453 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) );
1454 // } else {
1455 // useRetval = true;
1456 // stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( returnStmt->get_expr() ) ) );
1457 // useRetval = false;
1458 // } // if
1459 returnStmt->set_expr( 0 );
1460 } else {
1461 returnStmt->set_expr( mutateExpression( returnStmt->get_expr() ) );
1462 } // if
1463 return returnStmt;
1464 }
1465
1466 Type * Pass1::mutate( PointerType *pointerType ) {
1467 scopeTyVars.beginScope();
1468 makeTyVarMap( pointerType, scopeTyVars );
1469
1470 Type *ret = Mutator::mutate( pointerType );
1471
1472 scopeTyVars.endScope();
1473 return ret;
1474 }
1475
1476 Type * Pass1::mutate( FunctionType *functionType ) {
1477 scopeTyVars.beginScope();
1478 makeTyVarMap( functionType, scopeTyVars );
1479
1480 Type *ret = Mutator::mutate( functionType );
1481
1482 scopeTyVars.endScope();
1483 return ret;
1484 }
1485
1486 void Pass1::doBeginScope() {
1487 adapters.beginScope();
1488 scopedAssignOps.beginScope();
1489 }
1490
1491 void Pass1::doEndScope() {
1492 adapters.endScope();
1493 scopedAssignOps.endScope();
1494 }
1495
1496////////////////////////////////////////// Pass2 ////////////////////////////////////////////////////
1497
1498 void Pass2::addAdapters( FunctionType *functionType ) {
1499 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1500 std::list< FunctionType *> functions;
1501 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1502 Type *orig = (*arg)->get_type();
1503 findAndReplaceFunction( orig, functions, scopeTyVars, needsAdapter );
1504 (*arg)->set_type( orig );
1505 }
1506 std::set< std::string > adaptersDone;
1507 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1508 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
1509 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1510 std::string adapterName = makeAdapterName( mangleName );
1511 paramList.push_front( new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) );
1512 adaptersDone.insert( adaptersDone.begin(), mangleName );
1513 }
1514 }
1515// deleteAll( functions );
1516 }
1517
1518 template< typename DeclClass >
1519 DeclClass * Pass2::handleDecl( DeclClass *decl, Type *type ) {
1520 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1521
1522 return ret;
1523 }
1524
1525 DeclarationWithType * Pass2::mutate( FunctionDecl *functionDecl ) {
1526 return handleDecl( functionDecl, functionDecl->get_functionType() );
1527 }
1528
1529 ObjectDecl * Pass2::mutate( ObjectDecl *objectDecl ) {
1530 return handleDecl( objectDecl, objectDecl->get_type() );
1531 }
1532
1533 TypeDecl * Pass2::mutate( TypeDecl *typeDecl ) {
1534 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1535 if ( typeDecl->get_base() ) {
1536 return handleDecl( typeDecl, typeDecl->get_base() );
1537 } else {
1538 return Mutator::mutate( typeDecl );
1539 }
1540 }
1541
1542 TypedefDecl * Pass2::mutate( TypedefDecl *typedefDecl ) {
1543 return handleDecl( typedefDecl, typedefDecl->get_base() );
1544 }
1545
1546 Type * Pass2::mutate( PointerType *pointerType ) {
1547 scopeTyVars.beginScope();
1548 makeTyVarMap( pointerType, scopeTyVars );
1549
1550 Type *ret = Mutator::mutate( pointerType );
1551
1552 scopeTyVars.endScope();
1553 return ret;
1554 }
1555
1556 Type *Pass2::mutate( FunctionType *funcType ) {
1557 scopeTyVars.beginScope();
1558 makeTyVarMap( funcType, scopeTyVars );
1559
1560 // move polymorphic return type to parameter list
1561 if ( isPolyRet( funcType ) ) {
1562 DeclarationWithType *ret = funcType->get_returnVals().front();
1563 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) );
1564 funcType->get_parameters().push_front( ret );
1565 funcType->get_returnVals().pop_front();
1566 }
1567
1568 // add size/align and assertions for type parameters to parameter list
1569 std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin();
1570 std::list< DeclarationWithType *> inferredParams;
1571 ObjectDecl newObj( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 );
1572 ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0,
1573 new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 );
1574 for ( std::list< TypeDecl *>::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
1575 ObjectDecl *sizeParm, *alignParm;
1576 // add all size and alignment parameters to parameter list
1577 if ( (*tyParm)->get_kind() == TypeDecl::Any ) {
1578 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm );
1579 std::string parmName = mangleType( &parmType );
1580
1581 sizeParm = newObj.clone();
1582 sizeParm->set_name( sizeofName( parmName ) );
1583 last = funcType->get_parameters().insert( last, sizeParm );
1584 ++last;
1585
1586 alignParm = newObj.clone();
1587 alignParm->set_name( alignofName( parmName ) );
1588 last = funcType->get_parameters().insert( last, alignParm );
1589 ++last;
1590 }
1591 // move all assertions into parameter list
1592 for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) {
1593// *assert = (*assert)->acceptMutator( *this );
1594 inferredParams.push_back( *assert );
1595 }
1596 (*tyParm)->get_assertions().clear();
1597 }
1598
1599 // add size/align for generic parameter types to parameter list
1600 std::set< std::string > seenTypes; // sizeofName for generic types we've seen
1601 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) {
1602 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1603 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1604 std::string typeName = mangleType( polyType );
1605 if ( seenTypes.count( typeName ) ) continue;
1606
1607 ObjectDecl *sizeParm, *alignParm, *offsetParm;
1608 sizeParm = newObj.clone();
1609 sizeParm->set_name( sizeofName( typeName ) );
1610 last = funcType->get_parameters().insert( last, sizeParm );
1611 ++last;
1612
1613 alignParm = newObj.clone();
1614 alignParm->set_name( alignofName( typeName ) );
1615 last = funcType->get_parameters().insert( last, alignParm );
1616 ++last;
1617
1618 if ( StructInstType *polyBaseStruct = dynamic_cast< StructInstType* >( polyType ) ) {
1619 // NOTE zero-length arrays are illegal in C, so empty structs have no offset array
1620 if ( ! polyBaseStruct->get_baseStruct()->get_members().empty() ) {
1621 offsetParm = newPtr.clone();
1622 offsetParm->set_name( offsetofName( typeName ) );
1623 last = funcType->get_parameters().insert( last, offsetParm );
1624 ++last;
1625 }
1626 }
1627
1628 seenTypes.insert( typeName );
1629 }
1630 }
1631
1632 // splice assertion parameters into parameter list
1633 funcType->get_parameters().splice( last, inferredParams );
1634 addAdapters( funcType );
1635 mutateAll( funcType->get_returnVals(), *this );
1636 mutateAll( funcType->get_parameters(), *this );
1637
1638 scopeTyVars.endScope();
1639 return funcType;
1640 }
1641
1642//////////////////////////////////////// GenericInstantiator //////////////////////////////////////////////////
1643
1644 /// Makes substitutions of params into baseParams; returns true if all parameters substituted for a concrete type
1645 bool makeSubstitutions( const std::list< TypeDecl* >& baseParams, const std::list< Expression* >& params, std::list< TypeExpr* >& out ) {
1646 bool allConcrete = true; // will finish the substitution list even if they're not all concrete
1647
1648 // substitute concrete types for given parameters, and incomplete types for placeholders
1649 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
1650 std::list< Expression* >::const_iterator param = params.begin();
1651 for ( ; baseParam != baseParams.end() && param != params.end(); ++baseParam, ++param ) {
1652 // switch ( (*baseParam)->get_kind() ) {
1653 // case TypeDecl::Any: { // any type is a valid substitution here; complete types can be used to instantiate generics
1654 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
1655 assert(paramType && "Aggregate parameters should be type expressions");
1656 out.push_back( paramType->clone() );
1657 // check that the substituted type isn't a type variable itself
1658 if ( dynamic_cast< TypeInstType* >( paramType->get_type() ) ) {
1659 allConcrete = false;
1660 }
1661 // break;
1662 // }
1663 // case TypeDecl::Dtype: // dtype can be consistently replaced with void [only pointers, which become void*]
1664 // out.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) );
1665 // break;
1666 // case TypeDecl::Ftype: // pointer-to-ftype can be consistently replaced with void (*)(void) [similar to dtype]
1667 // out.push_back( new TypeExpr( new FunctionType( Type::Qualifiers(), false ) ) );
1668 // break;
1669 // }
1670 }
1671
1672 // if any parameters left over, not done
1673 if ( baseParam != baseParams.end() ) return false;
1674 // // if not enough parameters given, substitute remaining incomplete types for placeholders
1675 // for ( ; baseParam != baseParams.end(); ++baseParam ) {
1676 // switch ( (*baseParam)->get_kind() ) {
1677 // case TypeDecl::Any: // no more substitutions here, fail early
1678 // return false;
1679 // case TypeDecl::Dtype: // dtype can be consistently replaced with void [only pointers, which become void*]
1680 // out.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) );
1681 // break;
1682 // case TypeDecl::Ftype: // pointer-to-ftype can be consistently replaced with void (*)(void) [similar to dtype]
1683 // out.push_back( new TypeExpr( new FunctionType( Type::Qualifiers(), false ) ) );
1684 // break;
1685 // }
1686 // }
1687
1688 return allConcrete;
1689 }
1690
1691 /// Substitutes types of members of in according to baseParams => typeSubs, appending the result to out
1692 void substituteMembers( const std::list< Declaration* >& in, const std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs,
1693 std::list< Declaration* >& out ) {
1694 // substitute types into new members
1695 TypeSubstitution subs( baseParams.begin(), baseParams.end(), typeSubs.begin() );
1696 for ( std::list< Declaration* >::const_iterator member = in.begin(); member != in.end(); ++member ) {
1697 Declaration *newMember = (*member)->clone();
1698 subs.apply(newMember);
1699 out.push_back( newMember );
1700 }
1701 }
1702
1703 Type* GenericInstantiator::mutate( StructInstType *inst ) {
1704 // mutate subtypes
1705 Type *mutated = Mutator::mutate( inst );
1706 inst = dynamic_cast< StructInstType* >( mutated );
1707 if ( ! inst ) return mutated;
1708
1709 // exit early if no need for further mutation
1710 if ( inst->get_parameters().empty() ) return inst;
1711 assert( inst->get_baseParameters() && "Base struct has parameters" );
1712
1713 // check if type can be concretely instantiated; put substitutions into typeSubs
1714 std::list< TypeExpr* > typeSubs;
1715 if ( ! makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ) ) {
1716 deleteAll( typeSubs );
1717 return inst;
1718 }
1719
1720 // make concrete instantiation of generic type
1721 StructDecl *concDecl = lookup( inst, typeSubs );
1722 if ( ! concDecl ) {
1723 // set concDecl to new type, insert type declaration into statements to add
1724 concDecl = new StructDecl( typeNamer.newName( inst->get_name() ) );
1725 substituteMembers( inst->get_baseStruct()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() );
1726 DeclMutator::addDeclaration( concDecl );
1727 insert( inst, typeSubs, concDecl );
1728 }
1729 StructInstType *newInst = new StructInstType( inst->get_qualifiers(), concDecl->get_name() );
1730 newInst->set_baseStruct( concDecl );
1731
1732 deleteAll( typeSubs );
1733 delete inst;
1734 return newInst;
1735 }
1736
1737 Type* GenericInstantiator::mutate( UnionInstType *inst ) {
1738 // mutate subtypes
1739 Type *mutated = Mutator::mutate( inst );
1740 inst = dynamic_cast< UnionInstType* >( mutated );
1741 if ( ! inst ) return mutated;
1742
1743 // exit early if no need for further mutation
1744 if ( inst->get_parameters().empty() ) return inst;
1745 assert( inst->get_baseParameters() && "Base union has parameters" );
1746
1747 // check if type can be concretely instantiated; put substitutions into typeSubs
1748 std::list< TypeExpr* > typeSubs;
1749 if ( ! makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ) ) {
1750 deleteAll( typeSubs );
1751 return inst;
1752 }
1753
1754 // make concrete instantiation of generic type
1755 UnionDecl *concDecl = lookup( inst, typeSubs );
1756 if ( ! concDecl ) {
1757 // set concDecl to new type, insert type declaration into statements to add
1758 concDecl = new UnionDecl( typeNamer.newName( inst->get_name() ) );
1759 substituteMembers( inst->get_baseUnion()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() );
1760 DeclMutator::addDeclaration( concDecl );
1761 insert( inst, typeSubs, concDecl );
1762 }
1763 UnionInstType *newInst = new UnionInstType( inst->get_qualifiers(), concDecl->get_name() );
1764 newInst->set_baseUnion( concDecl );
1765
1766 deleteAll( typeSubs );
1767 delete inst;
1768 return newInst;
1769 }
1770
1771 // /// Gets the base struct or union declaration for a member expression; NULL if not applicable
1772 // AggregateDecl* getMemberBaseDecl( MemberExpr *memberExpr ) {
1773 // // get variable for member aggregate
1774 // VariableExpr *varExpr = dynamic_cast< VariableExpr* >( memberExpr->get_aggregate() );
1775 // if ( ! varExpr ) return NULL;
1776 //
1777 // // get object for variable
1778 // ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1779 // if ( ! objectDecl ) return NULL;
1780 //
1781 // // get base declaration from object type
1782 // Type *objectType = objectDecl->get_type();
1783 // StructInstType *structType = dynamic_cast< StructInstType* >( objectType );
1784 // if ( structType ) return structType->get_baseStruct();
1785 // UnionInstType *unionType = dynamic_cast< UnionInstType* >( objectType );
1786 // if ( unionType ) return unionType->get_baseUnion();
1787 //
1788 // return NULL;
1789 // }
1790 //
1791 // /// Finds the declaration with the given name, returning decls.end() if none such
1792 // std::list< Declaration* >::const_iterator findDeclNamed( const std::list< Declaration* > &decls, const std::string &name ) {
1793 // for( std::list< Declaration* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
1794 // if ( (*decl)->get_name() == name ) return decl;
1795 // }
1796 // return decls.end();
1797 // }
1798 //
1799 // Expression* Instantiate::mutate( MemberExpr *memberExpr ) {
1800 // // mutate, exiting early if no longer MemberExpr
1801 // Expression *expr = Mutator::mutate( memberExpr );
1802 // memberExpr = dynamic_cast< MemberExpr* >( expr );
1803 // if ( ! memberExpr ) return expr;
1804 //
1805 // // get declaration of member and base declaration of member, exiting early if not found
1806 // AggregateDecl *memberBase = getMemberBaseDecl( memberExpr );
1807 // if ( ! memberBase ) return memberExpr;
1808 // DeclarationWithType *memberDecl = memberExpr->get_member();
1809 // std::list< Declaration* >::const_iterator baseIt = findDeclNamed( memberBase->get_members(), memberDecl->get_name() );
1810 // if ( baseIt == memberBase->get_members().end() ) return memberExpr;
1811 // DeclarationWithType *baseDecl = dynamic_cast< DeclarationWithType* >( *baseIt );
1812 // if ( ! baseDecl ) return memberExpr;
1813 //
1814 // // check if stated type of the member is not the type of the member's declaration; if so, need a cast
1815 // // this *SHOULD* be safe, I don't think anything but the void-replacements I put in for dtypes would make it past the typechecker
1816 // SymTab::Indexer dummy;
1817 // if ( ResolvExpr::typesCompatible( memberDecl->get_type(), baseDecl->get_type(), dummy ) ) return memberExpr;
1818 // else return new CastExpr( memberExpr, memberDecl->get_type() );
1819 // }
1820
1821 void GenericInstantiator::doBeginScope() {
1822 DeclMutator::doBeginScope();
1823 instantiations.beginScope();
1824 }
1825
1826 void GenericInstantiator::doEndScope() {
1827 DeclMutator::doEndScope();
1828 instantiations.endScope();
1829 }
1830
1831////////////////////////////////////////// PolyGenericCalculator ////////////////////////////////////////////////////
1832
1833 void PolyGenericCalculator::beginTypeScope( Type *ty ) {
1834 scopeTyVars.beginScope();
1835 makeTyVarMap( ty, scopeTyVars );
1836 }
1837
1838 void PolyGenericCalculator::endTypeScope() {
1839 scopeTyVars.endScope();
1840 }
1841
1842 template< typename DeclClass >
1843 DeclClass * PolyGenericCalculator::handleDecl( DeclClass *decl, Type *type ) {
1844 beginTypeScope( type );
1845 knownLayouts.beginScope();
1846 knownOffsets.beginScope();
1847
1848 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1849
1850 knownOffsets.endScope();
1851 knownLayouts.endScope();
1852 endTypeScope();
1853 return ret;
1854 }
1855
1856 ObjectDecl * PolyGenericCalculator::mutate( ObjectDecl *objectDecl ) {
1857 return handleDecl( objectDecl, objectDecl->get_type() );
1858 }
1859
1860 DeclarationWithType * PolyGenericCalculator::mutate( FunctionDecl *functionDecl ) {
1861 return handleDecl( functionDecl, functionDecl->get_functionType() );
1862 }
1863
1864 TypedefDecl * PolyGenericCalculator::mutate( TypedefDecl *typedefDecl ) {
1865 return handleDecl( typedefDecl, typedefDecl->get_base() );
1866 }
1867
1868 TypeDecl * PolyGenericCalculator::mutate( TypeDecl *typeDecl ) {
1869 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1870 return Mutator::mutate( typeDecl );
1871 }
1872
1873 Type * PolyGenericCalculator::mutate( PointerType *pointerType ) {
1874 beginTypeScope( pointerType );
1875
1876 Type *ret = Mutator::mutate( pointerType );
1877
1878 endTypeScope();
1879 return ret;
1880 }
1881
1882 Type * PolyGenericCalculator::mutate( FunctionType *funcType ) {
1883 beginTypeScope( funcType );
1884
1885 // make sure that any type information passed into the function is accounted for
1886 for ( std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); fnParm != funcType->get_parameters().end(); ++fnParm ) {
1887 // condition here duplicates that in Pass2::mutate( FunctionType* )
1888 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1889 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1890 knownLayouts.insert( mangleType( polyType ) );
1891 }
1892 }
1893
1894 Type *ret = Mutator::mutate( funcType );
1895
1896 endTypeScope();
1897 return ret;
1898 }
1899
1900 Statement *PolyGenericCalculator::mutate( DeclStmt *declStmt ) {
1901 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) {
1902 if ( findGeneric( objectDecl->get_type() ) ) {
1903 // change initialization of a polymorphic value object
1904 // to allocate storage with alloca
1905 Type *declType = objectDecl->get_type();
1906 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) );
1907 alloc->get_args().push_back( new NameExpr( sizeofName( mangleType( declType ) ) ) );
1908
1909 delete objectDecl->get_init();
1910
1911 std::list<Expression*> designators;
1912 objectDecl->set_init( new SingleInit( alloc, designators, false ) ); // not constructed
1913 }
1914 }
1915 return Mutator::mutate( declStmt );
1916 }
1917
1918 /// Finds the member in the base list that matches the given declaration; returns its index, or -1 if not present
1919 long findMember( DeclarationWithType *memberDecl, std::list< Declaration* > &baseDecls ) {
1920 long i = 0;
1921 for(std::list< Declaration* >::const_iterator decl = baseDecls.begin(); decl != baseDecls.end(); ++decl, ++i ) {
1922 if ( memberDecl->get_name() != (*decl)->get_name() ) continue;
1923
1924 if ( DeclarationWithType *declWithType = dynamic_cast< DeclarationWithType* >( *decl ) ) {
1925 if ( memberDecl->get_mangleName().empty() || declWithType->get_mangleName().empty()
1926 || memberDecl->get_mangleName() == declWithType->get_mangleName() ) return i;
1927 else continue;
1928 } else return i;
1929 }
1930 return -1;
1931 }
1932
1933 /// Returns an index expression into the offset array for a type
1934 Expression *makeOffsetIndex( Type *objectType, long i ) {
1935 std::stringstream offset_namer;
1936 offset_namer << i;
1937 ConstantExpr *fieldIndex = new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), offset_namer.str() ) );
1938 UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) );
1939 fieldOffset->get_args().push_back( new NameExpr( offsetofName( mangleType( objectType ) ) ) );
1940 fieldOffset->get_args().push_back( fieldIndex );
1941 return fieldOffset;
1942 }
1943
1944 /// Returns an expression dereferenced n times
1945 Expression *makeDerefdVar( Expression *derefdVar, long n ) {
1946 for ( int i = 1; i < n; ++i ) {
1947 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1948 derefExpr->get_args().push_back( derefdVar );
1949 derefdVar = derefExpr;
1950 }
1951 return derefdVar;
1952 }
1953
1954 Expression *PolyGenericCalculator::mutate( MemberExpr *memberExpr ) {
1955 // mutate, exiting early if no longer MemberExpr
1956 Expression *expr = Mutator::mutate( memberExpr );
1957 memberExpr = dynamic_cast< MemberExpr* >( expr );
1958 if ( ! memberExpr ) return expr;
1959
1960 // get declaration for base struct, exiting early if not found
1961 int varDepth;
1962 VariableExpr *varExpr = getBaseVar( memberExpr->get_aggregate(), &varDepth );
1963 if ( ! varExpr ) return memberExpr;
1964 ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1965 if ( ! objectDecl ) return memberExpr;
1966
1967 // only mutate member expressions for polymorphic types
1968 int tyDepth;
1969 Type *objectType = hasPolyBase( objectDecl->get_type(), scopeTyVars, &tyDepth );
1970 if ( ! objectType ) return memberExpr;
1971 findGeneric( objectType ); // ensure layout for this type is available
1972
1973 Expression *newMemberExpr = 0;
1974 if ( StructInstType *structType = dynamic_cast< StructInstType* >( objectType ) ) {
1975 // look up offset index
1976 long i = findMember( memberExpr->get_member(), structType->get_baseStruct()->get_members() );
1977 if ( i == -1 ) return memberExpr;
1978
1979 // replace member expression with pointer to base plus offset
1980 UntypedExpr *fieldLoc = new UntypedExpr( new NameExpr( "?+?" ) );
1981 fieldLoc->get_args().push_back( makeDerefdVar( varExpr->clone(), varDepth ) );
1982 fieldLoc->get_args().push_back( makeOffsetIndex( objectType, i ) );
1983 newMemberExpr = fieldLoc;
1984 } else if ( dynamic_cast< UnionInstType* >( objectType ) ) {
1985 // union members are all at offset zero, so build appropriately-dereferenced variable
1986 newMemberExpr = makeDerefdVar( varExpr->clone(), varDepth );
1987 } else return memberExpr;
1988 assert( newMemberExpr );
1989
1990 Type *memberType = memberExpr->get_member()->get_type();
1991 if ( ! isPolyType( memberType, scopeTyVars ) ) {
1992 // Not all members of a polymorphic type are themselves of polymorphic type; in this case the member expression should be wrapped and dereferenced to form an lvalue
1993 CastExpr *ptrCastExpr = new CastExpr( newMemberExpr, new PointerType( Type::Qualifiers(), memberType->clone() ) );
1994 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1995 derefExpr->get_args().push_back( ptrCastExpr );
1996 newMemberExpr = derefExpr;
1997 }
1998
1999 delete memberExpr;
2000 return newMemberExpr;
2001 }
2002
2003 ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) {
2004 ObjectDecl *newObj = new ObjectDecl( name, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, init );
2005 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
2006 return newObj;
2007 }
2008
2009 void PolyGenericCalculator::addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ) {
2010 for ( std::list< Type* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
2011 if ( findGeneric( *param ) ) {
2012 // push size/align vars for a generic parameter back
2013 std::string paramName = mangleType( *param );
2014 layoutCall->get_args().push_back( new NameExpr( sizeofName( paramName ) ) );
2015 layoutCall->get_args().push_back( new NameExpr( alignofName( paramName ) ) );
2016 } else {
2017 layoutCall->get_args().push_back( new SizeofExpr( (*param)->clone() ) );
2018 layoutCall->get_args().push_back( new AlignofExpr( (*param)->clone() ) );
2019 }
2020 }
2021 }
2022
2023 /// returns true if any of the otype parameters have a dynamic layout and puts all otype parameters in the output list
2024 bool findGenericParams( std::list< TypeDecl* > &baseParams, std::list< Expression* > &typeParams, std::list< Type* > &out ) {
2025 bool hasDynamicLayout = false;
2026
2027 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
2028 std::list< Expression* >::const_iterator typeParam = typeParams.begin();
2029 for ( ; baseParam != baseParams.end() && typeParam != typeParams.end(); ++baseParam, ++typeParam ) {
2030 // skip non-otype parameters
2031 if ( (*baseParam)->get_kind() != TypeDecl::Any ) continue;
2032 TypeExpr *typeExpr = dynamic_cast< TypeExpr* >( *typeParam );
2033 assert( typeExpr && "all otype parameters should be type expressions" );
2034
2035 Type *type = typeExpr->get_type();
2036 out.push_back( type );
2037 if ( isPolyType( type ) ) hasDynamicLayout = true;
2038 }
2039 assert( baseParam == baseParams.end() && typeParam == typeParams.end() );
2040
2041 return hasDynamicLayout;
2042 }
2043
2044 bool PolyGenericCalculator::findGeneric( Type *ty ) {
2045 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) {
2046 // duplicate logic from isPolyType()
2047 if ( env ) {
2048 if ( Type *newType = env->lookup( typeInst->get_name() ) ) {
2049 return findGeneric( newType );
2050 } // if
2051 } // if
2052 if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() ) {
2053 // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set
2054 return true;
2055 }
2056 return false;
2057 } else if ( StructInstType *structTy = dynamic_cast< StructInstType* >( ty ) ) {
2058 // check if this type already has a layout generated for it
2059 std::string typeName = mangleType( ty );
2060 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
2061
2062 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
2063 std::list< Type* > otypeParams;
2064 if ( ! findGenericParams( *structTy->get_baseParameters(), structTy->get_parameters(), otypeParams ) ) return false;
2065
2066 // insert local variables for layout and generate call to layout function
2067 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
2068 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2069
2070 int n_members = structTy->get_baseStruct()->get_members().size();
2071 if ( n_members == 0 ) {
2072 // all empty structs have the same layout - size 1, align 1
2073 makeVar( sizeofName( typeName ), layoutType, new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
2074 makeVar( alignofName( typeName ), layoutType->clone(), new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
2075 // NOTE zero-length arrays are forbidden in C, so empty structs have no offsetof array
2076 } else {
2077 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
2078 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
2079 ObjectDecl *offsetVar = makeVar( offsetofName( typeName ), new ArrayType( Type::Qualifiers(), layoutType->clone(), new ConstantExpr( Constant::from_int( n_members ) ), false, false ) );
2080
2081 // generate call to layout function
2082 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( structTy->get_baseStruct() ) ) );
2083 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
2084 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
2085 layoutCall->get_args().push_back( new VariableExpr( offsetVar ) );
2086 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
2087
2088 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
2089 }
2090
2091 return true;
2092 } else if ( UnionInstType *unionTy = dynamic_cast< UnionInstType* >( ty ) ) {
2093 // check if this type already has a layout generated for it
2094 std::string typeName = mangleType( ty );
2095 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
2096
2097 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
2098 std::list< Type* > otypeParams;
2099 if ( ! findGenericParams( *unionTy->get_baseParameters(), unionTy->get_parameters(), otypeParams ) ) return false;
2100
2101 // insert local variables for layout and generate call to layout function
2102 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
2103 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2104
2105 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
2106 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
2107
2108 // generate call to layout function
2109 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( unionTy->get_baseUnion() ) ) );
2110 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
2111 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
2112 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
2113
2114 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
2115
2116 return true;
2117 }
2118
2119 return false;
2120 }
2121
2122 Expression *PolyGenericCalculator::mutate( SizeofExpr *sizeofExpr ) {
2123 Type *ty = sizeofExpr->get_type();
2124 if ( findGeneric( ty ) ) {
2125 Expression *ret = new NameExpr( sizeofName( mangleType( ty ) ) );
2126 delete sizeofExpr;
2127 return ret;
2128 }
2129 return sizeofExpr;
2130 }
2131
2132 Expression *PolyGenericCalculator::mutate( AlignofExpr *alignofExpr ) {
2133 Type *ty = alignofExpr->get_type();
2134 if ( findGeneric( ty ) ) {
2135 Expression *ret = new NameExpr( alignofName( mangleType( ty ) ) );
2136 delete alignofExpr;
2137 return ret;
2138 }
2139 return alignofExpr;
2140 }
2141
2142 Expression *PolyGenericCalculator::mutate( OffsetofExpr *offsetofExpr ) {
2143 // mutate, exiting early if no longer OffsetofExpr
2144 Expression *expr = Mutator::mutate( offsetofExpr );
2145 offsetofExpr = dynamic_cast< OffsetofExpr* >( expr );
2146 if ( ! offsetofExpr ) return expr;
2147
2148 // only mutate expressions for polymorphic structs/unions
2149 Type *ty = offsetofExpr->get_type();
2150 if ( ! findGeneric( ty ) ) return offsetofExpr;
2151
2152 if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) {
2153 // replace offsetof expression by index into offset array
2154 long i = findMember( offsetofExpr->get_member(), structType->get_baseStruct()->get_members() );
2155 if ( i == -1 ) return offsetofExpr;
2156
2157 Expression *offsetInd = makeOffsetIndex( ty, i );
2158 delete offsetofExpr;
2159 return offsetInd;
2160 } else if ( dynamic_cast< UnionInstType* >( ty ) ) {
2161 // all union members are at offset zero
2162 delete offsetofExpr;
2163 return new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), std::string("0") ) );
2164 } else return offsetofExpr;
2165 }
2166
2167 Expression *PolyGenericCalculator::mutate( OffsetPackExpr *offsetPackExpr ) {
2168 StructInstType *ty = offsetPackExpr->get_type();
2169
2170 Expression *ret = 0;
2171 if ( findGeneric( ty ) ) {
2172 // pull offset back from generated type information
2173 ret = new NameExpr( offsetofName( mangleType( ty ) ) );
2174 } else {
2175 std::string offsetName = offsetofName( mangleType( ty ) );
2176 if ( knownOffsets.find( offsetName ) != knownOffsets.end() ) {
2177 // use the already-generated offsets for this type
2178 ret = new NameExpr( offsetName );
2179 } else {
2180 knownOffsets.insert( offsetName );
2181
2182 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members();
2183 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2184
2185 // build initializer list for offset array
2186 std::list< Initializer* > inits;
2187 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) {
2188 DeclarationWithType *memberDecl;
2189 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) {
2190 memberDecl = origMember->clone();
2191 } else {
2192 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 );
2193 }
2194 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) );
2195 }
2196
2197 // build the offset array and replace the pack with a reference to it
2198 ObjectDecl *offsetArray = makeVar( offsetName, new ArrayType( Type::Qualifiers(), offsetType, new ConstantExpr( Constant::from_ulong( baseMembers.size() ) ), false, false ),
2199 new ListInit( inits ) );
2200 ret = new VariableExpr( offsetArray );
2201 }
2202 }
2203
2204 delete offsetPackExpr;
2205 return ret;
2206 }
2207
2208 void PolyGenericCalculator::doBeginScope() {
2209 knownLayouts.beginScope();
2210 knownOffsets.beginScope();
2211 }
2212
2213 void PolyGenericCalculator::doEndScope() {
2214 knownLayouts.endScope();
2215 knownOffsets.endScope();
2216 }
2217
2218////////////////////////////////////////// Pass3 ////////////////////////////////////////////////////
2219
2220 template< typename DeclClass >
2221 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) {
2222 scopeTyVars.beginScope();
2223 makeTyVarMap( type, scopeTyVars );
2224
2225 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
2226 ScrubTyVars::scrub( decl, scopeTyVars );
2227
2228 scopeTyVars.endScope();
2229 return ret;
2230 }
2231
2232 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) {
2233 return handleDecl( objectDecl, objectDecl->get_type() );
2234 }
2235
2236 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) {
2237 return handleDecl( functionDecl, functionDecl->get_functionType() );
2238 }
2239
2240 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) {
2241 return handleDecl( typedefDecl, typedefDecl->get_base() );
2242 }
2243
2244 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) {
2245// Initializer *init = 0;
2246// std::list< Expression *> designators;
2247// scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2248// if ( typeDecl->get_base() ) {
2249// init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators );
2250// }
2251// return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init );
2252
2253 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2254 return Mutator::mutate( typeDecl );
2255 }
2256
2257 Type * Pass3::mutate( PointerType *pointerType ) {
2258 scopeTyVars.beginScope();
2259 makeTyVarMap( pointerType, scopeTyVars );
2260
2261 Type *ret = Mutator::mutate( pointerType );
2262
2263 scopeTyVars.endScope();
2264 return ret;
2265 }
2266
2267 Type * Pass3::mutate( FunctionType *functionType ) {
2268 scopeTyVars.beginScope();
2269 makeTyVarMap( functionType, scopeTyVars );
2270
2271 Type *ret = Mutator::mutate( functionType );
2272
2273 scopeTyVars.endScope();
2274 return ret;
2275 }
2276 } // anonymous namespace
2277} // namespace GenPoly
2278
2279// Local Variables: //
2280// tab-width: 4 //
2281// mode: c++ //
2282// compile-command: "make install" //
2283// End: //
Note: See TracBrowser for help on using the repository browser.