source: src/GenPoly/Box.cc@ 4789f44

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay gc_noraii jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new string with_gc
Last change on this file since 4789f44 was 4789f44, checked in by Rob Schluntz <rschlunt@…>, 10 years ago

Merge branch 'master' into fix-argument-passing-type-warnings

  • Property mode set to 100644
File size: 63.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Rob Schluntz
12// Last Modified On : Fri Feb 05 12:23:10 2016
13// Update Count : 280
14//
15
16#include <set>
17#include <stack>
18#include <string>
19#include <iterator>
20#include <algorithm>
21#include <cassert>
22
23#include "Box.h"
24#include "InstantiateGeneric.h"
25#include "PolyMutator.h"
26#include "FindFunction.h"
27#include "ScopedMap.h"
28#include "ScrubTyVars.h"
29
30#include "Parser/ParseNode.h"
31
32#include "SynTree/Constant.h"
33#include "SynTree/Type.h"
34#include "SynTree/Expression.h"
35#include "SynTree/Initializer.h"
36#include "SynTree/Statement.h"
37#include "SynTree/Mutator.h"
38
39#include "ResolvExpr/TypeEnvironment.h"
40
41#include "SymTab/Mangler.h"
42
43#include "Common/SemanticError.h"
44#include "Common/UniqueName.h"
45#include "Common/utility.h"
46
47#include <ext/functional> // temporary
48
49namespace GenPoly {
50 namespace {
51 const std::list<Label> noLabels;
52
53 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars );
54
55 /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call
56 class Pass1 : public PolyMutator {
57 public:
58 Pass1();
59 virtual Expression *mutate( ApplicationExpr *appExpr );
60 virtual Expression *mutate( AddressExpr *addrExpr );
61 virtual Expression *mutate( UntypedExpr *expr );
62 virtual DeclarationWithType* mutate( FunctionDecl *functionDecl );
63 virtual TypeDecl *mutate( TypeDecl *typeDecl );
64 virtual Expression *mutate( CommaExpr *commaExpr );
65 virtual Expression *mutate( ConditionalExpr *condExpr );
66 virtual Statement * mutate( ReturnStmt *returnStmt );
67 virtual Type *mutate( PointerType *pointerType );
68 virtual Type * mutate( FunctionType *functionType );
69
70 virtual void doBeginScope();
71 virtual void doEndScope();
72 private:
73 /// Makes a new temporary array holding the offsets of the fields of `type`, and returns a new variable expression referencing it
74 Expression *makeOffsetArray( StructInstType *type );
75 /// passes extra type parameters into a polymorphic function application
76 void passTypeVars( ApplicationExpr *appExpr, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
77 /// wraps a function application with a new temporary for the out-parameter return value
78 Expression *addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg );
79 /// Replaces all the type parameters of a generic type with their concrete equivalents under the current environment
80 void replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params );
81 /// Replaces a polymorphic type with its concrete equivalant under the current environment (returns itself if concrete).
82 /// If `doClone` is set to false, will not clone interior types
83 Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true );
84 /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value
85 Expression *addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg );
86 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
87 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars );
88 void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
89 void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars );
90 /// Stores assignment operators from assertion list in local map of assignment operations
91 void findAssignOps( const std::list< TypeDecl *> &forall );
92 void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars );
93 FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars );
94 /// Replaces intrinsic operator functions with their arithmetic desugaring
95 Expression *handleIntrinsics( ApplicationExpr *appExpr );
96 /// Inserts a new temporary variable into the current scope with an auto-generated name
97 ObjectDecl *makeTemporary( Type *type );
98
99 typedef std::map< std::string, DeclarationWithType *> AdapterMap;
100 std::map< std::string, DeclarationWithType *> assignOps;
101 ScopedMap< std::string, DeclarationWithType *> scopedAssignOps;
102 std::stack< AdapterMap > adapters;
103 DeclarationWithType *retval;
104 bool useRetval;
105 UniqueName tempNamer;
106 };
107
108 /// Moves polymorphic returns in function types to pointer-type parameters, adds type size and assertion parameters to parameter lists as well
109 class Pass2 : public PolyMutator {
110 public:
111 template< typename DeclClass >
112 DeclClass *handleDecl( DeclClass *decl, Type *type );
113 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
114 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
115 virtual TypeDecl *mutate( TypeDecl *typeDecl );
116 virtual TypedefDecl *mutate( TypedefDecl *typedefDecl );
117 virtual Type *mutate( PointerType *pointerType );
118 virtual Type *mutate( FunctionType *funcType );
119 private:
120 void addAdapters( FunctionType *functionType );
121
122 std::map< UniqueId, std::string > adapterName;
123 };
124
125 /// Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference;
126 /// also fixes offsetof expressions.
127 class MemberExprFixer : public PolyMutator {
128 public:
129 template< typename DeclClass >
130 DeclClass *handleDecl( DeclClass *decl, Type *type );
131 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
132 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
133 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
134 virtual TypeDecl *mutate( TypeDecl *objectDecl );
135 virtual Statement *mutate( DeclStmt *declStmt );
136 virtual Type *mutate( PointerType *pointerType );
137 virtual Type *mutate( FunctionType *funcType );
138 virtual Expression *mutate( MemberExpr *memberExpr );
139 virtual Expression *mutate( OffsetofExpr *offsetofExpr );
140 };
141
142 /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, and sizeof expressions of polymorphic types with the proper variable
143 class Pass3 : public PolyMutator {
144 public:
145 template< typename DeclClass >
146 DeclClass *handleDecl( DeclClass *decl, Type *type );
147 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
148 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
149 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
150 virtual TypeDecl *mutate( TypeDecl *objectDecl );
151 virtual Type *mutate( PointerType *pointerType );
152 virtual Type *mutate( FunctionType *funcType );
153 private:
154 };
155
156 } // anonymous namespace
157
158 void printAllNotBuiltin( const std::list< Declaration *>& translationUnit, std::ostream &os ) {
159 for ( std::list< Declaration *>::const_iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
160 if ( ! LinkageSpec::isBuiltin( (*i)->get_linkage() ) ) {
161 (*i)->print( os );
162 os << std::endl;
163 } // if
164 } // for
165 }
166
167 /// version of mutateAll with special handling for translation unit so you can check the end of the prelude when debugging
168 template< typename MutatorType >
169 inline void mutateTranslationUnit( std::list< Declaration* > &translationUnit, MutatorType &mutator ) {
170 bool seenIntrinsic = false;
171 SemanticError errors;
172 for ( typename std::list< Declaration* >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
173 try {
174 if ( *i ) {
175 if ( (*i)->get_linkage() == LinkageSpec::Intrinsic ) {
176 seenIntrinsic = true;
177 } else if ( seenIntrinsic ) {
178 seenIntrinsic = false; // break on this line when debugging for end of prelude
179 }
180
181 *i = dynamic_cast< Declaration* >( (*i)->acceptMutator( mutator ) );
182 assert( *i );
183 } // if
184 } catch( SemanticError &e ) {
185 errors.append( e );
186 } // try
187 } // for
188 if ( ! errors.isEmpty() ) {
189 throw errors;
190 } // if
191 }
192
193 void box( std::list< Declaration *>& translationUnit ) {
194 Pass1 pass1;
195 Pass2 pass2;
196 MemberExprFixer memberFixer;
197 Pass3 pass3;
198 mutateTranslationUnit/*All*/( translationUnit, pass1 );
199 mutateTranslationUnit/*All*/( translationUnit, pass2 );
200 instantiateGeneric( translationUnit );
201 mutateTranslationUnit/*All*/( translationUnit, memberFixer );
202 mutateTranslationUnit/*All*/( translationUnit, pass3 );
203 }
204
205 ////////////////////////////////////////// Pass1 ////////////////////////////////////////////////////
206
207 namespace {
208 std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) {
209 std::stringstream name;
210
211 // NOTE: this function previously used isPolyObj, which failed to produce
212 // the correct thing in some situations. It's not clear to me why this wasn't working.
213
214 // if the return type or a parameter type involved polymorphic types, then the adapter will need
215 // to take those polymorphic types as pointers. Therefore, there can be two different functions
216 // with the same mangled name, so we need to further mangle the names.
217 for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) {
218 if ( isPolyType( (*retval)->get_type(), tyVars ) ) {
219 name << "P";
220 } else {
221 name << "M";
222 }
223 }
224 name << "_";
225 std::list< DeclarationWithType *> &paramList = function->get_parameters();
226 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
227 if ( isPolyType( (*arg)->get_type(), tyVars ) ) {
228 name << "P";
229 } else {
230 name << "M";
231 }
232 } // for
233 return name.str();
234 }
235
236 std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) {
237 return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars );
238 }
239
240 std::string makeAdapterName( const std::string &mangleName ) {
241 return "_adapter" + mangleName;
242 }
243
244 Pass1::Pass1() : useRetval( false ), tempNamer( "_temp" ) {
245 adapters.push(AdapterMap());
246 }
247
248 /// returns T if the given declaration is: (*?=?)(T *, T) for some T (return not checked, but maybe should be), NULL otherwise
249 ReferenceToType *isAssignment( DeclarationWithType *decl ) {
250 if ( decl->get_name() == "?=?" ) {
251 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
252 if ( funType->get_parameters().size() == 2 ) {
253 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
254 if ( ReferenceToType *refType = dynamic_cast< ReferenceToType *>( pointer->get_base() ) ) {
255 if ( ReferenceToType *refType2 = dynamic_cast< ReferenceToType *>( funType->get_parameters().back()->get_type() ) ) {
256 if ( refType->get_name() == refType2->get_name() ) {
257 return refType;
258 } // if
259 } // if
260 } // if
261 } // if
262 } // if
263 } // if
264 } // if
265 return 0;
266 }
267
268 void Pass1::findAssignOps( const std::list< TypeDecl *> &forall ) {
269 // what if a nested function uses an assignment operator?
270 // assignOps.clear();
271 for ( std::list< TypeDecl *>::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
272 for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) {
273 std::string typeName;
274 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( isAssignment( *assert ) ) ) {
275 assignOps[ typeInst->get_name() ] = *assert;
276 } // if
277 } // for
278 } // for
279 }
280
281 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) {
282 // if this is a polymorphic assignment function, put it in the map for this scope
283 if ( ReferenceToType *refType = isAssignment( functionDecl ) ) {
284 if ( ! dynamic_cast< TypeInstType* >( refType ) ) {
285 scopedAssignOps.insert( refType->get_name(), functionDecl );
286 }
287 }
288
289 if ( functionDecl->get_statements() ) { // empty routine body ?
290 doBeginScope();
291 TyVarMap oldtyVars = scopeTyVars;
292 std::map< std::string, DeclarationWithType *> oldassignOps = assignOps;
293 DeclarationWithType *oldRetval = retval;
294 bool oldUseRetval = useRetval;
295
296 // process polymorphic return value
297 retval = 0;
298 if ( isPolyRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) {
299 retval = functionDecl->get_functionType()->get_returnVals().front();
300
301 // give names to unnamed return values
302 if ( retval->get_name() == "" ) {
303 retval->set_name( "_retparm" );
304 retval->set_linkage( LinkageSpec::C );
305 } // if
306 } // if
307
308 FunctionType *functionType = functionDecl->get_functionType();
309 makeTyVarMap( functionDecl->get_functionType(), scopeTyVars );
310 findAssignOps( functionDecl->get_functionType()->get_forall() );
311
312 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
313 std::list< FunctionType *> functions;
314 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
315 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
316 findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter );
317 } // for
318 } // for
319 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
320 findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter );
321 } // for
322
323 AdapterMap & adapters = Pass1::adapters.top();
324 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
325 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
326 if ( adapters.find( mangleName ) == adapters.end() ) {
327 std::string adapterName = makeAdapterName( mangleName );
328 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) ) );
329 } // if
330 } // for
331
332 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) );
333
334 scopeTyVars = oldtyVars;
335 assignOps = oldassignOps;
336 // std::cerr << "end FunctionDecl: ";
337 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
338 // std::cerr << i->first << " ";
339 // }
340 // std::cerr << "\n";
341 retval = oldRetval;
342 useRetval = oldUseRetval;
343 doEndScope();
344 } // if
345 return functionDecl;
346 }
347
348 TypeDecl *Pass1::mutate( TypeDecl *typeDecl ) {
349 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
350 return Mutator::mutate( typeDecl );
351 }
352
353 Expression *Pass1::mutate( CommaExpr *commaExpr ) {
354 bool oldUseRetval = useRetval;
355 useRetval = false;
356 commaExpr->set_arg1( maybeMutate( commaExpr->get_arg1(), *this ) );
357 useRetval = oldUseRetval;
358 commaExpr->set_arg2( maybeMutate( commaExpr->get_arg2(), *this ) );
359 return commaExpr;
360 }
361
362 Expression *Pass1::mutate( ConditionalExpr *condExpr ) {
363 bool oldUseRetval = useRetval;
364 useRetval = false;
365 condExpr->set_arg1( maybeMutate( condExpr->get_arg1(), *this ) );
366 useRetval = oldUseRetval;
367 condExpr->set_arg2( maybeMutate( condExpr->get_arg2(), *this ) );
368 condExpr->set_arg3( maybeMutate( condExpr->get_arg3(), *this ) );
369 return condExpr;
370
371 }
372
373 Expression *Pass1::makeOffsetArray( StructInstType *ty ) {
374 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members();
375
376 // make a new temporary array
377 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
378 std::stringstream lenGen;
379 lenGen << baseMembers.size();
380 ConstantExpr *lenExpr = new ConstantExpr( Constant( offsetType->clone(), lenGen.str() ) );
381 ObjectDecl *arrayTemp = makeTemporary( new ArrayType( Type::Qualifiers(), offsetType, lenExpr, false, false ) );
382
383 // build initializer list for temporary
384 std::list< Initializer* > inits;
385 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) {
386 DeclarationWithType *memberDecl;
387 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) {
388 memberDecl = origMember->clone();
389 } else {
390 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 );
391 }
392 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) );
393 }
394 arrayTemp->set_init( new ListInit( inits ) );
395
396 // return variable pointing to temporary
397 return new VariableExpr( arrayTemp );
398 }
399
400 void Pass1::passTypeVars( ApplicationExpr *appExpr, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
401 // pass size/align for type variables
402 for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) {
403 ResolvExpr::EqvClass eqvClass;
404 assert( env );
405 if ( tyParm->second == TypeDecl::Any ) {
406 Type *concrete = env->lookup( tyParm->first );
407 if ( concrete ) {
408 arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) );
409 arg++;
410 arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) );
411 arg++;
412 } else {
413 throw SemanticError( "unbound type variable in application ", appExpr );
414 } // if
415 } // if
416 } // for
417
418 // add size/align for generic types to parameter list
419 if ( appExpr->get_function()->get_results().empty() ) return;
420 FunctionType *funcType = getFunctionType( appExpr->get_function()->get_results().front() );
421 assert( funcType );
422
423 std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin();
424 std::list< Expression* >::const_iterator fnArg = arg;
425 std::set< std::string > seenTypes; //< names for generic types we've seen
426 for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {
427 Type *polyBase = hasPolyBase( (*fnParm)->get_type(), exprTyVars );
428 if ( polyBase && ! dynamic_cast< TypeInstType* >( polyBase ) ) {
429 std::string sizeName = sizeofName( polyBase );
430 if ( seenTypes.count( sizeName ) ) continue;
431
432 VariableExpr *fnArgBase = getBaseVar( *fnArg );
433 assert( fnArgBase && ! fnArgBase->get_results().empty() );
434 Type *argBaseType = fnArgBase->get_results().front();
435 arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) );
436 arg++;
437 arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) );
438 arg++;
439 if ( dynamic_cast< StructInstType* >( polyBase ) ) {
440 if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) {
441 arg = appExpr->get_args().insert( arg, makeOffsetArray( argBaseStructType ) );
442 arg++;
443 } else {
444 throw SemanticError( "Cannot pass non-struct type for generic struct" );
445 }
446 }
447
448 seenTypes.insert( sizeName );
449 }
450 }
451 }
452
453 ObjectDecl *Pass1::makeTemporary( Type *type ) {
454 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, 0 );
455 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
456 return newObj;
457 }
458
459 Expression *Pass1::addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ) {
460 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
461 // if ( useRetval ) {
462 // assert( retval );
463 // arg = appExpr->get_args().insert( arg, new VariableExpr( retval ) );
464 // arg++;
465 // } else {
466
467 // Create temporary to hold return value of polymorphic function and produce that temporary as a result
468 // using a comma expression. Possibly change comma expression into statement expression "{}" for multiple
469 // return values.
470 ObjectDecl *newObj = makeTemporary( retType->clone() );
471 Expression *paramExpr = new VariableExpr( newObj );
472 // If the type of the temporary is not polymorphic, box temporary by taking its address; otherwise the
473 // temporary is already boxed and can be used directly.
474 if ( ! isPolyType( newObj->get_type(), scopeTyVars, env ) ) {
475 paramExpr = new AddressExpr( paramExpr );
476 } // if
477 arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call
478 arg++;
479 // Build a comma expression to call the function and emulate a normal return.
480 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) );
481 commaExpr->set_env( appExpr->get_env() );
482 appExpr->set_env( 0 );
483 return commaExpr;
484 // } // if
485 // return appExpr;
486 }
487
488 void Pass1::replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ) {
489 for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) {
490 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
491 assert(paramType && "Aggregate parameters should be type expressions");
492 paramType->set_type( replaceWithConcrete( appExpr, paramType->get_type(), false ) );
493 }
494 }
495
496 Type *Pass1::replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone ) {
497 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) {
498 Type *concrete = env->lookup( typeInst->get_name() );
499 if ( concrete == 0 ) {
500 throw SemanticError( "Unbound type variable " + typeInst->get_name() + " in ", appExpr );
501 } // if
502 return concrete;
503 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) {
504 if ( doClone ) {
505 structType = structType->clone();
506 }
507 replaceParametersWithConcrete( appExpr, structType->get_parameters() );
508 return structType;
509 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) {
510 if ( doClone ) {
511 unionType = unionType->clone();
512 }
513 replaceParametersWithConcrete( appExpr, unionType->get_parameters() );
514 return unionType;
515 }
516 return type;
517 }
518
519 Expression *Pass1::addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg ) {
520 assert( env );
521 Type *concrete = replaceWithConcrete( appExpr, polyType );
522 return addRetParam( appExpr, function, concrete, arg );
523 }
524
525 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
526 Expression *ret = appExpr;
527 if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) {
528 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg );
529 } // if
530 std::string mangleName = mangleAdapterName( function, tyVars );
531 std::string adapterName = makeAdapterName( mangleName );
532
533 // cast adaptee to void (*)(), since it may have any type inside a polymorphic function
534 Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) );
535 appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) );
536 appExpr->set_function( new NameExpr( adapterName ) );
537
538 return ret;
539 }
540
541 void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) {
542 assert( ! arg->get_results().empty() );
543 if ( isPolyType( param, exprTyVars ) ) {
544 if ( dynamic_cast< TypeInstType *>( arg->get_results().front() ) ) {
545 // if the argument's type is a type parameter, we don't need to box again!
546 return;
547 } else if ( arg->get_results().front()->get_isLvalue() ) {
548 // VariableExpr and MemberExpr are lvalues
549 arg = new AddressExpr( arg );
550 } else {
551 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, arg->get_results().front()->clone(), 0 );
552 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right???
553 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
554 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
555 assign->get_args().push_back( new VariableExpr( newObj ) );
556 assign->get_args().push_back( arg );
557 stmtsToAdd.push_back( new ExprStmt( noLabels, assign ) );
558 arg = new AddressExpr( new VariableExpr( newObj ) );
559 } // if
560 } // if
561 }
562
563 /// cast parameters to polymorphic functions so that types are replaced with
564 /// void * if they are type parameters in the formal type.
565 /// this gets rid of warnings from gcc.
566 void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) {
567 Type * newType = formal->clone();
568 if ( getFunctionType( newType ) ) {
569 newType = ScrubTyVars::scrub( newType, tyVars );
570 actual = new CastExpr( actual, newType );
571 } // if
572 }
573
574 void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
575 for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->get_parameters().end(); ++param, ++arg ) {
576 assert( arg != appExpr->get_args().end() );
577 addCast( *arg, (*param)->get_type(), exprTyVars );
578 boxParam( (*param)->get_type(), *arg, exprTyVars );
579 } // for
580 }
581
582 void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
583 std::list< Expression *>::iterator cur = arg;
584 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
585 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
586 InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() );
587 assert( inferParam != appExpr->get_inferParams().end() && "NOTE: Explicit casts of polymorphic functions to compatible monomorphic functions are currently unsupported" );
588 Expression *newExpr = inferParam->second.expr->clone();
589 addCast( newExpr, (*assert)->get_type(), tyVars );
590 boxParam( (*assert)->get_type(), newExpr, tyVars );
591 appExpr->get_args().insert( cur, newExpr );
592 } // for
593 } // for
594 }
595
596 void makeRetParm( FunctionType *funcType ) {
597 DeclarationWithType *retParm = funcType->get_returnVals().front();
598
599 // make a new parameter that is a pointer to the type of the old return value
600 retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) );
601 funcType->get_parameters().push_front( retParm );
602
603 // we don't need the return value any more
604 funcType->get_returnVals().clear();
605 }
606
607 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ) {
608 // actually make the adapter type
609 FunctionType *adapter = adaptee->clone();
610 if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) {
611 makeRetParm( adapter );
612 } // if
613 adapter->get_parameters().push_front( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ) );
614 return adapter;
615 }
616
617 Expression *makeAdapterArg( DeclarationWithType *param, DeclarationWithType *arg, DeclarationWithType *realParam, const TyVarMap &tyVars ) {
618 assert( param );
619 assert( arg );
620 if ( isPolyType( realParam->get_type(), tyVars ) ) {
621 if ( dynamic_cast<TypeInstType *>(arg->get_type()) == NULL ) {
622 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
623 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) );
624 deref->get_results().push_back( arg->get_type()->clone() );
625 return deref;
626 } // if
627 } // if
628 return new VariableExpr( param );
629 }
630
631 void addAdapterParams( ApplicationExpr *adapteeApp, std::list< DeclarationWithType *>::iterator arg, std::list< DeclarationWithType *>::iterator param, std::list< DeclarationWithType *>::iterator paramEnd, std::list< DeclarationWithType *>::iterator realParam, const TyVarMap &tyVars ) {
632 UniqueName paramNamer( "_p" );
633 for ( ; param != paramEnd; ++param, ++arg, ++realParam ) {
634 if ( (*param)->get_name() == "" ) {
635 (*param)->set_name( paramNamer.newName() );
636 (*param)->set_linkage( LinkageSpec::C );
637 } // if
638 adapteeApp->get_args().push_back( makeAdapterArg( *param, *arg, *realParam, tyVars ) );
639 } // for
640 }
641
642
643
644 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) {
645 FunctionType *adapterType = makeAdapterType( adaptee, tyVars );
646 adapterType = ScrubTyVars::scrub( adapterType, tyVars );
647 DeclarationWithType *adapteeDecl = adapterType->get_parameters().front();
648 adapteeDecl->set_name( "_adaptee" );
649 ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) );
650 Statement *bodyStmt;
651
652 std::list< TypeDecl *>::iterator tyArg = realType->get_forall().begin();
653 std::list< TypeDecl *>::iterator tyParam = adapterType->get_forall().begin();
654 std::list< TypeDecl *>::iterator realTyParam = adaptee->get_forall().begin();
655 for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) {
656 assert( tyArg != realType->get_forall().end() );
657 std::list< DeclarationWithType *>::iterator assertArg = (*tyArg)->get_assertions().begin();
658 std::list< DeclarationWithType *>::iterator assertParam = (*tyParam)->get_assertions().begin();
659 std::list< DeclarationWithType *>::iterator realAssertParam = (*realTyParam)->get_assertions().begin();
660 for ( ; assertParam != (*tyParam)->get_assertions().end(); ++assertArg, ++assertParam, ++realAssertParam ) {
661 assert( assertArg != (*tyArg)->get_assertions().end() );
662 adapteeApp->get_args().push_back( makeAdapterArg( *assertParam, *assertArg, *realAssertParam, tyVars ) );
663 } // for
664 } // for
665
666 std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin();
667 std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin();
668 std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin();
669 param++; // skip adaptee parameter
670 if ( realType->get_returnVals().empty() ) {
671 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
672 bodyStmt = new ExprStmt( noLabels, adapteeApp );
673 } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
674 if ( (*param)->get_name() == "" ) {
675 (*param)->set_name( "_ret" );
676 (*param)->set_linkage( LinkageSpec::C );
677 } // if
678 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
679 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
680 deref->get_args().push_back( new CastExpr( new VariableExpr( *param++ ), new PointerType( Type::Qualifiers(), realType->get_returnVals().front()->get_type()->clone() ) ) );
681 assign->get_args().push_back( deref );
682 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
683 assign->get_args().push_back( adapteeApp );
684 bodyStmt = new ExprStmt( noLabels, assign );
685 } else {
686 // adapter for a function that returns a monomorphic value
687 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
688 bodyStmt = new ReturnStmt( noLabels, adapteeApp );
689 } // if
690 CompoundStmt *adapterBody = new CompoundStmt( noLabels );
691 adapterBody->get_kids().push_back( bodyStmt );
692 std::string adapterName = makeAdapterName( mangleName );
693 return new FunctionDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, adapterType, adapterBody, false, false );
694 }
695
696 void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) {
697 // collect a list of function types passed as parameters or implicit parameters (assertions)
698 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
699 std::list< FunctionType *> functions;
700 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
701 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
702 findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter );
703 } // for
704 } // for
705 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
706 findFunction( (*arg)->get_type(), functions, exprTyVars, needsAdapter );
707 } // for
708
709 // parameter function types for which an appropriate adapter has been generated. we cannot use the types
710 // after applying substitutions, since two different parameter types may be unified to the same type
711 std::set< std::string > adaptersDone;
712
713 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
714 FunctionType *originalFunction = (*funType)->clone();
715 FunctionType *realFunction = (*funType)->clone();
716 std::string mangleName = SymTab::Mangler::mangle( realFunction );
717
718 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this
719 // pre-substitution parameter function type.
720 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
721 adaptersDone.insert( adaptersDone.begin(), mangleName );
722
723 // apply substitution to type variables to figure out what the adapter's type should look like
724 assert( env );
725 env->apply( realFunction );
726 mangleName = SymTab::Mangler::mangle( realFunction );
727 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars );
728
729 AdapterMap & adapters = Pass1::adapters.top();
730 AdapterMap::iterator adapter = adapters.find( mangleName );
731 if ( adapter == adapters.end() ) {
732 // adapter has not been created yet in the current scope, so define it
733 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars );
734 adapter = adapters.insert( adapters.begin(), std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) );
735 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) );
736 } // if
737 assert( adapter != adapters.end() );
738
739 // add the appropriate adapter as a parameter
740 appExpr->get_args().push_front( new VariableExpr( adapter->second ) );
741 } // if
742 } // for
743 } // passAdapters
744
745 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) {
746 NameExpr *opExpr;
747 if ( isIncr ) {
748 opExpr = new NameExpr( "?+=?" );
749 } else {
750 opExpr = new NameExpr( "?-=?" );
751 } // if
752 UntypedExpr *addAssign = new UntypedExpr( opExpr );
753 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
754 addAssign->get_args().push_back( address->get_arg() );
755 } else {
756 addAssign->get_args().push_back( appExpr->get_args().front() );
757 } // if
758 addAssign->get_args().push_back( new NameExpr( sizeofName( polyType ) ) );
759 addAssign->get_results().front() = appExpr->get_results().front()->clone();
760 if ( appExpr->get_env() ) {
761 addAssign->set_env( appExpr->get_env() );
762 appExpr->set_env( 0 );
763 } // if
764 appExpr->get_args().clear();
765 delete appExpr;
766 return addAssign;
767 }
768
769 Expression *Pass1::handleIntrinsics( ApplicationExpr *appExpr ) {
770 if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->get_function() ) ) {
771 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic ) {
772 if ( varExpr->get_var()->get_name() == "?[?]" ) {
773 assert( ! appExpr->get_results().empty() );
774 assert( appExpr->get_args().size() == 2 );
775 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
776 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
777 assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers
778 UntypedExpr *ret = 0;
779 if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer
780 ret = new UntypedExpr( new NameExpr( "?+?" ) );
781 } // if
782 if ( baseType1 ) {
783 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
784 multiply->get_args().push_back( appExpr->get_args().back() );
785 multiply->get_args().push_back( new NameExpr( sizeofName( baseType1 ) ) );
786 ret->get_args().push_back( appExpr->get_args().front() );
787 ret->get_args().push_back( multiply );
788 } else if ( baseType2 ) {
789 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
790 multiply->get_args().push_back( appExpr->get_args().front() );
791 multiply->get_args().push_back( new NameExpr( sizeofName( baseType2 ) ) );
792 ret->get_args().push_back( multiply );
793 ret->get_args().push_back( appExpr->get_args().back() );
794 } // if
795 if ( baseType1 || baseType2 ) {
796 ret->get_results().push_front( appExpr->get_results().front()->clone() );
797 if ( appExpr->get_env() ) {
798 ret->set_env( appExpr->get_env() );
799 appExpr->set_env( 0 );
800 } // if
801 appExpr->get_args().clear();
802 delete appExpr;
803 return ret;
804 } // if
805 } else if ( varExpr->get_var()->get_name() == "*?" ) {
806 assert( ! appExpr->get_results().empty() );
807 assert( ! appExpr->get_args().empty() );
808 if ( isPolyType( appExpr->get_results().front(), scopeTyVars, env ) ) {
809 Expression *ret = appExpr->get_args().front();
810 delete ret->get_results().front();
811 ret->get_results().front() = appExpr->get_results().front()->clone();
812 if ( appExpr->get_env() ) {
813 ret->set_env( appExpr->get_env() );
814 appExpr->set_env( 0 );
815 } // if
816 appExpr->get_args().clear();
817 delete appExpr;
818 return ret;
819 } // if
820 } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) {
821 assert( ! appExpr->get_results().empty() );
822 assert( appExpr->get_args().size() == 1 );
823 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
824 Type *tempType = appExpr->get_results().front()->clone();
825 if ( env ) {
826 env->apply( tempType );
827 } // if
828 ObjectDecl *newObj = makeTemporary( tempType );
829 VariableExpr *tempExpr = new VariableExpr( newObj );
830 UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) );
831 assignExpr->get_args().push_back( tempExpr->clone() );
832 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
833 assignExpr->get_args().push_back( address->get_arg()->clone() );
834 } else {
835 assignExpr->get_args().push_back( appExpr->get_args().front()->clone() );
836 } // if
837 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) );
838 return new CommaExpr( firstComma, tempExpr );
839 } // if
840 } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) {
841 assert( ! appExpr->get_results().empty() );
842 assert( appExpr->get_args().size() == 1 );
843 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
844 return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );
845 } // if
846 } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) {
847 assert( ! appExpr->get_results().empty() );
848 assert( appExpr->get_args().size() == 2 );
849 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
850 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
851 if ( baseType1 && baseType2 ) {
852 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) );
853 divide->get_args().push_back( appExpr );
854 divide->get_args().push_back( new NameExpr( sizeofName( baseType1 ) ) );
855 divide->get_results().push_front( appExpr->get_results().front()->clone() );
856 if ( appExpr->get_env() ) {
857 divide->set_env( appExpr->get_env() );
858 appExpr->set_env( 0 );
859 } // if
860 return divide;
861 } else if ( baseType1 ) {
862 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
863 multiply->get_args().push_back( appExpr->get_args().back() );
864 multiply->get_args().push_back( new NameExpr( sizeofName( baseType1 ) ) );
865 appExpr->get_args().back() = multiply;
866 } else if ( baseType2 ) {
867 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
868 multiply->get_args().push_back( appExpr->get_args().front() );
869 multiply->get_args().push_back( new NameExpr( sizeofName( baseType2 ) ) );
870 appExpr->get_args().front() = multiply;
871 } // if
872 } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) {
873 assert( ! appExpr->get_results().empty() );
874 assert( appExpr->get_args().size() == 2 );
875 Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env );
876 if ( baseType ) {
877 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
878 multiply->get_args().push_back( appExpr->get_args().back() );
879 multiply->get_args().push_back( new NameExpr( sizeofName( baseType ) ) );
880 appExpr->get_args().back() = multiply;
881 } // if
882 } // if
883 return appExpr;
884 } // if
885 } // if
886 return 0;
887 }
888
889 Expression *Pass1::mutate( ApplicationExpr *appExpr ) {
890 // std::cerr << "mutate appExpr: ";
891 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
892 // std::cerr << i->first << " ";
893 // }
894 // std::cerr << "\n";
895 bool oldUseRetval = useRetval;
896 useRetval = false;
897 appExpr->get_function()->acceptMutator( *this );
898 mutateAll( appExpr->get_args(), *this );
899 useRetval = oldUseRetval;
900
901 assert( ! appExpr->get_function()->get_results().empty() );
902 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
903 assert( pointer );
904 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
905 assert( function );
906
907 if ( Expression *newExpr = handleIntrinsics( appExpr ) ) {
908 return newExpr;
909 } // if
910
911 Expression *ret = appExpr;
912
913 std::list< Expression *>::iterator arg = appExpr->get_args().begin();
914 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin();
915
916 if ( ReferenceToType *polyType = isPolyRet( function ) ) {
917 ret = addPolyRetParam( appExpr, function, polyType, arg );
918 } else if ( needsAdapter( function, scopeTyVars ) ) {
919 // std::cerr << "needs adapter: ";
920 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
921 // std::cerr << i->first << " ";
922 // }
923 // std::cerr << "\n";
924 // change the application so it calls the adapter rather than the passed function
925 ret = applyAdapter( appExpr, function, arg, scopeTyVars );
926 } // if
927 arg = appExpr->get_args().begin();
928
929 TyVarMap exprTyVars;
930 makeTyVarMap( function, exprTyVars );
931
932 passTypeVars( appExpr, arg, exprTyVars );
933 addInferredParams( appExpr, function, arg, exprTyVars );
934
935 arg = paramBegin;
936
937 boxParams( appExpr, function, arg, exprTyVars );
938
939 passAdapters( appExpr, function, exprTyVars );
940
941 return ret;
942 }
943
944 Expression *Pass1::mutate( UntypedExpr *expr ) {
945 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
946 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
947 if ( name->get_name() == "*?" ) {
948 Expression *ret = expr->get_args().front();
949 expr->get_args().clear();
950 delete expr;
951 return ret->acceptMutator( *this );
952 } // if
953 } // if
954 } // if
955 return PolyMutator::mutate( expr );
956 }
957
958 Expression *Pass1::mutate( AddressExpr *addrExpr ) {
959 assert( ! addrExpr->get_arg()->get_results().empty() );
960
961 bool needs = false;
962 if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {
963 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
964 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
965 if ( name->get_name() == "*?" ) {
966 if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {
967 assert( ! appExpr->get_function()->get_results().empty() );
968 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
969 assert( pointer );
970 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
971 assert( function );
972 needs = needsAdapter( function, scopeTyVars );
973 } // if
974 } // if
975 } // if
976 } // if
977 } // if
978 addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) );
979 if ( isPolyType( addrExpr->get_arg()->get_results().front(), scopeTyVars, env ) || needs ) {
980 Expression *ret = addrExpr->get_arg();
981 delete ret->get_results().front();
982 ret->get_results().front() = addrExpr->get_results().front()->clone();
983 addrExpr->set_arg( 0 );
984 delete addrExpr;
985 return ret;
986 } else {
987 return addrExpr;
988 } // if
989 }
990
991 Statement * Pass1::mutate( ReturnStmt *returnStmt ) {
992 if ( retval && returnStmt->get_expr() ) {
993 assert( ! returnStmt->get_expr()->get_results().empty() );
994 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
995 // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) {
996 // by this point, a cast expr on a polymorphic return value is redundant
997 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( returnStmt->get_expr() ) ) {
998 returnStmt->set_expr( castExpr->get_arg() );
999 returnStmt->get_expr()->set_env( castExpr->get_env() );
1000 castExpr->set_env( 0 );
1001 castExpr->set_arg( 0 );
1002 delete castExpr;
1003 } //while
1004
1005 // find assignment operator for (polymorphic) return type
1006 DeclarationWithType *assignDecl = 0;
1007 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ) ) {
1008 std::map< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() );
1009 if ( assignIter == assignOps.end() ) {
1010 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() );
1011 } // if
1012 assignDecl = assignIter->second;
1013 } else if ( ReferenceToType *refType = dynamic_cast< ReferenceToType *>( retval->get_type() ) ) {
1014 ScopedMap< std::string, DeclarationWithType *>::const_iterator assignIter = scopedAssignOps.find( refType->get_name() );
1015 if ( assignIter == scopedAssignOps.end() ) {
1016 throw SemanticError( "Attempt to return dtype or ftype generic object in ", returnStmt->get_expr() );
1017 }
1018 DeclarationWithType *functionDecl = assignIter->second;
1019 // line below cloned from FixFunction.cc
1020 assignDecl = new ObjectDecl( functionDecl->get_name(), functionDecl->get_storageClass(), functionDecl->get_linkage(), 0,
1021 new PointerType( Type::Qualifiers(), functionDecl->get_type()->clone() ), 0 );
1022 assignDecl->set_mangleName( functionDecl->get_mangleName() );
1023 }
1024 assert( assignDecl );
1025
1026 // replace return statement with appropriate assignment to out parameter
1027 ApplicationExpr *assignExpr = new ApplicationExpr( new VariableExpr( assignDecl ) );
1028 Expression *retParm = new NameExpr( retval->get_name() );
1029 retParm->get_results().push_back( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
1030 assignExpr->get_args().push_back( retParm );
1031 assignExpr->get_args().push_back( returnStmt->get_expr() );
1032 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) );
1033 // } else {
1034 // useRetval = true;
1035 // stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( returnStmt->get_expr() ) ) );
1036 // useRetval = false;
1037 // } // if
1038 returnStmt->set_expr( 0 );
1039 } else {
1040 returnStmt->set_expr( mutateExpression( returnStmt->get_expr() ) );
1041 } // if
1042 return returnStmt;
1043 }
1044
1045 Type * Pass1::mutate( PointerType *pointerType ) {
1046 TyVarMap oldtyVars = scopeTyVars;
1047 makeTyVarMap( pointerType, scopeTyVars );
1048
1049 Type *ret = Mutator::mutate( pointerType );
1050
1051 scopeTyVars = oldtyVars;
1052 return ret;
1053 }
1054
1055 Type * Pass1::mutate( FunctionType *functionType ) {
1056 TyVarMap oldtyVars = scopeTyVars;
1057 makeTyVarMap( functionType, scopeTyVars );
1058
1059 Type *ret = Mutator::mutate( functionType );
1060
1061 scopeTyVars = oldtyVars;
1062 return ret;
1063 }
1064
1065 void Pass1::doBeginScope() {
1066 // push a copy of the current map
1067 adapters.push(adapters.top());
1068 scopedAssignOps.beginScope();
1069 }
1070
1071 void Pass1::doEndScope() {
1072 adapters.pop();
1073 scopedAssignOps.endScope();
1074 }
1075
1076////////////////////////////////////////// Pass2 ////////////////////////////////////////////////////
1077
1078 void Pass2::addAdapters( FunctionType *functionType ) {
1079 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1080 std::list< FunctionType *> functions;
1081 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1082 Type *orig = (*arg)->get_type();
1083 findAndReplaceFunction( orig, functions, scopeTyVars, needsAdapter );
1084 (*arg)->set_type( orig );
1085 }
1086 std::set< std::string > adaptersDone;
1087 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1088 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
1089 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1090 std::string adapterName = makeAdapterName( mangleName );
1091 paramList.push_front( new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) );
1092 adaptersDone.insert( adaptersDone.begin(), mangleName );
1093 }
1094 }
1095// deleteAll( functions );
1096 }
1097
1098 template< typename DeclClass >
1099 DeclClass * Pass2::handleDecl( DeclClass *decl, Type *type ) {
1100 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1101
1102 return ret;
1103 }
1104
1105 DeclarationWithType * Pass2::mutate( FunctionDecl *functionDecl ) {
1106 return handleDecl( functionDecl, functionDecl->get_functionType() );
1107 }
1108
1109 ObjectDecl * Pass2::mutate( ObjectDecl *objectDecl ) {
1110 return handleDecl( objectDecl, objectDecl->get_type() );
1111 }
1112
1113 TypeDecl * Pass2::mutate( TypeDecl *typeDecl ) {
1114 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1115 if ( typeDecl->get_base() ) {
1116 return handleDecl( typeDecl, typeDecl->get_base() );
1117 } else {
1118 return Mutator::mutate( typeDecl );
1119 }
1120 }
1121
1122 TypedefDecl * Pass2::mutate( TypedefDecl *typedefDecl ) {
1123 return handleDecl( typedefDecl, typedefDecl->get_base() );
1124 }
1125
1126 Type * Pass2::mutate( PointerType *pointerType ) {
1127 TyVarMap oldtyVars = scopeTyVars;
1128 makeTyVarMap( pointerType, scopeTyVars );
1129
1130 Type *ret = Mutator::mutate( pointerType );
1131
1132 scopeTyVars = oldtyVars;
1133 return ret;
1134 }
1135
1136 Type *Pass2::mutate( FunctionType *funcType ) {
1137 TyVarMap oldtyVars = scopeTyVars;
1138 makeTyVarMap( funcType, scopeTyVars );
1139
1140 // move polymorphic return type to parameter list
1141 if ( isPolyRet( funcType ) ) {
1142 DeclarationWithType *ret = funcType->get_returnVals().front();
1143 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) );
1144 funcType->get_parameters().push_front( ret );
1145 funcType->get_returnVals().pop_front();
1146 }
1147
1148 // add size/align and assertions for type parameters to parameter list
1149 std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin();
1150 std::list< DeclarationWithType *> inferredParams;
1151 ObjectDecl newObj( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 );
1152 ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0,
1153 new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 );
1154// ObjectDecl *newFunPtr = new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 );
1155 for ( std::list< TypeDecl *>::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
1156 ObjectDecl *sizeParm, *alignParm;
1157 // add all size and alignment parameters to parameter list
1158 if ( (*tyParm)->get_kind() == TypeDecl::Any ) {
1159 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm );
1160
1161 sizeParm = newObj.clone();
1162 sizeParm->set_name( sizeofName( &parmType ) );
1163 last = funcType->get_parameters().insert( last, sizeParm );
1164 ++last;
1165
1166 alignParm = newObj.clone();
1167 alignParm->set_name( alignofName( &parmType ) );
1168 last = funcType->get_parameters().insert( last, alignParm );
1169 ++last;
1170 }
1171 // move all assertions into parameter list
1172 for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) {
1173// *assert = (*assert)->acceptMutator( *this );
1174 inferredParams.push_back( *assert );
1175 }
1176 (*tyParm)->get_assertions().clear();
1177 }
1178
1179 // add size/align for generic types to parameter list
1180 std::set< std::string > seenTypes; // sizeofName for generic types we've seen
1181 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) {
1182 Type *polyBase = hasPolyBase( (*fnParm)->get_type(), scopeTyVars );
1183 if ( polyBase && ! dynamic_cast< TypeInstType* >( polyBase ) ) {
1184 std::string sizeName = sizeofName( polyBase );
1185 if ( seenTypes.count( sizeName ) ) continue;
1186
1187 ObjectDecl *sizeParm, *alignParm, *offsetParm;
1188 sizeParm = newObj.clone();
1189 sizeParm->set_name( sizeName );
1190 last = funcType->get_parameters().insert( last, sizeParm );
1191 ++last;
1192
1193 alignParm = newObj.clone();
1194 alignParm->set_name( alignofName( polyBase ) );
1195 last = funcType->get_parameters().insert( last, alignParm );
1196 ++last;
1197
1198 if ( dynamic_cast< StructInstType* >( polyBase ) ) {
1199 offsetParm = newPtr.clone();
1200 offsetParm->set_name( offsetofName( polyBase ) );
1201 last = funcType->get_parameters().insert( last, offsetParm );
1202 ++last;
1203 }
1204
1205 seenTypes.insert( sizeName );
1206 }
1207 }
1208
1209 // splice assertion parameters into parameter list
1210 funcType->get_parameters().splice( last, inferredParams );
1211 addAdapters( funcType );
1212 mutateAll( funcType->get_returnVals(), *this );
1213 mutateAll( funcType->get_parameters(), *this );
1214
1215 scopeTyVars = oldtyVars;
1216 return funcType;
1217 }
1218
1219////////////////////////////////////////// MemberExprFixer ////////////////////////////////////////////////////
1220
1221 template< typename DeclClass >
1222 DeclClass * MemberExprFixer::handleDecl( DeclClass *decl, Type *type ) {
1223 TyVarMap oldtyVars = scopeTyVars;
1224 makeTyVarMap( type, scopeTyVars );
1225
1226 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1227
1228 scopeTyVars = oldtyVars;
1229 return ret;
1230 }
1231
1232 ObjectDecl * MemberExprFixer::mutate( ObjectDecl *objectDecl ) {
1233 return handleDecl( objectDecl, objectDecl->get_type() );
1234 }
1235
1236 DeclarationWithType * MemberExprFixer::mutate( FunctionDecl *functionDecl ) {
1237 return handleDecl( functionDecl, functionDecl->get_functionType() );
1238 }
1239
1240 TypedefDecl * MemberExprFixer::mutate( TypedefDecl *typedefDecl ) {
1241 return handleDecl( typedefDecl, typedefDecl->get_base() );
1242 }
1243
1244 TypeDecl * MemberExprFixer::mutate( TypeDecl *typeDecl ) {
1245 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1246 return Mutator::mutate( typeDecl );
1247 }
1248
1249 Type * MemberExprFixer::mutate( PointerType *pointerType ) {
1250 TyVarMap oldtyVars = scopeTyVars;
1251 makeTyVarMap( pointerType, scopeTyVars );
1252
1253 Type *ret = Mutator::mutate( pointerType );
1254
1255 scopeTyVars = oldtyVars;
1256 return ret;
1257 }
1258
1259 Type * MemberExprFixer::mutate( FunctionType *functionType ) {
1260 TyVarMap oldtyVars = scopeTyVars;
1261 makeTyVarMap( functionType, scopeTyVars );
1262
1263 Type *ret = Mutator::mutate( functionType );
1264
1265 scopeTyVars = oldtyVars;
1266 return ret;
1267 }
1268
1269 Statement *MemberExprFixer::mutate( DeclStmt *declStmt ) {
1270 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) {
1271 if ( isPolyType( objectDecl->get_type(), scopeTyVars ) ) {
1272 // change initialization of a polymorphic value object
1273 // to allocate storage with alloca
1274 Type *declType = objectDecl->get_type();
1275 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) );
1276 alloc->get_args().push_back( new NameExpr( sizeofName( declType ) ) );
1277
1278 delete objectDecl->get_init();
1279
1280 std::list<Expression*> designators;
1281 objectDecl->set_init( new SingleInit( alloc, designators ) );
1282 }
1283 }
1284 return Mutator::mutate( declStmt );
1285 }
1286
1287 /// Finds the member in the base list that matches the given declaration; returns its index, or -1 if not present
1288 long findMember( DeclarationWithType *memberDecl, std::list< Declaration* > &baseDecls ) {
1289 long i = 0;
1290 for(std::list< Declaration* >::const_iterator decl = baseDecls.begin(); decl != baseDecls.end(); ++decl, ++i ) {
1291 if ( memberDecl->get_name() != (*decl)->get_name() ) continue;
1292
1293 if ( DeclarationWithType *declWithType = dynamic_cast< DeclarationWithType* >( *decl ) ) {
1294 if ( memberDecl->get_mangleName() == declWithType->get_mangleName() ) return i;
1295 else continue;
1296 } else return i;
1297 }
1298 return -1;
1299 }
1300
1301 /// Returns an index expression into the offset array for a type
1302 Expression *makeOffsetIndex( Type *objectType, long i ) {
1303 std::stringstream offset_namer;
1304 offset_namer << i;
1305 ConstantExpr *fieldIndex = new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), offset_namer.str() ) );
1306 UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) );
1307 fieldOffset->get_args().push_back( new NameExpr( offsetofName( objectType ) ) );
1308 fieldOffset->get_args().push_back( fieldIndex );
1309 return fieldOffset;
1310 }
1311
1312 /// Returns an expression dereferenced n times
1313 Expression *makeDerefdVar( Expression *derefdVar, long n ) {
1314 for ( int i = 1; i < n; ++i ) {
1315 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1316 derefExpr->get_args().push_back( derefdVar );
1317 derefdVar = derefExpr;
1318 }
1319 return derefdVar;
1320 }
1321
1322 Expression *MemberExprFixer::mutate( MemberExpr *memberExpr ) {
1323 // mutate, exiting early if no longer MemberExpr
1324 Expression *expr = Mutator::mutate( memberExpr );
1325 memberExpr = dynamic_cast< MemberExpr* >( expr );
1326 if ( ! memberExpr ) return expr;
1327
1328 // get declaration for base struct, exiting early if not found
1329 int varDepth;
1330 VariableExpr *varExpr = getBaseVar( memberExpr->get_aggregate(), &varDepth );
1331 if ( ! varExpr ) return memberExpr;
1332 ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1333 if ( ! objectDecl ) return memberExpr;
1334
1335 // only mutate member expressions for polymorphic types
1336 int tyDepth;
1337 Type *objectType = hasPolyBase( objectDecl->get_type(), scopeTyVars, &tyDepth );
1338 if ( ! objectType ) return memberExpr;
1339
1340 if ( StructInstType *structType = dynamic_cast< StructInstType* >( objectType ) ) {
1341 // look up offset index
1342 long i = findMember( memberExpr->get_member(), structType->get_baseStruct()->get_members() );
1343 if ( i == -1 ) return memberExpr;
1344
1345 // replace member expression with pointer to base plus offset
1346 UntypedExpr *fieldLoc = new UntypedExpr( new NameExpr( "?+?" ) );
1347 fieldLoc->get_args().push_back( makeDerefdVar( varExpr->clone(), varDepth ) );
1348 fieldLoc->get_args().push_back( makeOffsetIndex( objectType, i ) );
1349
1350 delete memberExpr;
1351 return fieldLoc;
1352 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( objectType ) ) {
1353 // union members are all at offset zero, so build appropriately-dereferenced variable
1354 Expression *derefdVar = makeDerefdVar( varExpr->clone(), varDepth );
1355 delete memberExpr;
1356 return derefdVar;
1357 } else return memberExpr;
1358 }
1359
1360 Expression *MemberExprFixer::mutate( OffsetofExpr *offsetofExpr ) {
1361 // mutate, exiting early if no longer OffsetofExpr
1362 Expression *expr = Mutator::mutate( offsetofExpr );
1363 offsetofExpr = dynamic_cast< OffsetofExpr* >( expr );
1364 if ( ! offsetofExpr ) return expr;
1365
1366 // only mutate expressions for polymorphic structs/unions
1367 Type *ty = isPolyType( offsetofExpr->get_type(), scopeTyVars );
1368 if ( ! ty ) return offsetofExpr;
1369
1370 if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) {
1371 // replace offsetof expression by index into offset array
1372 long i = findMember( offsetofExpr->get_member(), structType->get_baseStruct()->get_members() );
1373 if ( i == -1 ) return offsetofExpr;
1374
1375 Expression *offsetInd = makeOffsetIndex( ty, i );
1376 delete offsetofExpr;
1377 return offsetInd;
1378 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( ty ) ) {
1379 // all union members are at offset zero
1380 delete offsetofExpr;
1381 return new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), std::string("0") ) );
1382 } else return offsetofExpr;
1383 }
1384
1385////////////////////////////////////////// Pass3 ////////////////////////////////////////////////////
1386
1387 template< typename DeclClass >
1388 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) {
1389 TyVarMap oldtyVars = scopeTyVars;
1390 makeTyVarMap( type, scopeTyVars );
1391
1392 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1393 ScrubTyVars::scrub( decl, scopeTyVars );
1394
1395 scopeTyVars = oldtyVars;
1396 return ret;
1397 }
1398
1399 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) {
1400 return handleDecl( objectDecl, objectDecl->get_type() );
1401 }
1402
1403 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) {
1404 return handleDecl( functionDecl, functionDecl->get_functionType() );
1405 }
1406
1407 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) {
1408 return handleDecl( typedefDecl, typedefDecl->get_base() );
1409 }
1410
1411 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) {
1412// Initializer *init = 0;
1413// std::list< Expression *> designators;
1414// scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1415// if ( typeDecl->get_base() ) {
1416// init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators );
1417// }
1418// return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init );
1419
1420 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1421 return Mutator::mutate( typeDecl );
1422 }
1423
1424 Type * Pass3::mutate( PointerType *pointerType ) {
1425 TyVarMap oldtyVars = scopeTyVars;
1426 makeTyVarMap( pointerType, scopeTyVars );
1427
1428 Type *ret = Mutator::mutate( pointerType );
1429
1430 scopeTyVars = oldtyVars;
1431 return ret;
1432 }
1433
1434 Type * Pass3::mutate( FunctionType *functionType ) {
1435 TyVarMap oldtyVars = scopeTyVars;
1436 makeTyVarMap( functionType, scopeTyVars );
1437
1438 Type *ret = Mutator::mutate( functionType );
1439
1440 scopeTyVars = oldtyVars;
1441 return ret;
1442 }
1443 } // anonymous namespace
1444} // namespace GenPoly
1445
1446// Local Variables: //
1447// tab-width: 4 //
1448// mode: c++ //
1449// compile-command: "make install" //
1450// End: //
Note: See TracBrowser for help on using the repository browser.