source: src/GenPoly/Box.cc@ fc638d2

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since fc638d2 was 2c57025, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

add support for built-in sized trait which decouples size/alignment information from otype parameters, add test for sized trait

  • Property mode set to 100644
File size: 96.6 KB
RevLine 
[51587aa]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[ae63a18]7// Box.cc --
[51587aa]8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
[ca35c51]11// Last Modified By : Peter A. Buhr
12// Last Modified On : Wed Jun 29 21:43:03 2016
13// Update Count : 296
[51587aa]14//
[51b73452]15
[4e284ea6]16#include <algorithm>
17#include <iterator>
18#include <list>
19#include <map>
[51b73452]20#include <set>
[b1a6d6b]21#include <stack>
[51b73452]22#include <string>
[4e284ea6]23#include <utility>
24#include <vector>
[51b73452]25#include <cassert>
26
27#include "Box.h"
[9d7b3ea]28#include "DeclMutator.h"
[51b73452]29#include "PolyMutator.h"
30#include "FindFunction.h"
[89173242]31#include "ScopedSet.h"
[51b73452]32#include "ScrubTyVars.h"
33
[68cd1ce]34#include "Parser/ParseNode.h"
35
[cdec5af]36#include "SynTree/Constant.h"
[4e284ea6]37#include "SynTree/Declaration.h"
[51b73452]38#include "SynTree/Expression.h"
39#include "SynTree/Initializer.h"
40#include "SynTree/Mutator.h"
[4e284ea6]41#include "SynTree/Statement.h"
42#include "SynTree/Type.h"
43#include "SynTree/TypeSubstitution.h"
[68cd1ce]44
[51b73452]45#include "ResolvExpr/TypeEnvironment.h"
[dc12481]46#include "ResolvExpr/TypeMap.h"
47#include "ResolvExpr/typeops.h"
[68cd1ce]48
[4e284ea6]49#include "SymTab/Indexer.h"
[51b73452]50#include "SymTab/Mangler.h"
51
[e491159]52#include "Common/ScopedMap.h"
[d3b7937]53#include "Common/SemanticError.h"
54#include "Common/UniqueName.h"
55#include "Common/utility.h"
[51b73452]56
57#include <ext/functional> // temporary
58
59namespace GenPoly {
[01aeade]60 namespace {
61 const std::list<Label> noLabels;
62
[e56cfdb0]63 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars );
64
[9d7b3ea]65 /// Adds layout-generation functions to polymorphic types
[62e5546]66 class LayoutFunctionBuilder final : public DeclMutator {
[9d7b3ea]67 unsigned int functionNesting; // current level of nested functions
68 public:
69 LayoutFunctionBuilder() : functionNesting( 0 ) {}
70
[62e5546]71 using DeclMutator::mutate;
72 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
73 virtual Declaration *mutate( StructDecl *structDecl ) override;
74 virtual Declaration *mutate( UnionDecl *unionDecl ) override;
[9d7b3ea]75 };
[70a06f6]76
[f8b961b]77 /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call
[62e5546]78 class Pass1 final : public PolyMutator {
[01aeade]79 public:
80 Pass1();
[62e5546]81
82 using PolyMutator::mutate;
83 virtual Expression *mutate( ApplicationExpr *appExpr ) override;
84 virtual Expression *mutate( AddressExpr *addrExpr ) override;
85 virtual Expression *mutate( UntypedExpr *expr ) override;
86 virtual DeclarationWithType* mutate( FunctionDecl *functionDecl ) override;
87 virtual TypeDecl *mutate( TypeDecl *typeDecl ) override;
88 virtual Expression *mutate( CommaExpr *commaExpr ) override;
89 virtual Expression *mutate( ConditionalExpr *condExpr ) override;
90 virtual Statement * mutate( ReturnStmt *returnStmt ) override;
91 virtual Type *mutate( PointerType *pointerType ) override;
92 virtual Type * mutate( FunctionType *functionType ) override;
93
94 virtual void doBeginScope() override;
95 virtual void doEndScope() override;
[01aeade]96 private:
[5c52b06]97 /// Pass the extra type parameters from polymorphic generic arguments or return types into a function application
98 void passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes );
[05d47278]99 /// passes extra type parameters into a polymorphic function application
[d9fa60a]100 void passTypeVars( ApplicationExpr *appExpr, Type *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
[48ca586]101 /// wraps a function application with a new temporary for the out-parameter return value
[01aeade]102 Expression *addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg );
[48ca586]103 /// Replaces all the type parameters of a generic type with their concrete equivalents under the current environment
104 void replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params );
105 /// Replaces a polymorphic type with its concrete equivalant under the current environment (returns itself if concrete).
106 /// If `doClone` is set to false, will not clone interior types
107 Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true );
108 /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value
[d9fa60a]109 Expression *addDynRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *polyType, std::list< Expression *>::iterator &arg );
[01aeade]110 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
111 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars );
112 void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
113 void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars );
[1194734]114 /// Stores assignment operators from assertion list in local map of assignment operations
[8c49c0e]115 void findTypeOps( const Type::ForallList &forall );
[01aeade]116 void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars );
117 FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars );
[05d47278]118 /// Replaces intrinsic operator functions with their arithmetic desugaring
[01aeade]119 Expression *handleIntrinsics( ApplicationExpr *appExpr );
[05d47278]120 /// Inserts a new temporary variable into the current scope with an auto-generated name
[01aeade]121 ObjectDecl *makeTemporary( Type *type );
[c29d9ce]122
[c2ad3c9]123 ScopedMap< std::string, DeclarationWithType* > assignOps; ///< Currently known type variable assignment operators
124 ScopedMap< std::string, DeclarationWithType* > ctorOps; ///< Currently known type variable constructors
125 ScopedMap< std::string, DeclarationWithType* > copyOps; ///< Currently known type variable copy constructors
126 ScopedMap< std::string, DeclarationWithType* > dtorOps; ///< Currently known type variable destructors
[89173242]127 ResolvExpr::TypeMap< DeclarationWithType > scopedAssignOps; ///< Currently known assignment operators
[c2ad3c9]128 ResolvExpr::TypeMap< DeclarationWithType > scopedCtorOps; ///< Currently known assignment operators
129 ResolvExpr::TypeMap< DeclarationWithType > scopedCopyOps; ///< Currently known assignment operators
130 ResolvExpr::TypeMap< DeclarationWithType > scopedDtorOps; ///< Currently known assignment operators
[89173242]131 ScopedMap< std::string, DeclarationWithType* > adapters; ///< Set of adapter functions in the current scope
[70a06f6]132
[01aeade]133 DeclarationWithType *retval;
134 bool useRetval;
135 UniqueName tempNamer;
136 };
137
[89173242]138 /// * Moves polymorphic returns in function types to pointer-type parameters
139 /// * adds type size and assertion parameters to parameter lists
[62e5546]140 class Pass2 final : public PolyMutator {
[01aeade]141 public:
142 template< typename DeclClass >
143 DeclClass *handleDecl( DeclClass *decl, Type *type );
[62e5546]144
145 using PolyMutator::mutate;
146 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
147 virtual ObjectDecl *mutate( ObjectDecl *objectDecl ) override;
148 virtual TypeDecl *mutate( TypeDecl *typeDecl ) override;
149 virtual TypedefDecl *mutate( TypedefDecl *typedefDecl ) override;
150 virtual Type *mutate( PointerType *pointerType ) override;
151 virtual Type *mutate( FunctionType *funcType ) override;
[70a06f6]152
[01aeade]153 private:
154 void addAdapters( FunctionType *functionType );
[ae63a18]155
[01aeade]156 std::map< UniqueId, std::string > adapterName;
157 };
158
[8a34677]159 /// Replaces member and size/align/offsetof expressions on polymorphic generic types with calculated expressions.
160 /// * Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference
161 /// * Calculates polymorphic offsetof expressions from offset array
162 /// * Inserts dynamic calculation of polymorphic type layouts where needed
[62e5546]163 class PolyGenericCalculator final : public PolyMutator {
[8a34677]164 public:
[1ba88a0]165 typedef PolyMutator Parent;
166 using Parent::mutate;
167
[05d47278]168 template< typename DeclClass >
169 DeclClass *handleDecl( DeclClass *decl, Type *type );
[62e5546]170 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
171 virtual ObjectDecl *mutate( ObjectDecl *objectDecl ) override;
172 virtual TypedefDecl *mutate( TypedefDecl *objectDecl ) override;
173 virtual TypeDecl *mutate( TypeDecl *objectDecl ) override;
174 virtual Statement *mutate( DeclStmt *declStmt ) override;
175 virtual Type *mutate( PointerType *pointerType ) override;
176 virtual Type *mutate( FunctionType *funcType ) override;
177 virtual Expression *mutate( MemberExpr *memberExpr ) override;
178 virtual Expression *mutate( SizeofExpr *sizeofExpr ) override;
179 virtual Expression *mutate( AlignofExpr *alignofExpr ) override;
180 virtual Expression *mutate( OffsetofExpr *offsetofExpr ) override;
181 virtual Expression *mutate( OffsetPackExpr *offsetPackExpr ) override;
182
183 virtual void doBeginScope() override;
184 virtual void doEndScope() override;
[8a34677]185
186 private:
187 /// Makes a new variable in the current scope with the given name, type & optional initializer
188 ObjectDecl *makeVar( const std::string &name, Type *type, Initializer *init = 0 );
189 /// returns true if the type has a dynamic layout; such a layout will be stored in appropriately-named local variables when the function returns
190 bool findGeneric( Type *ty );
191 /// adds type parameters to the layout call; will generate the appropriate parameters if needed
192 void addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams );
[aa19ccf]193
194 /// Enters a new scope for type-variables, adding the type variables from ty
195 void beginTypeScope( Type *ty );
196 /// Exits the type-variable scope
197 void endTypeScope();
[70a06f6]198
[8a34677]199 ScopedSet< std::string > knownLayouts; ///< Set of generic type layouts known in the current scope, indexed by sizeofName
200 ScopedSet< std::string > knownOffsets; ///< Set of non-generic types for which the offset array exists in the current scope, indexed by offsetofName
[05d47278]201 };
[b4cd03b7]202
[f8b961b]203 /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, and sizeof expressions of polymorphic types with the proper variable
[62e5546]204 class Pass3 final : public PolyMutator {
[01aeade]205 public:
206 template< typename DeclClass >
207 DeclClass *handleDecl( DeclClass *decl, Type *type );
[62e5546]208
209 using PolyMutator::mutate;
210 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl ) override;
211 virtual ObjectDecl *mutate( ObjectDecl *objectDecl ) override;
212 virtual TypedefDecl *mutate( TypedefDecl *objectDecl ) override;
213 virtual TypeDecl *mutate( TypeDecl *objectDecl ) override;
214 virtual Type *mutate( PointerType *pointerType ) override;
215 virtual Type *mutate( FunctionType *funcType ) override;
[01aeade]216 private:
217 };
218
219 } // anonymous namespace
220
[05d47278]221 /// version of mutateAll with special handling for translation unit so you can check the end of the prelude when debugging
222 template< typename MutatorType >
223 inline void mutateTranslationUnit( std::list< Declaration* > &translationUnit, MutatorType &mutator ) {
224 bool seenIntrinsic = false;
225 SemanticError errors;
226 for ( typename std::list< Declaration* >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
227 try {
228 if ( *i ) {
229 if ( (*i)->get_linkage() == LinkageSpec::Intrinsic ) {
230 seenIntrinsic = true;
231 } else if ( seenIntrinsic ) {
232 seenIntrinsic = false; // break on this line when debugging for end of prelude
233 }
[b4cd03b7]234
[05d47278]235 *i = dynamic_cast< Declaration* >( (*i)->acceptMutator( mutator ) );
236 assert( *i );
237 } // if
238 } catch( SemanticError &e ) {
239 errors.append( e );
240 } // try
241 } // for
242 if ( ! errors.isEmpty() ) {
243 throw errors;
244 } // if
245 }
246
[01aeade]247 void box( std::list< Declaration *>& translationUnit ) {
[9d7b3ea]248 LayoutFunctionBuilder layoutBuilder;
[01aeade]249 Pass1 pass1;
250 Pass2 pass2;
[8a34677]251 PolyGenericCalculator polyCalculator;
[01aeade]252 Pass3 pass3;
[70a06f6]253
[9d7b3ea]254 layoutBuilder.mutateDeclarationList( translationUnit );
[05d47278]255 mutateTranslationUnit/*All*/( translationUnit, pass1 );
256 mutateTranslationUnit/*All*/( translationUnit, pass2 );
[8a34677]257 mutateTranslationUnit/*All*/( translationUnit, polyCalculator );
[05d47278]258 mutateTranslationUnit/*All*/( translationUnit, pass3 );
[6c3744e]259 }
260
[9d7b3ea]261 ////////////////////////////////// LayoutFunctionBuilder ////////////////////////////////////////////
262
263 DeclarationWithType *LayoutFunctionBuilder::mutate( FunctionDecl *functionDecl ) {
264 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
265 mutateAll( functionDecl->get_oldDecls(), *this );
266 ++functionNesting;
267 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
268 --functionNesting;
269 return functionDecl;
270 }
[70a06f6]271
[9d7b3ea]272 /// Get a list of type declarations that will affect a layout function
273 std::list< TypeDecl* > takeOtypeOnly( std::list< TypeDecl* > &decls ) {
274 std::list< TypeDecl * > otypeDecls;
275
276 for ( std::list< TypeDecl* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
[2c57025]277 if ( (*decl)->isComplete() ) {
[9d7b3ea]278 otypeDecls.push_back( *decl );
279 }
280 }
[70a06f6]281
[9d7b3ea]282 return otypeDecls;
283 }
284
285 /// Adds parameters for otype layout to a function type
286 void addOtypeParams( FunctionType *layoutFnType, std::list< TypeDecl* > &otypeParams ) {
287 BasicType sizeAlignType( Type::Qualifiers(), BasicType::LongUnsignedInt );
[70a06f6]288
[9d7b3ea]289 for ( std::list< TypeDecl* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
[2e60a1a]290 TypeInstType paramType( Type::Qualifiers(), (*param)->get_name(), *param );
[adc6781]291 std::string paramName = mangleType( &paramType );
292 layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
293 layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
[9d7b3ea]294 }
295 }
296
297 /// Builds a layout function declaration
[adc6781]298 FunctionDecl *buildLayoutFunctionDecl( AggregateDecl *typeDecl, unsigned int functionNesting, FunctionType *layoutFnType ) {
[9d7b3ea]299 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
300 // because each unit generates copies of the default routines for each aggregate.
301 FunctionDecl *layoutDecl = new FunctionDecl(
[adc6781]302 layoutofName( typeDecl ), functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static, LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ), true, false );
[9d7b3ea]303 layoutDecl->fixUniqueId();
304 return layoutDecl;
305 }
306
307 /// Makes a unary operation
308 Expression *makeOp( const std::string &name, Expression *arg ) {
309 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
310 expr->get_args().push_back( arg );
311 return expr;
312 }
313
314 /// Makes a binary operation
315 Expression *makeOp( const std::string &name, Expression *lhs, Expression *rhs ) {
316 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
317 expr->get_args().push_back( lhs );
318 expr->get_args().push_back( rhs );
319 return expr;
320 }
321
322 /// Returns the dereference of a local pointer variable
323 Expression *derefVar( ObjectDecl *var ) {
324 return makeOp( "*?", new VariableExpr( var ) );
325 }
326
327 /// makes an if-statement with a single-expression if-block and no then block
328 Statement *makeCond( Expression *cond, Expression *ifPart ) {
[3627356]329 return new IfStmt( noLabels, cond, new ExprStmt( noLabels, ifPart ), 0 );
[9d7b3ea]330 }
331
332 /// makes a statement that assigns rhs to lhs if lhs < rhs
333 Statement *makeAssignMax( Expression *lhs, Expression *rhs ) {
334 return makeCond( makeOp( "?<?", lhs, rhs ), makeOp( "?=?", lhs->clone(), rhs->clone() ) );
335 }
336
337 /// makes a statement that aligns lhs to rhs (rhs should be an integer power of two)
338 Statement *makeAlignTo( Expression *lhs, Expression *rhs ) {
339 // check that the lhs is zeroed out to the level of rhs
340 Expression *ifCond = makeOp( "?&?", lhs, makeOp( "?-?", rhs, new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "1" ) ) ) );
341 // if not aligned, increment to alignment
342 Expression *ifExpr = makeOp( "?+=?", lhs->clone(), makeOp( "?-?", rhs->clone(), ifCond->clone() ) );
343 return makeCond( ifCond, ifExpr );
344 }
[70a06f6]345
[9d7b3ea]346 /// adds an expression to a compound statement
347 void addExpr( CompoundStmt *stmts, Expression *expr ) {
348 stmts->get_kids().push_back( new ExprStmt( noLabels, expr ) );
349 }
350
351 /// adds a statement to a compound statement
352 void addStmt( CompoundStmt *stmts, Statement *stmt ) {
353 stmts->get_kids().push_back( stmt );
354 }
[70a06f6]355
[3627356]356 Declaration *LayoutFunctionBuilder::mutate( StructDecl *structDecl ) {
[9d7b3ea]357 // do not generate layout function for "empty" tag structs
358 if ( structDecl->get_members().empty() ) return structDecl;
359
360 // get parameters that can change layout, exiting early if none
361 std::list< TypeDecl* > otypeParams = takeOtypeOnly( structDecl->get_parameters() );
362 if ( otypeParams.empty() ) return structDecl;
363
364 // build layout function signature
365 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
366 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
367 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
[70a06f6]368
[adc6781]369 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
[9d7b3ea]370 layoutFnType->get_parameters().push_back( sizeParam );
[adc6781]371 ObjectDecl *alignParam = new ObjectDecl( alignofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
[9d7b3ea]372 layoutFnType->get_parameters().push_back( alignParam );
[adc6781]373 ObjectDecl *offsetParam = new ObjectDecl( offsetofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
[9d7b3ea]374 layoutFnType->get_parameters().push_back( offsetParam );
375 addOtypeParams( layoutFnType, otypeParams );
376
377 // build function decl
[adc6781]378 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl, functionNesting, layoutFnType );
[9d7b3ea]379
380 // calculate struct layout in function body
381
382 // initialize size and alignment to 0 and 1 (will have at least one member to re-edit size
383 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "0" ) ) ) );
384 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
385 unsigned long n_members = 0;
386 bool firstMember = true;
387 for ( std::list< Declaration* >::const_iterator member = structDecl->get_members().begin(); member != structDecl->get_members().end(); ++member ) {
388 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
389 assert( dwt );
[bd91e2a]390 Type *memberType = dwt->get_type();
[9d7b3ea]391
392 if ( firstMember ) {
393 firstMember = false;
394 } else {
395 // make sure all members after the first (automatically aligned at 0) are properly padded for alignment
[bd91e2a]396 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), new AlignofExpr( memberType->clone() ) ) );
[9d7b3ea]397 }
[70a06f6]398
[9d7b3ea]399 // place current size in the current offset index
[cb4c607]400 addExpr( layoutDecl->get_statements(), makeOp( "?=?", makeOp( "?[?]", new VariableExpr( offsetParam ), new ConstantExpr( Constant::from_ulong( n_members ) ) ),
[9d7b3ea]401 derefVar( sizeParam ) ) );
402 ++n_members;
403
404 // add member size to current size
[bd91e2a]405 addExpr( layoutDecl->get_statements(), makeOp( "?+=?", derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
[70a06f6]406
[9d7b3ea]407 // take max of member alignment and global alignment
[bd91e2a]408 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
[9d7b3ea]409 }
410 // make sure the type is end-padded to a multiple of its alignment
411 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
412
413 addDeclarationAfter( layoutDecl );
414 return structDecl;
415 }
[70a06f6]416
[3627356]417 Declaration *LayoutFunctionBuilder::mutate( UnionDecl *unionDecl ) {
[9d7b3ea]418 // do not generate layout function for "empty" tag unions
419 if ( unionDecl->get_members().empty() ) return unionDecl;
[70a06f6]420
[9d7b3ea]421 // get parameters that can change layout, exiting early if none
422 std::list< TypeDecl* > otypeParams = takeOtypeOnly( unionDecl->get_parameters() );
423 if ( otypeParams.empty() ) return unionDecl;
424
425 // build layout function signature
426 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
427 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
428 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
[70a06f6]429
[adc6781]430 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
[9d7b3ea]431 layoutFnType->get_parameters().push_back( sizeParam );
[adc6781]432 ObjectDecl *alignParam = new ObjectDecl( alignofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
[9d7b3ea]433 layoutFnType->get_parameters().push_back( alignParam );
434 addOtypeParams( layoutFnType, otypeParams );
435
436 // build function decl
[adc6781]437 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl, functionNesting, layoutFnType );
[9d7b3ea]438
439 // calculate union layout in function body
440 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
441 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
442 for ( std::list< Declaration* >::const_iterator member = unionDecl->get_members().begin(); member != unionDecl->get_members().end(); ++member ) {
443 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
444 assert( dwt );
[bd91e2a]445 Type *memberType = dwt->get_type();
[70a06f6]446
[9d7b3ea]447 // take max member size and global size
[bd91e2a]448 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
[70a06f6]449
[9d7b3ea]450 // take max of member alignment and global alignment
[bd91e2a]451 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
[9d7b3ea]452 }
453 // make sure the type is end-padded to a multiple of its alignment
454 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
455
456 addDeclarationAfter( layoutDecl );
457 return unionDecl;
458 }
[70a06f6]459
[01aeade]460 ////////////////////////////////////////// Pass1 ////////////////////////////////////////////////////
461
462 namespace {
[bdf1954]463 std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) {
464 std::stringstream name;
465
[ed1065c]466 // NOTE: this function previously used isPolyObj, which failed to produce
467 // the correct thing in some situations. It's not clear to me why this wasn't working.
468
[ae63a18]469 // if the return type or a parameter type involved polymorphic types, then the adapter will need
470 // to take those polymorphic types as pointers. Therefore, there can be two different functions
[bdf1954]471 // with the same mangled name, so we need to further mangle the names.
[ed1065c]472 for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) {
[ffad73a]473 if ( isPolyType( (*retval)->get_type(), tyVars ) ) {
[ed1065c]474 name << "P";
475 } else {
476 name << "M";
477 }
[bdf1954]478 }
479 name << "_";
480 std::list< DeclarationWithType *> &paramList = function->get_parameters();
481 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
[ffad73a]482 if ( isPolyType( (*arg)->get_type(), tyVars ) ) {
[bdf1954]483 name << "P";
484 } else {
[ae63a18]485 name << "M";
[bdf1954]486 }
487 } // for
488 return name.str();
489 }
490
491 std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) {
492 return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars );
493 }
494
[01aeade]495 std::string makeAdapterName( const std::string &mangleName ) {
496 return "_adapter" + mangleName;
497 }
[6c3744e]498
[6635c74]499 Pass1::Pass1() : useRetval( false ), tempNamer( "_temp" ) {}
[01aeade]500
[c2ad3c9]501 /// Returns T if the given declaration is a function with parameter (T*) for some TypeInstType T, NULL otherwise
502 TypeInstType *isTypeInstPtrFn( DeclarationWithType *decl ) {
503 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
504 if ( funType->get_parameters().size() == 1 ) {
505 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
506 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
507 return refType;
508 } // if
509 } // if
510 } // if
511 } // if
512 return 0;
513 }
[9799ec8]514
[c2ad3c9]515 /// Returns T if the given declaration is a function with parameters (T*, T) for some TypeInstType T, NULL otherwise
516 TypeInstType *isTypeInstPtrValFn( DeclarationWithType *decl ) {
517 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
518 if ( funType->get_parameters().size() == 2 ) {
519 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
520 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
521 if ( TypeInstType *refType2 = dynamic_cast< TypeInstType *>( funType->get_parameters().back()->get_type() ) ) {
522 if ( refType->get_name() == refType2->get_name() ) {
523 return refType;
[01aeade]524 } // if
525 } // if
526 } // if
527 } // if
528 } // if
529 } // if
[1194734]530 return 0;
[01aeade]531 }
[9799ec8]532
[c2ad3c9]533 /// Returns T if the given declaration is (*?=?)(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
534 TypeInstType *isTypeInstAssignment( DeclarationWithType *decl ) {
535 return decl->get_name() == "?=?" ? isTypeInstPtrValFn( decl ) : 0;
536 }
[70a06f6]537
[c2ad3c9]538 /// Returns T if the given declaration is (*?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
539 TypeInstType *isTypeInstCtor( DeclarationWithType *decl ) {
540 return decl->get_name() == "?{}" ? isTypeInstPtrFn( decl ) : 0;
541 }
542
543 /// Returns T if the given declaration is (*?{})(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
544 TypeInstType *isTypeInstCopy( DeclarationWithType *decl ) {
545 return decl->get_name() == "?{}" ? isTypeInstPtrValFn( decl ) : 0;
546 }
547
548 /// Returns T if the given declaration is (*^?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
549 TypeInstType *isTypeInstDtor( DeclarationWithType *decl ) {
550 return decl->get_name() == "^?{}" ? isTypeInstPtrFn( decl ) : 0;
551 }
552
553 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified,
554 /// NULL otherwise
555 Type *isNoCvPtrFn( DeclarationWithType *decl ) {
556 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
557 if ( funType->get_parameters().size() == 1 ) {
558 Type::Qualifiers defaultQualifiers;
559 Type *paramType = funType->get_parameters().front()->get_type();
560 if ( paramType->get_qualifiers() != defaultQualifiers ) return 0;
561
562 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType ) ) {
563 Type *baseType = pointerType->get_base();
564 if ( baseType->get_qualifiers() == defaultQualifiers ) {
565 return baseType;
566 } // if
567 } // if
568 } // if
569 } // if
570 return 0;
571 }
[9799ec8]572
[c2ad3c9]573 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified,
574 /// NULL otherwise
575 Type *isNoCvPtrValFn( DeclarationWithType *decl ) {
576 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
577 if ( funType->get_parameters().size() == 2 ) {
578 Type::Qualifiers defaultQualifiers;
579 Type *paramType1 = funType->get_parameters().front()->get_type();
580 if ( paramType1->get_qualifiers() != defaultQualifiers ) return 0;
581 Type *paramType2 = funType->get_parameters().back()->get_type();
582 if ( paramType2->get_qualifiers() != defaultQualifiers ) return 0;
583
584 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType1 ) ) {
585 Type *baseType1 = pointerType->get_base();
586 if ( baseType1->get_qualifiers() != defaultQualifiers ) return 0;
587 SymTab::Indexer dummy;
588 if ( ResolvExpr::typesCompatible( baseType1, paramType2, dummy ) ) {
589 return baseType1;
[dc12481]590 } // if
591 } // if
592 } // if
593 } // if
594 return 0;
595 }
[01aeade]596
[c2ad3c9]597 /// returns T if the given declaration is: (*?=?)(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
598 /// Only picks assignments where neither parameter is cv-qualified
599 Type *isAssignment( DeclarationWithType *decl ) {
600 return decl->get_name() == "?=?" ? isNoCvPtrValFn( decl ) : 0;
601 }
602
603 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise
604 /// Only picks ctors where the parameter is not cv-qualified
605 Type *isCtor( DeclarationWithType *decl ) {
606 return decl->get_name() == "?{}" ? isNoCvPtrFn( decl ) : 0;
607 }
608
609 /// returns T if the given declaration is: (*?{})(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
610 /// Only picks copy constructors where neither parameter is cv-qualified
611 Type *isCopy( DeclarationWithType *decl ) {
612 return decl->get_name() == "?{}" ? isNoCvPtrValFn( decl ) : 0;
613 }
614
615 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise
616 /// Only picks ctors where the parameter is not cv-qualified
617 Type *isDtor( DeclarationWithType *decl ) {
618 return decl->get_name() == "^?{}" ? isNoCvPtrFn( decl ) : 0;
619 }
620
[8c49c0e]621 void Pass1::findTypeOps( const Type::ForallList &forall ) {
[ed1065c]622 // what if a nested function uses an assignment operator?
623 // assignOps.clear();
[8c49c0e]624 for ( Type::ForallList::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
[01aeade]625 for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) {
626 std::string typeName;
[dc12481]627 if ( TypeInstType *typeInst = isTypeInstAssignment( *assert ) ) {
[1194734]628 assignOps[ typeInst->get_name() ] = *assert;
[c2ad3c9]629 } else if ( TypeInstType *typeInst = isTypeInstCtor( *assert ) ) {
630 ctorOps[ typeInst->get_name() ] = *assert;
631 } else if ( TypeInstType *typeInst = isTypeInstCopy( *assert ) ) {
632 copyOps[ typeInst->get_name() ] = *assert;
633 } else if ( TypeInstType *typeInst = isTypeInstDtor( *assert ) ) {
634 dtorOps[ typeInst->get_name() ] = *assert;
[01aeade]635 } // if
636 } // for
637 } // for
638 }
639
[82dd287]640 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) {
[89173242]641 // if this is a assignment function, put it in the map for this scope
[c2ad3c9]642 if ( Type *paramType = isAssignment( functionDecl ) ) {
643 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
644 scopedAssignOps.insert( paramType, functionDecl );
645 }
646 } else if ( Type *paramType = isCtor( functionDecl ) ) {
647 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
648 scopedCtorOps.insert( paramType, functionDecl );
649 }
650 } else if ( Type *paramType = isCopy( functionDecl ) ) {
651 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
652 scopedCopyOps.insert( paramType, functionDecl );
653 }
654 } else if ( Type *paramType = isDtor( functionDecl ) ) {
655 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) {
656 scopedDtorOps.insert( paramType, functionDecl );
[1194734]657 }
658 }
[b4cd03b7]659
[e56cfdb0]660 if ( functionDecl->get_statements() ) { // empty routine body ?
661 doBeginScope();
[4b8f918]662 scopeTyVars.beginScope();
[63c0dbf]663 assignOps.beginScope();
[c2ad3c9]664 ctorOps.beginScope();
665 copyOps.beginScope();
666 dtorOps.beginScope();
[9799ec8]667
[01aeade]668 DeclarationWithType *oldRetval = retval;
669 bool oldUseRetval = useRetval;
[e56cfdb0]670
671 // process polymorphic return value
[01aeade]672 retval = 0;
[3bb195cb]673 if ( isDynRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) {
[01aeade]674 retval = functionDecl->get_functionType()->get_returnVals().front();
[ae63a18]675
[01aeade]676 // give names to unnamed return values
677 if ( retval->get_name() == "" ) {
678 retval->set_name( "_retparm" );
679 retval->set_linkage( LinkageSpec::C );
680 } // if
681 } // if
[ae63a18]682
[e56cfdb0]683 FunctionType *functionType = functionDecl->get_functionType();
[01aeade]684 makeTyVarMap( functionDecl->get_functionType(), scopeTyVars );
[c2ad3c9]685 findTypeOps( functionDecl->get_functionType()->get_forall() );
[e56cfdb0]686
687 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
688 std::list< FunctionType *> functions;
[8c49c0e]689 for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
[e56cfdb0]690 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
691 findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter );
692 } // for
693 } // for
694 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
695 findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter );
696 } // for
[b4cd03b7]697
[e56cfdb0]698 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
[bdf1954]699 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
[e56cfdb0]700 if ( adapters.find( mangleName ) == adapters.end() ) {
701 std::string adapterName = makeAdapterName( mangleName );
702 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) ) );
703 } // if
704 } // for
705
[01aeade]706 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) );
[ae63a18]707
[6f49cdf]708 scopeTyVars.endScope();
[63c0dbf]709 assignOps.endScope();
[c2ad3c9]710 ctorOps.endScope();
711 copyOps.endScope();
712 dtorOps.endScope();
[01aeade]713 retval = oldRetval;
714 useRetval = oldUseRetval;
[e56cfdb0]715 doEndScope();
[01aeade]716 } // if
717 return functionDecl;
718 }
[6c3744e]719
[01aeade]720 TypeDecl *Pass1::mutate( TypeDecl *typeDecl ) {
[2c57025]721 addToTyVarMap( typeDecl, scopeTyVars );
[01aeade]722 return Mutator::mutate( typeDecl );
723 }
[6c3744e]724
[01aeade]725 Expression *Pass1::mutate( CommaExpr *commaExpr ) {
726 bool oldUseRetval = useRetval;
727 useRetval = false;
728 commaExpr->set_arg1( maybeMutate( commaExpr->get_arg1(), *this ) );
729 useRetval = oldUseRetval;
730 commaExpr->set_arg2( maybeMutate( commaExpr->get_arg2(), *this ) );
731 return commaExpr;
732 }
[6c3744e]733
[01aeade]734 Expression *Pass1::mutate( ConditionalExpr *condExpr ) {
735 bool oldUseRetval = useRetval;
736 useRetval = false;
737 condExpr->set_arg1( maybeMutate( condExpr->get_arg1(), *this ) );
738 useRetval = oldUseRetval;
739 condExpr->set_arg2( maybeMutate( condExpr->get_arg2(), *this ) );
740 condExpr->set_arg3( maybeMutate( condExpr->get_arg3(), *this ) );
741 return condExpr;
[6c3744e]742
[01aeade]743 }
[6c3744e]744
[5c52b06]745 void Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) {
[4b8f918]746 Type *polyType = isPolyType( parmType, exprTyVars );
747 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
748 std::string typeName = mangleType( polyType );
[adc6781]749 if ( seenTypes.count( typeName ) ) return;
[5c52b06]750
751 arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) );
752 arg++;
753 arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) );
754 arg++;
[4b8f918]755 if ( dynamic_cast< StructInstType* >( polyType ) ) {
[5c52b06]756 if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) {
[89173242]757 // zero-length arrays are forbidden by C, so don't pass offset for empty struct
758 if ( ! argBaseStructType->get_baseStruct()->get_members().empty() ) {
[d75038c]759 arg = appExpr->get_args().insert( arg, new OffsetPackExpr( argBaseStructType->clone() ) );
[89173242]760 arg++;
761 }
[5c52b06]762 } else {
763 throw SemanticError( "Cannot pass non-struct type for generic struct" );
764 }
765 }
766
[adc6781]767 seenTypes.insert( typeName );
[5c52b06]768 }
769 }
770
[d9fa60a]771 void Pass1::passTypeVars( ApplicationExpr *appExpr, Type *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
[7754cde]772 // pass size/align for type variables
[01aeade]773 for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) {
774 ResolvExpr::EqvClass eqvClass;
775 assert( env );
[2c57025]776 if ( tyParm->second.isComplete ) {
[01aeade]777 Type *concrete = env->lookup( tyParm->first );
778 if ( concrete ) {
779 arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) );
780 arg++;
[db0b3ce]781 arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) );
782 arg++;
[01aeade]783 } else {
[ea5daeb]784 // xxx - should this be an assertion?
[540de412]785 throw SemanticError( "unbound type variable: " + tyParm->first + " in application ", appExpr );
[01aeade]786 } // if
787 } // if
788 } // for
[7754cde]789
790 // add size/align for generic types to parameter list
[906e24d]791 if ( ! appExpr->get_function()->has_result() ) return;
792 FunctionType *funcType = getFunctionType( appExpr->get_function()->get_result() );
[7754cde]793 assert( funcType );
[ae63a18]794
[7754cde]795 std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin();
796 std::list< Expression* >::const_iterator fnArg = arg;
[ea5daeb]797 std::set< std::string > seenTypes; ///< names for generic types we've seen
[7754cde]798
[5c52b06]799 // a polymorphic return type may need to be added to the argument list
800 if ( polyRetType ) {
801 Type *concRetType = replaceWithConcrete( appExpr, polyRetType );
802 passArgTypeVars( appExpr, polyRetType, concRetType, arg, exprTyVars, seenTypes );
803 }
[70a06f6]804
[5c52b06]805 // add type information args for presently unseen types in parameter list
806 for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {
807 VariableExpr *fnArgBase = getBaseVar( *fnArg );
[906e24d]808 if ( ! fnArgBase ) continue; // xxx - previously had check for non-empty fnArgBase results
809 passArgTypeVars( appExpr, (*fnParm)->get_type(), fnArgBase->get_result(), arg, exprTyVars, seenTypes );
[7754cde]810 }
[01aeade]811 }
[6c3744e]812
[01aeade]813 ObjectDecl *Pass1::makeTemporary( Type *type ) {
[68cd1ce]814 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, 0 );
[01aeade]815 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
816 return newObj;
817 }
[6c3744e]818
[01aeade]819 Expression *Pass1::addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ) {
[cf16f94]820 // Create temporary to hold return value of polymorphic function and produce that temporary as a result
821 // using a comma expression. Possibly change comma expression into statement expression "{}" for multiple
822 // return values.
[d9fa60a]823 assert( retType );
[cf16f94]824 ObjectDecl *newObj = makeTemporary( retType->clone() );
825 Expression *paramExpr = new VariableExpr( newObj );
[5c52b06]826
827 // If the type of the temporary is not polymorphic, box temporary by taking its address;
828 // otherwise the temporary is already boxed and can be used directly.
[5f6c42c]829 if ( ! isPolyType( newObj->get_type(), scopeTyVars, env ) ) {
[cf16f94]830 paramExpr = new AddressExpr( paramExpr );
[01aeade]831 } // if
[cf16f94]832 arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call
833 arg++;
834 // Build a comma expression to call the function and emulate a normal return.
835 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) );
836 commaExpr->set_env( appExpr->get_env() );
837 appExpr->set_env( 0 );
838 return commaExpr;
[01aeade]839 }
[6c3744e]840
[48ca586]841 void Pass1::replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ) {
842 for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) {
843 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
844 assert(paramType && "Aggregate parameters should be type expressions");
845 paramType->set_type( replaceWithConcrete( appExpr, paramType->get_type(), false ) );
846 }
847 }
[b4cd03b7]848
[48ca586]849 Type *Pass1::replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone ) {
850 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) {
851 Type *concrete = env->lookup( typeInst->get_name() );
852 if ( concrete == 0 ) {
853 throw SemanticError( "Unbound type variable " + typeInst->get_name() + " in ", appExpr );
854 } // if
855 return concrete;
856 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) {
857 if ( doClone ) {
858 structType = structType->clone();
859 }
860 replaceParametersWithConcrete( appExpr, structType->get_parameters() );
861 return structType;
862 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) {
863 if ( doClone ) {
864 unionType = unionType->clone();
865 }
866 replaceParametersWithConcrete( appExpr, unionType->get_parameters() );
867 return unionType;
868 }
869 return type;
870 }
871
[d9fa60a]872 Expression *Pass1::addDynRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *dynType, std::list< Expression *>::iterator &arg ) {
[01aeade]873 assert( env );
[3bb195cb]874 Type *concrete = replaceWithConcrete( appExpr, dynType );
[70a06f6]875 // add out-parameter for return value
[01aeade]876 return addRetParam( appExpr, function, concrete, arg );
877 }
[6c3744e]878
[01aeade]879 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
880 Expression *ret = appExpr;
[3bb195cb]881// if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) {
882 if ( isDynRet( function, tyVars ) ) {
[01aeade]883 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg );
884 } // if
[bdf1954]885 std::string mangleName = mangleAdapterName( function, tyVars );
[01aeade]886 std::string adapterName = makeAdapterName( mangleName );
[b1a6d6b]887
[b4cd03b7]888 // cast adaptee to void (*)(), since it may have any type inside a polymorphic function
889 Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) );
890 appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) );
[906e24d]891 appExpr->set_function( new NameExpr( adapterName ) ); // xxx - result is never set on NameExpr
[ae63a18]892
[01aeade]893 return ret;
894 }
[6c3744e]895
[01aeade]896 void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) {
[906e24d]897 assert( arg->has_result() );
[1cced28]898 if ( isPolyType( param, exprTyVars ) ) {
[906e24d]899 if ( isPolyType( arg->get_result() ) ) {
[9407ed8]900 // if the argument's type is polymorphic, we don't need to box again!
[01aeade]901 return;
[906e24d]902 } else if ( arg->get_result()->get_isLvalue() ) {
[b3ab8f0]903 // VariableExpr and MemberExpr are lvalues; need to check this isn't coming from the second arg of a comma expression though (not an lvalue)
[fea7ca7]904 // xxx - need to test that this code is still reachable
[b3ab8f0]905 if ( CommaExpr *commaArg = dynamic_cast< CommaExpr* >( arg ) ) {
[bc1ab61]906 commaArg->set_arg2( new AddressExpr( commaArg->get_arg2() ) );
[b3ab8f0]907 } else {
908 arg = new AddressExpr( arg );
909 }
[01aeade]910 } else {
[bd85400]911 // use type computed in unification to declare boxed variables
912 Type * newType = param->clone();
913 if ( env ) env->apply( newType );
914 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, newType, 0 );
[f6d7e0f]915 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right???
[01aeade]916 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
917 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
918 assign->get_args().push_back( new VariableExpr( newObj ) );
919 assign->get_args().push_back( arg );
920 stmtsToAdd.push_back( new ExprStmt( noLabels, assign ) );
921 arg = new AddressExpr( new VariableExpr( newObj ) );
922 } // if
923 } // if
924 }
[6c3744e]925
[b4cd03b7]926 /// cast parameters to polymorphic functions so that types are replaced with
927 /// void * if they are type parameters in the formal type.
928 /// this gets rid of warnings from gcc.
[01aeade]929 void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) {
[ea5daeb]930 if ( getFunctionType( formal ) ) {
931 Type * newType = formal->clone();
[b4cd03b7]932 newType = ScrubTyVars::scrub( newType, tyVars );
[01aeade]933 actual = new CastExpr( actual, newType );
934 } // if
935 }
[6c3744e]936
[01aeade]937 void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
938 for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->get_parameters().end(); ++param, ++arg ) {
939 assert( arg != appExpr->get_args().end() );
940 addCast( *arg, (*param)->get_type(), exprTyVars );
941 boxParam( (*param)->get_type(), *arg, exprTyVars );
942 } // for
943 }
[6c3744e]944
[01aeade]945 void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
946 std::list< Expression *>::iterator cur = arg;
[8c49c0e]947 for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
[01aeade]948 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
949 InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() );
[698664b3]950 assert( inferParam != appExpr->get_inferParams().end() && "NOTE: Explicit casts of polymorphic functions to compatible monomorphic functions are currently unsupported" );
[01aeade]951 Expression *newExpr = inferParam->second.expr->clone();
952 addCast( newExpr, (*assert)->get_type(), tyVars );
953 boxParam( (*assert)->get_type(), newExpr, tyVars );
954 appExpr->get_args().insert( cur, newExpr );
955 } // for
956 } // for
957 }
[6c3744e]958
[01aeade]959 void makeRetParm( FunctionType *funcType ) {
960 DeclarationWithType *retParm = funcType->get_returnVals().front();
[6c3744e]961
[01aeade]962 // make a new parameter that is a pointer to the type of the old return value
963 retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) );
964 funcType->get_parameters().push_front( retParm );
[6c3744e]965
[01aeade]966 // we don't need the return value any more
967 funcType->get_returnVals().clear();
968 }
[6c3744e]969
[01aeade]970 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ) {
971 // actually make the adapter type
972 FunctionType *adapter = adaptee->clone();
[3bb195cb]973// if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) {
974 if ( isDynRet( adapter, tyVars ) ) {
[01aeade]975 makeRetParm( adapter );
976 } // if
[68cd1ce]977 adapter->get_parameters().push_front( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ) );
[01aeade]978 return adapter;
979 }
[6c3744e]980
[01aeade]981 Expression *makeAdapterArg( DeclarationWithType *param, DeclarationWithType *arg, DeclarationWithType *realParam, const TyVarMap &tyVars ) {
982 assert( param );
983 assert( arg );
[ffad73a]984 if ( isPolyType( realParam->get_type(), tyVars ) ) {
[30aeb27]985 if ( ! isPolyType( arg->get_type() ) ) {
[e56cfdb0]986 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
987 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) );
[906e24d]988 deref->set_result( arg->get_type()->clone() );
[e56cfdb0]989 return deref;
990 } // if
[01aeade]991 } // if
992 return new VariableExpr( param );
993 }
[6c3744e]994
[01aeade]995 void addAdapterParams( ApplicationExpr *adapteeApp, std::list< DeclarationWithType *>::iterator arg, std::list< DeclarationWithType *>::iterator param, std::list< DeclarationWithType *>::iterator paramEnd, std::list< DeclarationWithType *>::iterator realParam, const TyVarMap &tyVars ) {
996 UniqueName paramNamer( "_p" );
997 for ( ; param != paramEnd; ++param, ++arg, ++realParam ) {
998 if ( (*param)->get_name() == "" ) {
999 (*param)->set_name( paramNamer.newName() );
1000 (*param)->set_linkage( LinkageSpec::C );
1001 } // if
1002 adapteeApp->get_args().push_back( makeAdapterArg( *param, *arg, *realParam, tyVars ) );
1003 } // for
1004 }
[6c3744e]1005
[01aeade]1006 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) {
1007 FunctionType *adapterType = makeAdapterType( adaptee, tyVars );
1008 adapterType = ScrubTyVars::scrub( adapterType, tyVars );
1009 DeclarationWithType *adapteeDecl = adapterType->get_parameters().front();
1010 adapteeDecl->set_name( "_adaptee" );
1011 ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) );
1012 Statement *bodyStmt;
[ae63a18]1013
[8c49c0e]1014 Type::ForallList::iterator tyArg = realType->get_forall().begin();
1015 Type::ForallList::iterator tyParam = adapterType->get_forall().begin();
1016 Type::ForallList::iterator realTyParam = adaptee->get_forall().begin();
[01aeade]1017 for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) {
1018 assert( tyArg != realType->get_forall().end() );
1019 std::list< DeclarationWithType *>::iterator assertArg = (*tyArg)->get_assertions().begin();
1020 std::list< DeclarationWithType *>::iterator assertParam = (*tyParam)->get_assertions().begin();
1021 std::list< DeclarationWithType *>::iterator realAssertParam = (*realTyParam)->get_assertions().begin();
1022 for ( ; assertParam != (*tyParam)->get_assertions().end(); ++assertArg, ++assertParam, ++realAssertParam ) {
1023 assert( assertArg != (*tyArg)->get_assertions().end() );
1024 adapteeApp->get_args().push_back( makeAdapterArg( *assertParam, *assertArg, *realAssertParam, tyVars ) );
1025 } // for
1026 } // for
[ae63a18]1027
[01aeade]1028 std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin();
1029 std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin();
1030 std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin();
[cc3528f]1031 param++; // skip adaptee parameter in the adapter type
[01aeade]1032 if ( realType->get_returnVals().empty() ) {
[cc3528f]1033 // void return
[01aeade]1034 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1035 bodyStmt = new ExprStmt( noLabels, adapteeApp );
[3bb195cb]1036// } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
1037 } else if ( isDynType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
[cc3528f]1038 // return type T
[01aeade]1039 if ( (*param)->get_name() == "" ) {
1040 (*param)->set_name( "_ret" );
1041 (*param)->set_linkage( LinkageSpec::C );
1042 } // if
1043 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
1044 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
1045 deref->get_args().push_back( new CastExpr( new VariableExpr( *param++ ), new PointerType( Type::Qualifiers(), realType->get_returnVals().front()->get_type()->clone() ) ) );
1046 assign->get_args().push_back( deref );
1047 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1048 assign->get_args().push_back( adapteeApp );
1049 bodyStmt = new ExprStmt( noLabels, assign );
1050 } else {
1051 // adapter for a function that returns a monomorphic value
1052 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1053 bodyStmt = new ReturnStmt( noLabels, adapteeApp );
1054 } // if
1055 CompoundStmt *adapterBody = new CompoundStmt( noLabels );
1056 adapterBody->get_kids().push_back( bodyStmt );
1057 std::string adapterName = makeAdapterName( mangleName );
[de62360d]1058 return new FunctionDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, adapterType, adapterBody, false, false );
[01aeade]1059 }
[6c3744e]1060
[c29d9ce]1061 void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) {
[e497c1d]1062 // collect a list of function types passed as parameters or implicit parameters (assertions)
[01aeade]1063 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1064 std::list< FunctionType *> functions;
[8c49c0e]1065 for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
[01aeade]1066 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
1067 findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter );
1068 } // for
1069 } // for
1070 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1071 findFunction( (*arg)->get_type(), functions, exprTyVars, needsAdapter );
1072 } // for
[e497c1d]1073
[e56cfdb0]1074 // parameter function types for which an appropriate adapter has been generated. we cannot use the types
1075 // after applying substitutions, since two different parameter types may be unified to the same type
[01aeade]1076 std::set< std::string > adaptersDone;
[e497c1d]1077
[01aeade]1078 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
[c29d9ce]1079 FunctionType *originalFunction = (*funType)->clone();
[01aeade]1080 FunctionType *realFunction = (*funType)->clone();
1081 std::string mangleName = SymTab::Mangler::mangle( realFunction );
[e497c1d]1082
[e56cfdb0]1083 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this
1084 // pre-substitution parameter function type.
[01aeade]1085 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
[e497c1d]1086 adaptersDone.insert( adaptersDone.begin(), mangleName );
[ae63a18]1087
[e56cfdb0]1088 // apply substitution to type variables to figure out what the adapter's type should look like
[e497c1d]1089 assert( env );
1090 env->apply( realFunction );
[ae63a18]1091 mangleName = SymTab::Mangler::mangle( realFunction );
[bdf1954]1092 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars );
[e497c1d]1093
[6635c74]1094 typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter;
1095 AdapterIter adapter = adapters.find( mangleName );
[e56cfdb0]1096 if ( adapter == adapters.end() ) {
1097 // adapter has not been created yet in the current scope, so define it
1098 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars );
[6635c74]1099 std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) );
1100 adapter = answer.first;
[e56cfdb0]1101 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) );
[c29d9ce]1102 } // if
[e56cfdb0]1103 assert( adapter != adapters.end() );
1104
1105 // add the appropriate adapter as a parameter
1106 appExpr->get_args().push_front( new VariableExpr( adapter->second ) );
[01aeade]1107 } // if
1108 } // for
[e56cfdb0]1109 } // passAdapters
[6c3744e]1110
[78dd0da]1111 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) {
[01aeade]1112 NameExpr *opExpr;
1113 if ( isIncr ) {
1114 opExpr = new NameExpr( "?+=?" );
1115 } else {
1116 opExpr = new NameExpr( "?-=?" );
[6c3744e]1117 } // if
[01aeade]1118 UntypedExpr *addAssign = new UntypedExpr( opExpr );
1119 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1120 addAssign->get_args().push_back( address->get_arg() );
1121 } else {
1122 addAssign->get_args().push_back( appExpr->get_args().front() );
[6c3744e]1123 } // if
[adc6781]1124 addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) ) ) );
[906e24d]1125 addAssign->set_result( appExpr->get_result()->clone() );
[01aeade]1126 if ( appExpr->get_env() ) {
1127 addAssign->set_env( appExpr->get_env() );
[6c3744e]1128 appExpr->set_env( 0 );
1129 } // if
[01aeade]1130 appExpr->get_args().clear();
1131 delete appExpr;
1132 return addAssign;
1133 }
1134
1135 Expression *Pass1::handleIntrinsics( ApplicationExpr *appExpr ) {
1136 if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->get_function() ) ) {
1137 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic ) {
1138 if ( varExpr->get_var()->get_name() == "?[?]" ) {
[906e24d]1139 assert( appExpr->has_result() );
[01aeade]1140 assert( appExpr->get_args().size() == 2 );
[906e24d]1141 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_result(), scopeTyVars, env );
1142 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_result(), scopeTyVars, env );
[ae63a18]1143 assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers
[01aeade]1144 UntypedExpr *ret = 0;
[ae63a18]1145 if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer
[01aeade]1146 ret = new UntypedExpr( new NameExpr( "?+?" ) );
1147 } // if
[ffad73a]1148 if ( baseType1 ) {
[01aeade]1149 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1150 multiply->get_args().push_back( appExpr->get_args().back() );
[adc6781]1151 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
[01aeade]1152 ret->get_args().push_back( appExpr->get_args().front() );
1153 ret->get_args().push_back( multiply );
[ffad73a]1154 } else if ( baseType2 ) {
[01aeade]1155 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1156 multiply->get_args().push_back( appExpr->get_args().front() );
[adc6781]1157 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
[01aeade]1158 ret->get_args().push_back( multiply );
1159 ret->get_args().push_back( appExpr->get_args().back() );
1160 } // if
[ffad73a]1161 if ( baseType1 || baseType2 ) {
[906e24d]1162 ret->set_result( appExpr->get_result()->clone() );
[01aeade]1163 if ( appExpr->get_env() ) {
1164 ret->set_env( appExpr->get_env() );
1165 appExpr->set_env( 0 );
1166 } // if
1167 appExpr->get_args().clear();
1168 delete appExpr;
1169 return ret;
1170 } // if
1171 } else if ( varExpr->get_var()->get_name() == "*?" ) {
[906e24d]1172 assert( appExpr->has_result() );
[01aeade]1173 assert( ! appExpr->get_args().empty() );
[906e24d]1174 if ( isPolyType( appExpr->get_result(), scopeTyVars, env ) ) {
[01aeade]1175 Expression *ret = appExpr->get_args().front();
[906e24d]1176 delete ret->get_result();
1177 ret->set_result( appExpr->get_result()->clone() );
[01aeade]1178 if ( appExpr->get_env() ) {
1179 ret->set_env( appExpr->get_env() );
1180 appExpr->set_env( 0 );
1181 } // if
1182 appExpr->get_args().clear();
1183 delete appExpr;
1184 return ret;
1185 } // if
1186 } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) {
[906e24d]1187 assert( appExpr->has_result() );
[01aeade]1188 assert( appExpr->get_args().size() == 1 );
[906e24d]1189 if ( Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env ) ) {
1190 Type *tempType = appExpr->get_result()->clone();
[01aeade]1191 if ( env ) {
1192 env->apply( tempType );
1193 } // if
1194 ObjectDecl *newObj = makeTemporary( tempType );
1195 VariableExpr *tempExpr = new VariableExpr( newObj );
1196 UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) );
1197 assignExpr->get_args().push_back( tempExpr->clone() );
1198 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1199 assignExpr->get_args().push_back( address->get_arg()->clone() );
1200 } else {
1201 assignExpr->get_args().push_back( appExpr->get_args().front()->clone() );
1202 } // if
[ffad73a]1203 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) );
[01aeade]1204 return new CommaExpr( firstComma, tempExpr );
1205 } // if
1206 } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) {
[906e24d]1207 assert( appExpr->has_result() );
[01aeade]1208 assert( appExpr->get_args().size() == 1 );
[906e24d]1209 if ( Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env ) ) {
[ffad73a]1210 return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );
[01aeade]1211 } // if
1212 } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) {
[906e24d]1213 assert( appExpr->has_result() );
[01aeade]1214 assert( appExpr->get_args().size() == 2 );
[906e24d]1215 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_result(), scopeTyVars, env );
1216 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_result(), scopeTyVars, env );
[ffad73a]1217 if ( baseType1 && baseType2 ) {
[01aeade]1218 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) );
1219 divide->get_args().push_back( appExpr );
[adc6781]1220 divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
[906e24d]1221 divide->set_result( appExpr->get_result()->clone() );
[01aeade]1222 if ( appExpr->get_env() ) {
1223 divide->set_env( appExpr->get_env() );
1224 appExpr->set_env( 0 );
1225 } // if
1226 return divide;
[ffad73a]1227 } else if ( baseType1 ) {
[01aeade]1228 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1229 multiply->get_args().push_back( appExpr->get_args().back() );
[adc6781]1230 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
[01aeade]1231 appExpr->get_args().back() = multiply;
[ffad73a]1232 } else if ( baseType2 ) {
[01aeade]1233 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1234 multiply->get_args().push_back( appExpr->get_args().front() );
[adc6781]1235 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
[01aeade]1236 appExpr->get_args().front() = multiply;
1237 } // if
1238 } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) {
[906e24d]1239 assert( appExpr->has_result() );
[01aeade]1240 assert( appExpr->get_args().size() == 2 );
[906e24d]1241 Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env );
[ffad73a]1242 if ( baseType ) {
[01aeade]1243 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1244 multiply->get_args().push_back( appExpr->get_args().back() );
[adc6781]1245 multiply->get_args().push_back( new SizeofExpr( baseType->clone() ) );
[01aeade]1246 appExpr->get_args().back() = multiply;
1247 } // if
1248 } // if
1249 return appExpr;
1250 } // if
[6c3744e]1251 } // if
[01aeade]1252 return 0;
1253 }
[6c3744e]1254
[01aeade]1255 Expression *Pass1::mutate( ApplicationExpr *appExpr ) {
[e56cfdb0]1256 // std::cerr << "mutate appExpr: ";
1257 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
1258 // std::cerr << i->first << " ";
1259 // }
1260 // std::cerr << "\n";
[01aeade]1261 bool oldUseRetval = useRetval;
1262 useRetval = false;
1263 appExpr->get_function()->acceptMutator( *this );
1264 mutateAll( appExpr->get_args(), *this );
1265 useRetval = oldUseRetval;
[ae63a18]1266
[906e24d]1267 assert( appExpr->get_function()->has_result() );
1268 PointerType *pointer = safe_dynamic_cast< PointerType *>( appExpr->get_function()->get_result() );
1269 FunctionType *function = safe_dynamic_cast< FunctionType *>( pointer->get_base() );
[ae63a18]1270
[01aeade]1271 if ( Expression *newExpr = handleIntrinsics( appExpr ) ) {
1272 return newExpr;
1273 } // if
[ae63a18]1274
[01aeade]1275 Expression *ret = appExpr;
[ae63a18]1276
[01aeade]1277 std::list< Expression *>::iterator arg = appExpr->get_args().begin();
1278 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin();
[ae63a18]1279
[2c57025]1280 TyVarMap exprTyVars( TypeDecl::Data{} );
[5c52b06]1281 makeTyVarMap( function, exprTyVars );
[3bb195cb]1282 ReferenceToType *dynRetType = isDynRet( function, exprTyVars );
[d9fa60a]1283 Type *concRetType = appExpr->get_result();// ?: dynRetType; // xxx - is concRetType a good name?
[5c52b06]1284
[3bb195cb]1285 if ( dynRetType ) {
[33a7b6d]1286 ret = addDynRetParam( appExpr, function, concRetType, arg ); // xxx - used to use dynRetType instead of concRetType
[01aeade]1287 } else if ( needsAdapter( function, scopeTyVars ) ) {
[e56cfdb0]1288 // std::cerr << "needs adapter: ";
[2e3a379]1289 // printTyVarMap( std::cerr, scopeTyVars );
1290 // std::cerr << *env << std::endl;
[01aeade]1291 // change the application so it calls the adapter rather than the passed function
1292 ret = applyAdapter( appExpr, function, arg, scopeTyVars );
1293 } // if
1294 arg = appExpr->get_args().begin();
[ae63a18]1295
[33a7b6d]1296 passTypeVars( appExpr, concRetType, arg, exprTyVars ); // xxx - used to use dynRetType instead of concRetType
[01aeade]1297 addInferredParams( appExpr, function, arg, exprTyVars );
[51b73452]1298
[01aeade]1299 arg = paramBegin;
[ae63a18]1300
[01aeade]1301 boxParams( appExpr, function, arg, exprTyVars );
1302 passAdapters( appExpr, function, exprTyVars );
[6c3744e]1303
[01aeade]1304 return ret;
1305 }
[6c3744e]1306
[01aeade]1307 Expression *Pass1::mutate( UntypedExpr *expr ) {
[906e24d]1308 if ( expr->has_result() && isPolyType( expr->get_result(), scopeTyVars, env ) ) {
[01aeade]1309 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1310 if ( name->get_name() == "*?" ) {
1311 Expression *ret = expr->get_args().front();
1312 expr->get_args().clear();
1313 delete expr;
1314 return ret->acceptMutator( *this );
1315 } // if
1316 } // if
1317 } // if
1318 return PolyMutator::mutate( expr );
1319 }
[6c3744e]1320
[01aeade]1321 Expression *Pass1::mutate( AddressExpr *addrExpr ) {
[906e24d]1322 assert( addrExpr->get_arg()->has_result() && ! addrExpr->get_arg()->get_result()->isVoid() );
[cf16f94]1323
1324 bool needs = false;
1325 if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {
[906e24d]1326 if ( expr->has_result() && isPolyType( expr->get_result(), scopeTyVars, env ) ) {
[cf16f94]1327 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1328 if ( name->get_name() == "*?" ) {
1329 if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {
[906e24d]1330 assert( appExpr->get_function()->has_result() );
1331 PointerType *pointer = safe_dynamic_cast< PointerType *>( appExpr->get_function()->get_result() );
1332 FunctionType *function = safe_dynamic_cast< FunctionType *>( pointer->get_base() );
[cf16f94]1333 needs = needsAdapter( function, scopeTyVars );
1334 } // if
1335 } // if
1336 } // if
1337 } // if
1338 } // if
[fea7ca7]1339 // isPolyType check needs to happen before mutating addrExpr arg, so pull it forward
1340 // out of the if condition.
[906e24d]1341 bool polytype = isPolyType( addrExpr->get_arg()->get_result(), scopeTyVars, env );
[01aeade]1342 addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) );
[fea7ca7]1343 if ( polytype || needs ) {
[01aeade]1344 Expression *ret = addrExpr->get_arg();
[906e24d]1345 delete ret->get_result();
1346 ret->set_result( addrExpr->get_result()->clone() );
[01aeade]1347 addrExpr->set_arg( 0 );
1348 delete addrExpr;
1349 return ret;
1350 } else {
1351 return addrExpr;
1352 } // if
1353 }
[6c3744e]1354
[b10c9959]1355 /// Wraps a function declaration in a new pointer-to-function variable expression
1356 VariableExpr *wrapFunctionDecl( DeclarationWithType *functionDecl ) {
1357 // line below cloned from FixFunction.cc
[9799ec8]1358 // xxx - functionObj is never added to a list of declarations...
[33a7b6d]1359 // alternatively, this function could return a new VariableExpr( functionDecl ) and change the result type of the new expression
[b10c9959]1360 ObjectDecl *functionObj = new ObjectDecl( functionDecl->get_name(), functionDecl->get_storageClass(), functionDecl->get_linkage(), 0,
1361 new PointerType( Type::Qualifiers(), functionDecl->get_type()->clone() ), 0 );
1362 functionObj->set_mangleName( functionDecl->get_mangleName() );
[9799ec8]1363 functionObj->set_scopeLevel( functionDecl->get_scopeLevel() );
[b10c9959]1364 return new VariableExpr( functionObj );
1365 }
[70a06f6]1366
[c2ad3c9]1367 /// Finds the operation declaration for a given type in one of the two maps
1368 DeclarationWithType* findOpForType( Type *formalType, const ScopedMap< std::string, DeclarationWithType* >& ops, ResolvExpr::TypeMap< DeclarationWithType >& scopedOps ) {
1369 if ( TypeInstType *formalTypeInstType = dynamic_cast< TypeInstType* >( formalType ) ) {
1370 ScopedMap< std::string, DeclarationWithType *>::const_iterator opIt = ops.find( formalTypeInstType->get_name() );
1371 return opIt == ops.end() ? 0 : opIt->second;
1372 } else {
1373 return scopedOps.find( formalType );
1374 }
1375 }
1376
1377 /// Adds an assertion parameter to the application expression for the actual assertion declaration valued with the assert op
1378 void addAssertionFor( ApplicationExpr *appExpr, DeclarationWithType *actualDecl, DeclarationWithType *assertOp ) {
1379 appExpr->get_inferParams()[ actualDecl->get_uniqueId() ]
1380 = ParamEntry( assertOp->get_uniqueId(), assertOp->get_type()->clone(), actualDecl->get_type()->clone(), wrapFunctionDecl( assertOp ) );
1381 }
[9799ec8]1382
[cf16f94]1383 Statement * Pass1::mutate( ReturnStmt *returnStmt ) {
1384 if ( retval && returnStmt->get_expr() ) {
[906e24d]1385 assert( returnStmt->get_expr()->has_result() && ! returnStmt->get_expr()->get_result()->isVoid() );
[cf16f94]1386 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
1387 // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) {
[ae63a18]1388 // by this point, a cast expr on a polymorphic return value is redundant
[cf16f94]1389 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( returnStmt->get_expr() ) ) {
1390 returnStmt->set_expr( castExpr->get_arg() );
1391 returnStmt->get_expr()->set_env( castExpr->get_env() );
1392 castExpr->set_env( 0 );
1393 castExpr->set_arg( 0 );
1394 delete castExpr;
[5f6c42c]1395 } //while
[1194734]1396
1397 // find assignment operator for (polymorphic) return type
[b10c9959]1398 ApplicationExpr *assignExpr = 0;
[1194734]1399 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ) ) {
[b10c9959]1400 // find assignment operator for type variable
[63c0dbf]1401 ScopedMap< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() );
[1194734]1402 if ( assignIter == assignOps.end() ) {
1403 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() );
1404 } // if
[b10c9959]1405 assignExpr = new ApplicationExpr( new VariableExpr( assignIter->second ) );
[1194734]1406 } else if ( ReferenceToType *refType = dynamic_cast< ReferenceToType *>( retval->get_type() ) ) {
[b10c9959]1407 // find assignment operator for generic type
[dc12481]1408 DeclarationWithType *functionDecl = scopedAssignOps.find( refType );
1409 if ( ! functionDecl ) {
[1194734]1410 throw SemanticError( "Attempt to return dtype or ftype generic object in ", returnStmt->get_expr() );
1411 }
[b10c9959]1412
1413 // wrap it up in an application expression
1414 assignExpr = new ApplicationExpr( wrapFunctionDecl( functionDecl ) );
1415 assignExpr->set_env( env->clone() );
1416
1417 // find each of its needed secondary assignment operators
1418 std::list< Expression* > &tyParams = refType->get_parameters();
[8c49c0e]1419 Type::ForallList &forallParams = functionDecl->get_type()->get_forall();
[b10c9959]1420 std::list< Expression* >::const_iterator tyIt = tyParams.begin();
[8c49c0e]1421 Type::ForallList::const_iterator forallIt = forallParams.begin();
[b10c9959]1422 for ( ; tyIt != tyParams.end() && forallIt != forallParams.end(); ++tyIt, ++forallIt ) {
[ae7014e]1423 // Add appropriate mapping to assignment expression environment
[b10c9959]1424 TypeExpr *formalTypeExpr = dynamic_cast< TypeExpr* >( *tyIt );
1425 assert( formalTypeExpr && "type parameters must be type expressions" );
1426 Type *formalType = formalTypeExpr->get_type();
[ae7014e]1427 assignExpr->get_env()->add( (*forallIt)->get_name(), formalType );
1428
[c2ad3c9]1429 // skip non-otype parameters (ftype/dtype)
[2c57025]1430 // xxx - should this check whether the type is complete instead?
[ae7014e]1431 if ( (*forallIt)->get_kind() != TypeDecl::Any ) continue;
1432
[c2ad3c9]1433 // find otype operators for formal type
1434 DeclarationWithType *assertAssign = findOpForType( formalType, assignOps, scopedAssignOps );
1435 if ( ! assertAssign ) throw SemanticError( "No assignment operation found for ", formalType );
1436
1437 DeclarationWithType *assertCtor = findOpForType( formalType, ctorOps, scopedCtorOps );
1438 if ( ! assertCtor ) throw SemanticError( "No default constructor found for ", formalType );
[b10c9959]1439
[c2ad3c9]1440 DeclarationWithType *assertCopy = findOpForType( formalType, copyOps, scopedCopyOps );
1441 if ( ! assertCopy ) throw SemanticError( "No copy constructor found for ", formalType );
1442
1443 DeclarationWithType *assertDtor = findOpForType( formalType, dtorOps, scopedDtorOps );
1444 if ( ! assertDtor ) throw SemanticError( "No destructor found for ", formalType );
[9799ec8]1445
[c2ad3c9]1446 // add inferred parameters for otype operators to assignment expression
1447 // NOTE: Code here assumes that first four assertions are assign op, ctor, copy ctor, dtor, in that order
[ae7014e]1448 std::list< DeclarationWithType* > &asserts = (*forallIt)->get_assertions();
[c2ad3c9]1449 assert( asserts.size() >= 4 && "Type param needs otype operator assertions" );
1450
1451 std::list< DeclarationWithType* >::iterator actualIt = asserts.begin();
1452 addAssertionFor( assignExpr, *actualIt, assertAssign );
1453 ++actualIt;
1454 addAssertionFor( assignExpr, *actualIt, assertCtor );
1455 ++actualIt;
1456 addAssertionFor( assignExpr, *actualIt, assertCopy );
1457 ++actualIt;
1458 addAssertionFor( assignExpr, *actualIt, assertDtor );
[9799ec8]1459
[b10c9959]1460 }
[1194734]1461 }
[b10c9959]1462 assert( assignExpr );
[1194734]1463
1464 // replace return statement with appropriate assignment to out parameter
[cf16f94]1465 Expression *retParm = new NameExpr( retval->get_name() );
[906e24d]1466 retParm->set_result( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
[cf16f94]1467 assignExpr->get_args().push_back( retParm );
1468 assignExpr->get_args().push_back( returnStmt->get_expr() );
1469 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) );
1470 // } else {
1471 // useRetval = true;
1472 // stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( returnStmt->get_expr() ) ) );
1473 // useRetval = false;
1474 // } // if
1475 returnStmt->set_expr( 0 );
[01aeade]1476 } else {
[cf16f94]1477 returnStmt->set_expr( mutateExpression( returnStmt->get_expr() ) );
[01aeade]1478 } // if
[cf16f94]1479 return returnStmt;
[01aeade]1480 }
[6c3744e]1481
[01aeade]1482 Type * Pass1::mutate( PointerType *pointerType ) {
[6f49cdf]1483 scopeTyVars.beginScope();
[01aeade]1484 makeTyVarMap( pointerType, scopeTyVars );
[ae63a18]1485
[01aeade]1486 Type *ret = Mutator::mutate( pointerType );
[ae63a18]1487
[6f49cdf]1488 scopeTyVars.endScope();
[01aeade]1489 return ret;
1490 }
[6c3744e]1491
[01aeade]1492 Type * Pass1::mutate( FunctionType *functionType ) {
[6f49cdf]1493 scopeTyVars.beginScope();
[01aeade]1494 makeTyVarMap( functionType, scopeTyVars );
[ae63a18]1495
[01aeade]1496 Type *ret = Mutator::mutate( functionType );
[ae63a18]1497
[6f49cdf]1498 scopeTyVars.endScope();
[01aeade]1499 return ret;
1500 }
[51b73452]1501
[01aeade]1502 void Pass1::doBeginScope() {
[6635c74]1503 adapters.beginScope();
[1194734]1504 scopedAssignOps.beginScope();
[c2ad3c9]1505 scopedCtorOps.beginScope();
1506 scopedCopyOps.beginScope();
1507 scopedDtorOps.beginScope();
[01aeade]1508 }
[b1a6d6b]1509
[01aeade]1510 void Pass1::doEndScope() {
[6635c74]1511 adapters.endScope();
[1194734]1512 scopedAssignOps.endScope();
[c2ad3c9]1513 scopedCtorOps.endScope();
1514 scopedCopyOps.endScope();
1515 scopedDtorOps.endScope();
[01aeade]1516 }
[51b73452]1517
1518////////////////////////////////////////// Pass2 ////////////////////////////////////////////////////
1519
[01aeade]1520 void Pass2::addAdapters( FunctionType *functionType ) {
1521 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1522 std::list< FunctionType *> functions;
1523 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1524 Type *orig = (*arg)->get_type();
1525 findAndReplaceFunction( orig, functions, scopeTyVars, needsAdapter );
1526 (*arg)->set_type( orig );
1527 }
1528 std::set< std::string > adaptersDone;
1529 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
[bdf1954]1530 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
[01aeade]1531 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1532 std::string adapterName = makeAdapterName( mangleName );
[68cd1ce]1533 paramList.push_front( new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) );
[01aeade]1534 adaptersDone.insert( adaptersDone.begin(), mangleName );
1535 }
1536 }
[5f6c42c]1537// deleteAll( functions );
[01aeade]1538 }
[6c3744e]1539
[01aeade]1540 template< typename DeclClass >
1541 DeclClass * Pass2::handleDecl( DeclClass *decl, Type *type ) {
1542 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
[6c3744e]1543
[01aeade]1544 return ret;
1545 }
[6c3744e]1546
[01aeade]1547 DeclarationWithType * Pass2::mutate( FunctionDecl *functionDecl ) {
1548 return handleDecl( functionDecl, functionDecl->get_functionType() );
1549 }
[6c3744e]1550
[01aeade]1551 ObjectDecl * Pass2::mutate( ObjectDecl *objectDecl ) {
1552 return handleDecl( objectDecl, objectDecl->get_type() );
1553 }
[6c3744e]1554
[01aeade]1555 TypeDecl * Pass2::mutate( TypeDecl *typeDecl ) {
[2c57025]1556 addToTyVarMap( typeDecl, scopeTyVars );
[01aeade]1557 if ( typeDecl->get_base() ) {
1558 return handleDecl( typeDecl, typeDecl->get_base() );
1559 } else {
1560 return Mutator::mutate( typeDecl );
1561 }
1562 }
[6c3744e]1563
[01aeade]1564 TypedefDecl * Pass2::mutate( TypedefDecl *typedefDecl ) {
1565 return handleDecl( typedefDecl, typedefDecl->get_base() );
1566 }
[6c3744e]1567
[01aeade]1568 Type * Pass2::mutate( PointerType *pointerType ) {
[6f49cdf]1569 scopeTyVars.beginScope();
[01aeade]1570 makeTyVarMap( pointerType, scopeTyVars );
[ae63a18]1571
[01aeade]1572 Type *ret = Mutator::mutate( pointerType );
[ae63a18]1573
[6f49cdf]1574 scopeTyVars.endScope();
[01aeade]1575 return ret;
1576 }
[6c3744e]1577
[01aeade]1578 Type *Pass2::mutate( FunctionType *funcType ) {
[6f49cdf]1579 scopeTyVars.beginScope();
[01aeade]1580 makeTyVarMap( funcType, scopeTyVars );
[7754cde]1581
1582 // move polymorphic return type to parameter list
[3bb195cb]1583 if ( isDynRet( funcType ) ) {
[d9fa60a]1584 ObjectDecl *ret = safe_dynamic_cast< ObjectDecl* >( funcType->get_returnVals().front() );
[01aeade]1585 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) );
1586 funcType->get_parameters().push_front( ret );
1587 funcType->get_returnVals().pop_front();
[d9fa60a]1588 ret->set_init( nullptr ); // xxx - memory leak?
[01aeade]1589 }
[7754cde]1590
1591 // add size/align and assertions for type parameters to parameter list
[01aeade]1592 std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin();
1593 std::list< DeclarationWithType *> inferredParams;
[78dd0da]1594 ObjectDecl newObj( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 );
[05d47278]1595 ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0,
1596 new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 );
[8c49c0e]1597 for ( Type::ForallList::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
[db0b3ce]1598 ObjectDecl *sizeParm, *alignParm;
1599 // add all size and alignment parameters to parameter list
[2c57025]1600 if ( (*tyParm)->isComplete() ) {
[78dd0da]1601 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm );
[adc6781]1602 std::string parmName = mangleType( &parmType );
[ae63a18]1603
[78dd0da]1604 sizeParm = newObj.clone();
[adc6781]1605 sizeParm->set_name( sizeofName( parmName ) );
[db0b3ce]1606 last = funcType->get_parameters().insert( last, sizeParm );
1607 ++last;
[78dd0da]1608
1609 alignParm = newObj.clone();
[adc6781]1610 alignParm->set_name( alignofName( parmName ) );
[db0b3ce]1611 last = funcType->get_parameters().insert( last, alignParm );
[01aeade]1612 ++last;
1613 }
[e56cfdb0]1614 // move all assertions into parameter list
[01aeade]1615 for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) {
[f8b961b]1616// *assert = (*assert)->acceptMutator( *this );
[01aeade]1617 inferredParams.push_back( *assert );
1618 }
1619 (*tyParm)->get_assertions().clear();
1620 }
[7754cde]1621
[5c52b06]1622 // add size/align for generic parameter types to parameter list
[b18b0b5]1623 std::set< std::string > seenTypes; // sizeofName for generic types we've seen
[7754cde]1624 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) {
[4b8f918]1625 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1626 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1627 std::string typeName = mangleType( polyType );
[adc6781]1628 if ( seenTypes.count( typeName ) ) continue;
[ae63a18]1629
[05d47278]1630 ObjectDecl *sizeParm, *alignParm, *offsetParm;
[7754cde]1631 sizeParm = newObj.clone();
[adc6781]1632 sizeParm->set_name( sizeofName( typeName ) );
[7754cde]1633 last = funcType->get_parameters().insert( last, sizeParm );
1634 ++last;
1635
1636 alignParm = newObj.clone();
[adc6781]1637 alignParm->set_name( alignofName( typeName ) );
[7754cde]1638 last = funcType->get_parameters().insert( last, alignParm );
1639 ++last;
1640
[4b8f918]1641 if ( StructInstType *polyBaseStruct = dynamic_cast< StructInstType* >( polyType ) ) {
[89173242]1642 // NOTE zero-length arrays are illegal in C, so empty structs have no offset array
1643 if ( ! polyBaseStruct->get_baseStruct()->get_members().empty() ) {
1644 offsetParm = newPtr.clone();
[adc6781]1645 offsetParm->set_name( offsetofName( typeName ) );
[89173242]1646 last = funcType->get_parameters().insert( last, offsetParm );
1647 ++last;
1648 }
[05d47278]1649 }
1650
[adc6781]1651 seenTypes.insert( typeName );
[7754cde]1652 }
1653 }
1654
1655 // splice assertion parameters into parameter list
[01aeade]1656 funcType->get_parameters().splice( last, inferredParams );
1657 addAdapters( funcType );
1658 mutateAll( funcType->get_returnVals(), *this );
1659 mutateAll( funcType->get_parameters(), *this );
[ae63a18]1660
[6f49cdf]1661 scopeTyVars.endScope();
[01aeade]1662 return funcType;
1663 }
[51b73452]1664
[4b8f918]1665////////////////////////////////////////// PolyGenericCalculator ////////////////////////////////////////////////////
[51b73452]1666
[aa19ccf]1667 void PolyGenericCalculator::beginTypeScope( Type *ty ) {
1668 scopeTyVars.beginScope();
1669 makeTyVarMap( ty, scopeTyVars );
1670 }
1671
1672 void PolyGenericCalculator::endTypeScope() {
1673 scopeTyVars.endScope();
1674 }
[51b73452]1675
[01aeade]1676 template< typename DeclClass >
[8a34677]1677 DeclClass * PolyGenericCalculator::handleDecl( DeclClass *decl, Type *type ) {
[aa19ccf]1678 beginTypeScope( type );
[1ba88a0]1679 // knownLayouts.beginScope();
1680 // knownOffsets.beginScope();
[ae63a18]1681
[1ba88a0]1682 DeclClass *ret = static_cast< DeclClass *>( Parent::mutate( decl ) );
[6c3744e]1683
[1ba88a0]1684 // knownOffsets.endScope();
1685 // knownLayouts.endScope();
[aa19ccf]1686 endTypeScope();
[01aeade]1687 return ret;
1688 }
[6c3744e]1689
[8a34677]1690 ObjectDecl * PolyGenericCalculator::mutate( ObjectDecl *objectDecl ) {
[01aeade]1691 return handleDecl( objectDecl, objectDecl->get_type() );
1692 }
[6c3744e]1693
[8a34677]1694 DeclarationWithType * PolyGenericCalculator::mutate( FunctionDecl *functionDecl ) {
[1ba88a0]1695 knownLayouts.beginScope();
1696 knownOffsets.beginScope();
1697
1698 DeclarationWithType * decl = handleDecl( functionDecl, functionDecl->get_functionType() );
1699 knownOffsets.endScope();
1700 knownLayouts.endScope();
1701 return decl;
[01aeade]1702 }
[6c3744e]1703
[8a34677]1704 TypedefDecl * PolyGenericCalculator::mutate( TypedefDecl *typedefDecl ) {
[01aeade]1705 return handleDecl( typedefDecl, typedefDecl->get_base() );
1706 }
[6c3744e]1707
[8a34677]1708 TypeDecl * PolyGenericCalculator::mutate( TypeDecl *typeDecl ) {
[2c57025]1709 addToTyVarMap( typeDecl, scopeTyVars );
[1ba88a0]1710 return Parent::mutate( typeDecl );
[01aeade]1711 }
[51b73452]1712
[8a34677]1713 Type * PolyGenericCalculator::mutate( PointerType *pointerType ) {
[aa19ccf]1714 beginTypeScope( pointerType );
[ae63a18]1715
[1ba88a0]1716 Type *ret = Parent::mutate( pointerType );
[ae63a18]1717
[aa19ccf]1718 endTypeScope();
[01aeade]1719 return ret;
1720 }
[6c3744e]1721
[8a34677]1722 Type * PolyGenericCalculator::mutate( FunctionType *funcType ) {
[aa19ccf]1723 beginTypeScope( funcType );
[ae63a18]1724
[8a34677]1725 // make sure that any type information passed into the function is accounted for
1726 for ( std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); fnParm != funcType->get_parameters().end(); ++fnParm ) {
1727 // condition here duplicates that in Pass2::mutate( FunctionType* )
[4b8f918]1728 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1729 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1730 knownLayouts.insert( mangleType( polyType ) );
[8a34677]1731 }
1732 }
[70a06f6]1733
[1ba88a0]1734 Type *ret = Parent::mutate( funcType );
[ae63a18]1735
[aa19ccf]1736 endTypeScope();
[01aeade]1737 return ret;
[6c3744e]1738 }
[51b73452]1739
[8a34677]1740 Statement *PolyGenericCalculator::mutate( DeclStmt *declStmt ) {
[01aeade]1741 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) {
[8a34677]1742 if ( findGeneric( objectDecl->get_type() ) ) {
[e01559c]1743 // change initialization of a polymorphic value object
1744 // to allocate storage with alloca
[ffad73a]1745 Type *declType = objectDecl->get_type();
[01aeade]1746 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) );
[adc6781]1747 alloc->get_args().push_back( new NameExpr( sizeofName( mangleType( declType ) ) ) );
[e01559c]1748
1749 delete objectDecl->get_init();
1750
1751 std::list<Expression*> designators;
[974906e2]1752 objectDecl->set_init( new SingleInit( alloc, designators, false ) ); // not constructed
[01aeade]1753 }
1754 }
[1ba88a0]1755 return Parent::mutate( declStmt );
[01aeade]1756 }
[05d47278]1757
[2a4b088]1758 /// Finds the member in the base list that matches the given declaration; returns its index, or -1 if not present
1759 long findMember( DeclarationWithType *memberDecl, std::list< Declaration* > &baseDecls ) {
1760 long i = 0;
1761 for(std::list< Declaration* >::const_iterator decl = baseDecls.begin(); decl != baseDecls.end(); ++decl, ++i ) {
1762 if ( memberDecl->get_name() != (*decl)->get_name() ) continue;
1763
1764 if ( DeclarationWithType *declWithType = dynamic_cast< DeclarationWithType* >( *decl ) ) {
[bed4d37c]1765 if ( memberDecl->get_mangleName().empty() || declWithType->get_mangleName().empty()
1766 || memberDecl->get_mangleName() == declWithType->get_mangleName() ) return i;
[2a4b088]1767 else continue;
1768 } else return i;
1769 }
1770 return -1;
1771 }
1772
1773 /// Returns an index expression into the offset array for a type
1774 Expression *makeOffsetIndex( Type *objectType, long i ) {
1775 std::stringstream offset_namer;
1776 offset_namer << i;
1777 ConstantExpr *fieldIndex = new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), offset_namer.str() ) );
1778 UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) );
[adc6781]1779 fieldOffset->get_args().push_back( new NameExpr( offsetofName( mangleType( objectType ) ) ) );
[2a4b088]1780 fieldOffset->get_args().push_back( fieldIndex );
1781 return fieldOffset;
1782 }
1783
1784 /// Returns an expression dereferenced n times
1785 Expression *makeDerefdVar( Expression *derefdVar, long n ) {
1786 for ( int i = 1; i < n; ++i ) {
1787 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1788 derefExpr->get_args().push_back( derefdVar );
[10a7775]1789 // xxx - should set results on derefExpr
[2a4b088]1790 derefdVar = derefExpr;
1791 }
1792 return derefdVar;
1793 }
[d63eeb0]1794
[8a34677]1795 Expression *PolyGenericCalculator::mutate( MemberExpr *memberExpr ) {
[05d47278]1796 // mutate, exiting early if no longer MemberExpr
[1ba88a0]1797 Expression *expr = Parent::mutate( memberExpr );
[05d47278]1798 memberExpr = dynamic_cast< MemberExpr* >( expr );
1799 if ( ! memberExpr ) return expr;
1800
1801 // get declaration for base struct, exiting early if not found
[8488c715]1802 int varDepth;
1803 VariableExpr *varExpr = getBaseVar( memberExpr->get_aggregate(), &varDepth );
[05d47278]1804 if ( ! varExpr ) return memberExpr;
1805 ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1806 if ( ! objectDecl ) return memberExpr;
1807
1808 // only mutate member expressions for polymorphic types
[8488c715]1809 int tyDepth;
1810 Type *objectType = hasPolyBase( objectDecl->get_type(), scopeTyVars, &tyDepth );
[05d47278]1811 if ( ! objectType ) return memberExpr;
[8a34677]1812 findGeneric( objectType ); // ensure layout for this type is available
[05d47278]1813
[ea5daeb]1814 // replace member expression with dynamically-computed layout expression
[4318107]1815 Expression *newMemberExpr = 0;
[05d47278]1816 if ( StructInstType *structType = dynamic_cast< StructInstType* >( objectType ) ) {
[2a4b088]1817 // look up offset index
1818 long i = findMember( memberExpr->get_member(), structType->get_baseStruct()->get_members() );
1819 if ( i == -1 ) return memberExpr;
[05d47278]1820
[2a4b088]1821 // replace member expression with pointer to base plus offset
1822 UntypedExpr *fieldLoc = new UntypedExpr( new NameExpr( "?+?" ) );
1823 fieldLoc->get_args().push_back( makeDerefdVar( varExpr->clone(), varDepth ) );
1824 fieldLoc->get_args().push_back( makeOffsetIndex( objectType, i ) );
[4318107]1825 newMemberExpr = fieldLoc;
[98735ef]1826 } else if ( dynamic_cast< UnionInstType* >( objectType ) ) {
[2a4b088]1827 // union members are all at offset zero, so build appropriately-dereferenced variable
[4318107]1828 newMemberExpr = makeDerefdVar( varExpr->clone(), varDepth );
[2a4b088]1829 } else return memberExpr;
[4318107]1830 assert( newMemberExpr );
1831
[4067aa8]1832 Type *memberType = memberExpr->get_member()->get_type();
1833 if ( ! isPolyType( memberType, scopeTyVars ) ) {
1834 // Not all members of a polymorphic type are themselves of polymorphic type; in this case the member expression should be wrapped and dereferenced to form an lvalue
1835 CastExpr *ptrCastExpr = new CastExpr( newMemberExpr, new PointerType( Type::Qualifiers(), memberType->clone() ) );
[4318107]1836 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1837 derefExpr->get_args().push_back( ptrCastExpr );
1838 newMemberExpr = derefExpr;
1839 }
1840
1841 delete memberExpr;
1842 return newMemberExpr;
[2a4b088]1843 }
[05d47278]1844
[8a34677]1845 ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) {
1846 ObjectDecl *newObj = new ObjectDecl( name, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, init );
1847 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
1848 return newObj;
1849 }
1850
1851 void PolyGenericCalculator::addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ) {
1852 for ( std::list< Type* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
1853 if ( findGeneric( *param ) ) {
1854 // push size/align vars for a generic parameter back
[adc6781]1855 std::string paramName = mangleType( *param );
1856 layoutCall->get_args().push_back( new NameExpr( sizeofName( paramName ) ) );
1857 layoutCall->get_args().push_back( new NameExpr( alignofName( paramName ) ) );
[8a34677]1858 } else {
1859 layoutCall->get_args().push_back( new SizeofExpr( (*param)->clone() ) );
1860 layoutCall->get_args().push_back( new AlignofExpr( (*param)->clone() ) );
1861 }
1862 }
1863 }
1864
1865 /// returns true if any of the otype parameters have a dynamic layout and puts all otype parameters in the output list
1866 bool findGenericParams( std::list< TypeDecl* > &baseParams, std::list< Expression* > &typeParams, std::list< Type* > &out ) {
1867 bool hasDynamicLayout = false;
1868
1869 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
1870 std::list< Expression* >::const_iterator typeParam = typeParams.begin();
1871 for ( ; baseParam != baseParams.end() && typeParam != typeParams.end(); ++baseParam, ++typeParam ) {
1872 // skip non-otype parameters
[2c57025]1873 if ( ! (*baseParam)->isComplete() ) continue;
[8a34677]1874 TypeExpr *typeExpr = dynamic_cast< TypeExpr* >( *typeParam );
1875 assert( typeExpr && "all otype parameters should be type expressions" );
1876
1877 Type *type = typeExpr->get_type();
1878 out.push_back( type );
1879 if ( isPolyType( type ) ) hasDynamicLayout = true;
1880 }
1881 assert( baseParam == baseParams.end() && typeParam == typeParams.end() );
1882
1883 return hasDynamicLayout;
1884 }
1885
1886 bool PolyGenericCalculator::findGeneric( Type *ty ) {
[c2ad3c9]1887 ty = replaceTypeInst( ty, env );
[9799ec8]1888
[8a34677]1889 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) {
1890 if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() ) {
1891 // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set
1892 return true;
1893 }
1894 return false;
1895 } else if ( StructInstType *structTy = dynamic_cast< StructInstType* >( ty ) ) {
1896 // check if this type already has a layout generated for it
[adc6781]1897 std::string typeName = mangleType( ty );
1898 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
[8a34677]1899
1900 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
1901 std::list< Type* > otypeParams;
1902 if ( ! findGenericParams( *structTy->get_baseParameters(), structTy->get_parameters(), otypeParams ) ) return false;
1903
1904 // insert local variables for layout and generate call to layout function
[adc6781]1905 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
[8a34677]1906 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1907
1908 int n_members = structTy->get_baseStruct()->get_members().size();
1909 if ( n_members == 0 ) {
1910 // all empty structs have the same layout - size 1, align 1
[cc3528f]1911 makeVar( sizeofName( typeName ), layoutType, new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
1912 makeVar( alignofName( typeName ), layoutType->clone(), new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );
[8a34677]1913 // NOTE zero-length arrays are forbidden in C, so empty structs have no offsetof array
1914 } else {
[adc6781]1915 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
1916 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
[cb4c607]1917 ObjectDecl *offsetVar = makeVar( offsetofName( typeName ), new ArrayType( Type::Qualifiers(), layoutType->clone(), new ConstantExpr( Constant::from_int( n_members ) ), false, false ) );
[8a34677]1918
1919 // generate call to layout function
[adc6781]1920 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( structTy->get_baseStruct() ) ) );
[8a34677]1921 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
1922 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
1923 layoutCall->get_args().push_back( new VariableExpr( offsetVar ) );
1924 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
1925
1926 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
1927 }
1928
1929 return true;
1930 } else if ( UnionInstType *unionTy = dynamic_cast< UnionInstType* >( ty ) ) {
1931 // check if this type already has a layout generated for it
[adc6781]1932 std::string typeName = mangleType( ty );
1933 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
[8a34677]1934
1935 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
1936 std::list< Type* > otypeParams;
1937 if ( ! findGenericParams( *unionTy->get_baseParameters(), unionTy->get_parameters(), otypeParams ) ) return false;
1938
1939 // insert local variables for layout and generate call to layout function
[adc6781]1940 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
[8a34677]1941 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1942
[adc6781]1943 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
1944 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
[8a34677]1945
1946 // generate call to layout function
[adc6781]1947 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( unionTy->get_baseUnion() ) ) );
[8a34677]1948 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
1949 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
1950 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
1951
1952 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
1953
1954 return true;
1955 }
1956
1957 return false;
1958 }
1959
1960 Expression *PolyGenericCalculator::mutate( SizeofExpr *sizeofExpr ) {
1961 Type *ty = sizeofExpr->get_type();
1962 if ( findGeneric( ty ) ) {
[adc6781]1963 Expression *ret = new NameExpr( sizeofName( mangleType( ty ) ) );
[8a34677]1964 delete sizeofExpr;
1965 return ret;
1966 }
1967 return sizeofExpr;
1968 }
1969
1970 Expression *PolyGenericCalculator::mutate( AlignofExpr *alignofExpr ) {
1971 Type *ty = alignofExpr->get_type();
1972 if ( findGeneric( ty ) ) {
[adc6781]1973 Expression *ret = new NameExpr( alignofName( mangleType( ty ) ) );
[8a34677]1974 delete alignofExpr;
1975 return ret;
1976 }
1977 return alignofExpr;
1978 }
1979
1980 Expression *PolyGenericCalculator::mutate( OffsetofExpr *offsetofExpr ) {
[2a4b088]1981 // mutate, exiting early if no longer OffsetofExpr
[1ba88a0]1982 Expression *expr = Parent::mutate( offsetofExpr );
[2a4b088]1983 offsetofExpr = dynamic_cast< OffsetofExpr* >( expr );
1984 if ( ! offsetofExpr ) return expr;
1985
1986 // only mutate expressions for polymorphic structs/unions
[8a34677]1987 Type *ty = offsetofExpr->get_type();
1988 if ( ! findGeneric( ty ) ) return offsetofExpr;
[2a4b088]1989
1990 if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) {
1991 // replace offsetof expression by index into offset array
1992 long i = findMember( offsetofExpr->get_member(), structType->get_baseStruct()->get_members() );
1993 if ( i == -1 ) return offsetofExpr;
1994
1995 Expression *offsetInd = makeOffsetIndex( ty, i );
1996 delete offsetofExpr;
1997 return offsetInd;
[5c52b06]1998 } else if ( dynamic_cast< UnionInstType* >( ty ) ) {
[2a4b088]1999 // all union members are at offset zero
2000 delete offsetofExpr;
[ca35c51]2001 return new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "0" ) );
[2a4b088]2002 } else return offsetofExpr;
[05d47278]2003 }
2004
[8a34677]2005 Expression *PolyGenericCalculator::mutate( OffsetPackExpr *offsetPackExpr ) {
2006 StructInstType *ty = offsetPackExpr->get_type();
2007
2008 Expression *ret = 0;
2009 if ( findGeneric( ty ) ) {
2010 // pull offset back from generated type information
[adc6781]2011 ret = new NameExpr( offsetofName( mangleType( ty ) ) );
[8a34677]2012 } else {
[adc6781]2013 std::string offsetName = offsetofName( mangleType( ty ) );
[8a34677]2014 if ( knownOffsets.find( offsetName ) != knownOffsets.end() ) {
2015 // use the already-generated offsets for this type
2016 ret = new NameExpr( offsetName );
2017 } else {
2018 knownOffsets.insert( offsetName );
2019
2020 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members();
2021 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2022
2023 // build initializer list for offset array
2024 std::list< Initializer* > inits;
2025 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) {
2026 DeclarationWithType *memberDecl;
2027 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) {
2028 memberDecl = origMember->clone();
2029 } else {
2030 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 );
2031 }
2032 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) );
2033 }
2034
2035 // build the offset array and replace the pack with a reference to it
[cb4c607]2036 ObjectDecl *offsetArray = makeVar( offsetName, new ArrayType( Type::Qualifiers(), offsetType, new ConstantExpr( Constant::from_ulong( baseMembers.size() ) ), false, false ),
[8a34677]2037 new ListInit( inits ) );
2038 ret = new VariableExpr( offsetArray );
2039 }
2040 }
2041
2042 delete offsetPackExpr;
2043 return ret;
2044 }
2045
2046 void PolyGenericCalculator::doBeginScope() {
2047 knownLayouts.beginScope();
2048 knownOffsets.beginScope();
2049 }
2050
2051 void PolyGenericCalculator::doEndScope() {
2052 knownLayouts.endScope();
[adc6781]2053 knownOffsets.endScope();
[8a34677]2054 }
2055
[05d47278]2056////////////////////////////////////////// Pass3 ////////////////////////////////////////////////////
2057
2058 template< typename DeclClass >
2059 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) {
[6f49cdf]2060 scopeTyVars.beginScope();
[05d47278]2061 makeTyVarMap( type, scopeTyVars );
2062
2063 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
[f18a711]2064 ScrubTyVars::scrub( decl, scopeTyVars );
[05d47278]2065
[6f49cdf]2066 scopeTyVars.endScope();
[05d47278]2067 return ret;
2068 }
2069
2070 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) {
2071 return handleDecl( objectDecl, objectDecl->get_type() );
2072 }
2073
2074 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) {
2075 return handleDecl( functionDecl, functionDecl->get_functionType() );
2076 }
2077
2078 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) {
2079 return handleDecl( typedefDecl, typedefDecl->get_base() );
2080 }
2081
2082 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) {
2083// Initializer *init = 0;
2084// std::list< Expression *> designators;
[2c57025]2085// addToTyVarMap( typeDecl, scopeTyVars );
[05d47278]2086// if ( typeDecl->get_base() ) {
2087// init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators );
2088// }
2089// return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init );
2090
[2c57025]2091 addToTyVarMap( typeDecl, scopeTyVars );
[05d47278]2092 return Mutator::mutate( typeDecl );
2093 }
2094
2095 Type * Pass3::mutate( PointerType *pointerType ) {
[6f49cdf]2096 scopeTyVars.beginScope();
[05d47278]2097 makeTyVarMap( pointerType, scopeTyVars );
2098
2099 Type *ret = Mutator::mutate( pointerType );
2100
[6f49cdf]2101 scopeTyVars.endScope();
[05d47278]2102 return ret;
2103 }
2104
2105 Type * Pass3::mutate( FunctionType *functionType ) {
[6f49cdf]2106 scopeTyVars.beginScope();
[05d47278]2107 makeTyVarMap( functionType, scopeTyVars );
2108
2109 Type *ret = Mutator::mutate( functionType );
2110
[6f49cdf]2111 scopeTyVars.endScope();
[05d47278]2112 return ret;
2113 }
[01aeade]2114 } // anonymous namespace
[51b73452]2115} // namespace GenPoly
[01aeade]2116
[51587aa]2117// Local Variables: //
2118// tab-width: 4 //
2119// mode: c++ //
2120// compile-command: "make install" //
2121// End: //
Note: See TracBrowser for help on using the repository browser.