source: src/AST/Pass.proto.hpp@ f5212ca

Last change on this file since f5212ca was 5bf685f, checked in by Andrew Beach <ajbeach@…>, 20 months ago

Replayed maybeClone with maybeCopy, removed unused helppers in utility.h and pushed some includes out of headers.

  • Property mode set to 100644
File size: 19.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Pass.impl.hpp --
8//
9// Author : Thierry Delisle
10// Created On : Thu May 09 15::37::05 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#pragma once
17// IWYU pragma: private, include "Pass.hpp"
18
19#include "Common/Iterate.hpp"
20#include "Common/Stats/Heap.h"
21#include "Common/utility.h"
22namespace ast {
23 template<typename core_t> class Pass;
24 class TranslationUnit;
25 struct PureVisitor;
26 template<typename node_t> node_t * deepCopy( const node_t * );
27}
28
29#ifdef PEDANTIC_PASS_ASSERT
30#define __pedantic_pass_assert(...) assert(__VA_ARGS__)
31#define __pedantic_pass_assertf(...) assertf(__VA_ARGS__)
32#else
33#define __pedantic_pass_assert(...)
34#define __pedantic_pass_assertf(...)
35#endif
36
37namespace ast::__pass {
38
39typedef std::function<void( void * )> cleanup_func_t;
40typedef std::function<void( cleanup_func_t, void * )> at_cleanup_t;
41
42// boolean reference that may be null
43// either refers to a boolean value or is null and returns true
44class bool_ref {
45public:
46 bool_ref() = default;
47 ~bool_ref() = default;
48
49 operator bool() { return m_ref ? *m_ref : true; }
50 bool operator=( bool val ) { assert(m_ref); return *m_ref = val; }
51
52private:
53
54 friend class visit_children_guard;
55
56 bool * set( bool * val ) {
57 bool * prev = m_ref;
58 m_ref = val;
59 return prev;
60 }
61
62 bool * m_ref = nullptr;
63};
64
65// Implementation of the guard value
66// Created inside the visit scope
67class guard_value {
68public:
69 /// Push onto the cleanup
70 guard_value( at_cleanup_t * at_cleanup ) {
71 if( at_cleanup ) {
72 *at_cleanup = [this]( cleanup_func_t && func, void* val ) {
73 push( std::move( func ), val );
74 };
75 }
76 }
77
78 ~guard_value() {
79 while( !cleanups.empty() ) {
80 auto& cleanup = cleanups.top();
81 cleanup.func( cleanup.val );
82 cleanups.pop();
83 }
84 }
85
86 void push( cleanup_func_t && func, void* val ) {
87 cleanups.emplace( std::move(func), val );
88 }
89
90private:
91 struct cleanup_t {
92 cleanup_func_t func;
93 void * val;
94
95 cleanup_t( cleanup_func_t&& func, void * val ) : func(func), val(val) {}
96 };
97
98 std::stack< cleanup_t, std::vector<cleanup_t> > cleanups;
99};
100
101// Guard structure implementation for whether or not children should be visited
102class visit_children_guard {
103public:
104
105 visit_children_guard( bool_ref * ref )
106 : m_val ( true )
107 , m_prev( ref ? ref->set( &m_val ) : nullptr )
108 , m_ref ( ref )
109 {}
110
111 ~visit_children_guard() {
112 if( m_ref ) {
113 m_ref->set( m_prev );
114 }
115 }
116
117 operator bool() { return m_val; }
118
119private:
120 bool m_val;
121 bool * m_prev;
122 bool_ref * m_ref;
123};
124
125/// "Short hand" to check if this is a valid previsit function
126/// Mostly used to make the static_assert look (and print) prettier
127template<typename core_t, typename node_t>
128struct is_valid_previsit {
129 using ret_t = decltype( std::declval<core_t*>()->previsit( std::declval<const node_t *>() ) );
130
131 static constexpr bool value = std::is_void< ret_t >::value ||
132 std::is_base_of<const node_t, typename std::remove_pointer<ret_t>::type >::value;
133};
134
135/// The result is a single node.
136template< typename node_t >
137struct result1 {
138 bool differs = false;
139 const node_t * value = nullptr;
140
141 template< typename object_t, typename super_t, typename field_t >
142 void apply( object_t * object, field_t super_t::* field ) {
143 object->*field = value;
144 }
145};
146
147/// The result is a container of statements.
148template< template<class...> class container_t >
149struct resultNstmt {
150 /// The delta/change on a single node.
151 struct delta {
152 ptr<Stmt> new_val;
153 ssize_t old_idx;
154 bool is_old;
155
156 delta(const Stmt * s, ssize_t i, bool old) :
157 new_val(s), old_idx(i), is_old(old) {}
158 };
159
160 bool differs = false;
161 container_t< delta > values;
162
163 template< typename object_t, typename super_t, typename field_t >
164 void apply( object_t * object, field_t super_t::* field ) {
165 field_t & container = object->*field;
166 __pedantic_pass_assert( container.size() <= values.size() );
167
168 auto cit = enumerate(container).begin();
169
170 container_t<ptr<Stmt>> nvals;
171 for ( delta & d : values ) {
172 if ( d.is_old ) {
173 __pedantic_pass_assert( cit.idx <= d.old_idx );
174 std::advance( cit, d.old_idx - cit.idx );
175 nvals.push_back( std::move( (*cit).val ) );
176 } else {
177 nvals.push_back( std::move( d.new_val ) );
178 }
179 }
180
181 container = std::move(nvals);
182 }
183
184 template< template<class...> class incontainer_t >
185 void take_all( incontainer_t<ptr<Stmt>> * stmts ) {
186 if ( !stmts || stmts->empty() ) return;
187
188 std::transform( stmts->begin(), stmts->end(), std::back_inserter( values ),
189 [](ast::ptr<ast::Stmt>& stmt) -> delta {
190 return delta( stmt.release(), -1, false );
191 });
192 stmts->clear();
193 differs = true;
194 }
195
196 template< template<class...> class incontainer_t >
197 void take_all( incontainer_t<ptr<Decl>> * decls ) {
198 if ( !decls || decls->empty() ) return;
199
200 std::transform( decls->begin(), decls->end(), std::back_inserter( values ),
201 [](ast::ptr<ast::Decl>& decl) -> delta {
202 ast::Decl const * d = decl.release();
203 return delta( new DeclStmt( d->location, d ), -1, false );
204 });
205 decls->clear();
206 differs = true;
207 }
208};
209
210/// The result is a container of nodes.
211template< template<class...> class container_t, typename node_t >
212struct resultN {
213 bool differs = false;
214 container_t<ptr<node_t>> values;
215
216 template< typename object_t, typename super_t, typename field_t >
217 void apply( object_t * object, field_t super_t::* field ) {
218 field_t & container = object->*field;
219 __pedantic_pass_assert( container.size() == values.size() );
220
221 for ( size_t i = 0; i < container.size(); ++i ) {
222 // Take all the elements that are different in 'values'
223 // and swap them into 'container'
224 if ( values[i] != nullptr ) swap(container[i], values[i]);
225 }
226 // Now the original containers should still have the unchanged values
227 // but also contain the new values.
228 }
229};
230
231/// Used by previsit implementation
232/// We need to reassign the result to 'node', unless the function
233/// returns void, then we just leave 'node' unchanged
234template<bool is_void>
235struct __assign;
236
237template<>
238struct __assign<true> {
239 template<typename core_t, typename node_t>
240 static inline void result( core_t & core, const node_t * & node ) {
241 core.previsit( node );
242 }
243};
244
245template<>
246struct __assign<false> {
247 template<typename core_t, typename node_t>
248 static inline void result( core_t & core, const node_t * & node ) {
249 node = core.previsit( node );
250 assertf(node, "Previsit must not return NULL");
251 }
252};
253
254/// Used by postvisit implementation
255/// We need to return the result unless the function
256/// returns void, then we just return the original node
257template<bool is_void>
258struct __return;
259
260template<>
261struct __return<true> {
262 template<typename core_t, typename node_t>
263 static inline const node_t * result( core_t & core, const node_t * & node ) {
264 core.postvisit( node );
265 return node;
266 }
267};
268
269template<>
270struct __return<false> {
271 template<typename core_t, typename node_t>
272 static inline auto result( core_t & core, const node_t * & node ) {
273 return core.postvisit( node );
274 }
275};
276
277//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
278// Deep magic (a.k.a template meta programming) to make the templated visitor work
279// Basically the goal is to make 2 previsit
280// 1 - Use when a pass implements a valid previsit. This uses overloading which means the any overload of
281// 'pass.previsit( node )' that compiles will be used for that node for that type
282// This requires that this option only compile for passes that actually define an appropriate visit.
283// SFINAE will make sure the compilation errors in this function don't halt the build.
284// See http://en.cppreference.com/w/cpp/language/sfinae for details on SFINAE
285// 2 - Since the first implementation might not be specilizable, the second implementation exists and does nothing.
286// This is needed only to eliminate the need for passes to specify any kind of handlers.
287// The second implementation only works because it has a lower priority. This is due to the bogus last parameter.
288// The second implementation takes a long while the first takes an int. Since the caller always passes an literal 0
289// the first implementation takes priority in regards to overloading.
290//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
291// PreVisit : may mutate the pointer passed in if the node is mutated in the previsit call
292template<typename core_t, typename node_t>
293static inline auto previsit( core_t & core, const node_t * & node, int ) -> decltype( core.previsit( node ), void() ) {
294 static_assert(
295 is_valid_previsit<core_t, node_t>::value,
296 "Previsit may not change the type of the node. It must return its paremeter or void."
297 );
298
299 __assign<
300 std::is_void<
301 decltype( core.previsit( node ) )
302 >::value
303 >::result( core, node );
304}
305
306template<typename core_t, typename node_t>
307static inline auto previsit( core_t &, const node_t *, long ) {}
308
309// PostVisit : never mutates the passed pointer but may return a different node
310template<typename core_t, typename node_t>
311static inline auto postvisit( core_t & core, const node_t * node, int ) ->
312 decltype( core.postvisit( node ), node->accept( *(Visitor*)nullptr ) )
313{
314 return __return<
315 std::is_void<
316 decltype( core.postvisit( node ) )
317 >::value
318 >::result( core, node );
319}
320
321template<typename core_t, typename node_t>
322static inline const node_t * postvisit( core_t &, const node_t * node, long ) { return node; }
323
324//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
325// Deep magic (a.k.a template meta programming) continued
326// To make the templated visitor be more expressive, we allow 'accessories' : classes/structs the implementation can inherit
327// from in order to get extra functionallity for example
328// class ErrorChecker : WithShortCircuiting { ... };
329// Pass<ErrorChecker> checker;
330// this would define a pass that uses the templated visitor with the additionnal feature that it has short circuiting
331// Note that in all cases the accessories are not required but guarantee the requirements of the feature is matched
332//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
333// For several accessories, the feature is enabled by detecting that a specific field is present
334// Use a macro the encapsulate the logic of detecting a particular field
335// The type is not strictly enforced but does match the accessory
336#define FIELD_PTR( name, default_type ) \
337template< typename core_t > \
338static inline auto name( core_t & core, int ) -> decltype( &core.name ) { return &core.name; } \
339\
340template< typename core_t > \
341static inline default_type * name( core_t &, long ) { return nullptr; }
342
343// List of fields and their expected types
344FIELD_PTR( typeSubs, const ast::TypeSubstitution * )
345FIELD_PTR( stmtsToAddBefore, std::list< ast::ptr< ast::Stmt > > )
346FIELD_PTR( stmtsToAddAfter , std::list< ast::ptr< ast::Stmt > > )
347FIELD_PTR( declsToAddBefore, std::list< ast::ptr< ast::Decl > > )
348FIELD_PTR( declsToAddAfter , std::list< ast::ptr< ast::Decl > > )
349FIELD_PTR( visit_children, __pass::bool_ref )
350FIELD_PTR( at_cleanup, __pass::at_cleanup_t )
351FIELD_PTR( visitor, ast::Pass<core_t> * const )
352
353// Remove the macro to make sure we don't clash
354#undef FIELD_PTR
355
356template< typename core_t >
357static inline auto beginTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
358 // Stats::Heap::stacktrace_push(core_t::traceId);
359}
360
361template< typename core_t >
362static inline auto endTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
363 // Stats::Heap::stacktrace_pop();
364}
365
366template< typename core_t >
367static void beginTrace(core_t &, long) {}
368
369template< typename core_t >
370static void endTrace(core_t &, long) {}
371
372// Allows visitor to handle an error on top-level declarations, and possibly suppress the error.
373// If on_error() returns false, the error will be ignored. By default, it returns true.
374
375template< typename core_t >
376static bool on_error (core_t &, ptr<Decl> &, long) { return true; }
377
378template< typename core_t >
379static auto on_error (core_t & core, ptr<Decl> & decl, int) -> decltype(core.on_error(decl)) {
380 return core.on_error(decl);
381}
382
383template< typename core_t, typename node_t >
384static auto make_location_guard( core_t & core, node_t * node, int )
385 -> decltype( node->location, ValueGuardPtr<const CodeLocation *>( &core.location ) ) {
386 ValueGuardPtr<const CodeLocation *> guard( &core.location );
387 core.location = &node->location;
388 return guard;
389}
390
391template< typename core_t, typename node_t >
392static auto make_location_guard( core_t &, node_t *, long ) -> int {
393 return 0;
394}
395
396// Another feature of the templated visitor is that it calls beginScope()/endScope() for compound statement.
397// All passes which have such functions are assumed desire this behaviour
398// detect it using the same strategy
399namespace scope {
400 template<typename core_t>
401 static inline auto enter( core_t & core, int ) -> decltype( core.beginScope(), void() ) {
402 core.beginScope();
403 }
404
405 template<typename core_t>
406 static inline void enter( core_t &, long ) {}
407
408 template<typename core_t>
409 static inline auto leave( core_t & core, int ) -> decltype( core.endScope(), void() ) {
410 core.endScope();
411 }
412
413 template<typename core_t>
414 static inline void leave( core_t &, long ) {}
415} // namespace scope
416
417// Certain passes desire an up to date symbol table automatically
418// detect the presence of a member name `symtab` and call all the members appropriately
419namespace symtab {
420 // Some simple scoping rules
421 template<typename core_t>
422 static inline auto enter( core_t & core, int ) -> decltype( core.symtab, void() ) {
423 core.symtab.enterScope();
424 }
425
426 template<typename core_t>
427 static inline auto enter( core_t &, long ) {}
428
429 template<typename core_t>
430 static inline auto leave( core_t & core, int ) -> decltype( core.symtab, void() ) {
431 core.symtab.leaveScope();
432 }
433
434 template<typename core_t>
435 static inline auto leave( core_t &, long ) {}
436
437 // The symbol table has 2 kind of functions mostly, 1 argument and 2 arguments
438 // Create macro to condense these common patterns
439 #define SYMTAB_FUNC1( func, type ) \
440 template<typename core_t> \
441 static inline auto func( core_t & core, int, type arg ) -> decltype( core.symtab.func( arg ), void() ) {\
442 core.symtab.func( arg ); \
443 } \
444 \
445 template<typename core_t> \
446 static inline void func( core_t &, long, type ) {}
447
448 #define SYMTAB_FUNC2( func, type1, type2 ) \
449 template<typename core_t> \
450 static inline auto func( core_t & core, int, type1 arg1, type2 arg2 ) -> decltype( core.symtab.func( arg1, arg2 ), void () ) {\
451 core.symtab.func( arg1, arg2 ); \
452 } \
453 \
454 template<typename core_t> \
455 static inline void func( core_t &, long, type1, type2 ) {}
456
457 SYMTAB_FUNC1( addId , const DeclWithType * );
458 SYMTAB_FUNC1( addType , const NamedTypeDecl * );
459 SYMTAB_FUNC1( addStruct , const StructDecl * );
460 SYMTAB_FUNC1( addEnum , const EnumDecl * );
461 SYMTAB_FUNC1( addUnion , const UnionDecl * );
462 SYMTAB_FUNC1( addTrait , const TraitDecl * );
463 SYMTAB_FUNC2( addWith , const std::vector< ptr<Expr> > &, const Decl * );
464
465 // A few extra functions have more complicated behaviour, they are hand written
466 template<typename core_t>
467 static inline auto addStructFwd( core_t & core, int, const ast::StructDecl * decl ) -> decltype( core.symtab.addStruct( decl ), void() ) {
468 ast::StructDecl * fwd = new ast::StructDecl( decl->location, decl->name );
469 for ( const auto & param : decl->params ) {
470 fwd->params.push_back( deepCopy( param.get() ) );
471 }
472 core.symtab.addStruct( fwd );
473 }
474
475 template<typename core_t>
476 static inline void addStructFwd( core_t &, long, const ast::StructDecl * ) {}
477
478 template<typename core_t>
479 static inline auto addUnionFwd( core_t & core, int, const ast::UnionDecl * decl ) -> decltype( core.symtab.addUnion( decl ), void() ) {
480 ast::UnionDecl * fwd = new ast::UnionDecl( decl->location, decl->name );
481 for ( const auto & param : decl->params ) {
482 fwd->params.push_back( deepCopy( param.get() ) );
483 }
484 core.symtab.addUnion( fwd );
485 }
486
487 template<typename core_t>
488 static inline void addUnionFwd( core_t &, long, const ast::UnionDecl * ) {}
489
490 template<typename core_t>
491 static inline auto addStructId( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addStructId( str ), void() ) {
492 if ( ! core.symtab.lookupStruct( str ) ) {
493 core.symtab.addStructId( str );
494 }
495 }
496
497 template<typename core_t>
498 static inline void addStructId( core_t &, long, const std::string & ) {}
499
500 template<typename core_t>
501 static inline auto addUnionId( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addUnionId( str ), void() ) {
502 if ( ! core.symtab.lookupUnion( str ) ) {
503 core.symtab.addUnionId( str );
504 }
505 }
506
507 template<typename core_t>
508 static inline void addUnionId( core_t &, long, const std::string & ) {}
509
510 #undef SYMTAB_FUNC1
511 #undef SYMTAB_FUNC2
512} // namespace symtab
513
514// Some passes need to mutate TypeDecl and properly update their pointing TypeInstType.
515// Detect the presence of a member name `subs` and call all members appropriately
516namespace forall {
517 // Some simple scoping rules
518 template<typename core_t>
519 static inline auto enter( core_t & core, int, const ast::FunctionType * type )
520 -> decltype( core.subs, void() ) {
521 if ( ! type->forall.empty() ) core.subs.beginScope();
522 }
523
524 template<typename core_t>
525 static inline auto enter( core_t &, long, const ast::FunctionType * ) {}
526
527 template<typename core_t>
528 static inline auto leave( core_t & core, int, const ast::FunctionType * type )
529 -> decltype( core.subs, void() ) {
530 if ( ! type->forall.empty() ) { core.subs.endScope(); }
531 }
532
533 template<typename core_t>
534 static inline auto leave( core_t &, long, const ast::FunctionType * ) {}
535
536 // Replaces a TypeInstType's base TypeDecl according to the table
537 template<typename core_t>
538 static inline auto replace( core_t & core, int, const ast::TypeInstType *& inst )
539 -> decltype( core.subs, void() ) {
540 inst = ast::mutate_field(
541 inst, &ast::TypeInstType::base, core.subs.replace( inst->base ) );
542 }
543
544 template<typename core_t>
545 static inline auto replace( core_t &, long, const ast::TypeInstType *& ) {}
546} // namespace forall
547
548// For passes that need access to the global context. Searches `translationUnit`
549namespace translation_unit {
550 template<typename core_t>
551 static inline auto get_cptr( core_t & core, int )
552 -> decltype( &core.translationUnit ) {
553 return &core.translationUnit;
554 }
555
556 template<typename core_t>
557 static inline const TranslationUnit ** get_cptr( core_t &, long ) {
558 return nullptr;
559 }
560}
561
562// For passes, usually utility passes, that have a result.
563namespace result {
564 template<typename core_t>
565 static inline auto get( core_t & core, char ) -> decltype( core.result() ) {
566 return core.result();
567 }
568
569 template<typename core_t>
570 static inline auto get( core_t & core, int ) -> decltype( core.result ) {
571 return core.result;
572 }
573
574 template<typename core_t>
575 static inline void get( core_t &, long ) {}
576}
577
578} // namespace ast::__pass
579
580#undef __pedantic_pass_assertf
581#undef __pedantic_pass_assert
Note: See TracBrowser for help on using the repository browser.