source: src/AST/Pass.proto.hpp@ cd6a6ff

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since cd6a6ff was a056f56, checked in by Thierry Delisle <tdelisle@…>, 5 years ago

Fixed forward declaration of TranslationUnit

  • Property mode set to 100644
File size: 15.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Pass.impl.hpp --
8//
9// Author : Thierry Delisle
10// Created On : Thu May 09 15::37::05 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#pragma once
17// IWYU pragma: private, include "Pass.hpp"
18
19#include "Common/Stats/Heap.h"
20
21namespace ast {
22template<typename core_t>
23class Pass;
24
25struct TranslationUnit;
26
27struct PureVisitor;
28
29namespace __pass {
30 typedef std::function<void( void * )> cleanup_func_t;
31 typedef std::function<void( cleanup_func_t, void * )> at_cleanup_t;
32
33
34 // boolean reference that may be null
35 // either refers to a boolean value or is null and returns true
36 class bool_ref {
37 public:
38 bool_ref() = default;
39 ~bool_ref() = default;
40
41 operator bool() { return m_ref ? *m_ref : true; }
42 bool operator=( bool val ) { assert(m_ref); return *m_ref = val; }
43
44 private:
45
46 friend class visit_children_guard;
47
48 bool * set( bool * val ) {
49 bool * prev = m_ref;
50 m_ref = val;
51 return prev;
52 }
53
54 bool * m_ref = nullptr;
55 };
56
57 // Implementation of the guard value
58 // Created inside the visit scope
59 class guard_value {
60 public:
61 /// Push onto the cleanup
62 guard_value( at_cleanup_t * at_cleanup ) {
63 if( at_cleanup ) {
64 *at_cleanup = [this]( cleanup_func_t && func, void* val ) {
65 push( std::move( func ), val );
66 };
67 }
68 }
69
70 ~guard_value() {
71 while( !cleanups.empty() ) {
72 auto& cleanup = cleanups.top();
73 cleanup.func( cleanup.val );
74 cleanups.pop();
75 }
76 }
77
78 void push( cleanup_func_t && func, void* val ) {
79 cleanups.emplace( std::move(func), val );
80 }
81
82 private:
83 struct cleanup_t {
84 cleanup_func_t func;
85 void * val;
86
87 cleanup_t( cleanup_func_t&& func, void * val ) : func(func), val(val) {}
88 };
89
90 std::stack< cleanup_t, std::vector<cleanup_t> > cleanups;
91 };
92
93 // Guard structure implementation for whether or not children should be visited
94 class visit_children_guard {
95 public:
96
97 visit_children_guard( bool_ref * ref )
98 : m_val ( true )
99 , m_prev( ref ? ref->set( &m_val ) : nullptr )
100 , m_ref ( ref )
101 {}
102
103 ~visit_children_guard() {
104 if( m_ref ) {
105 m_ref->set( m_prev );
106 }
107 }
108
109 operator bool() { return m_val; }
110
111 private:
112 bool m_val;
113 bool * m_prev;
114 bool_ref * m_ref;
115 };
116
117 /// "Short hand" to check if this is a valid previsit function
118 /// Mostly used to make the static_assert look (and print) prettier
119 template<typename core_t, typename node_t>
120 struct is_valid_previsit {
121 using ret_t = decltype( ((core_t*)nullptr)->previsit( (const node_t *)nullptr ) );
122
123 static constexpr bool value = std::is_void< ret_t >::value ||
124 std::is_base_of<const node_t, typename std::remove_pointer<ret_t>::type >::value;
125 };
126
127 /// Used by previsit implementation
128 /// We need to reassign the result to 'node', unless the function
129 /// returns void, then we just leave 'node' unchanged
130 template<bool is_void>
131 struct __assign;
132
133 template<>
134 struct __assign<true> {
135 template<typename core_t, typename node_t>
136 static inline void result( core_t & core, const node_t * & node ) {
137 core.previsit( node );
138 }
139 };
140
141 template<>
142 struct __assign<false> {
143 template<typename core_t, typename node_t>
144 static inline void result( core_t & core, const node_t * & node ) {
145 node = core.previsit( node );
146 assertf(node, "Previsit must not return NULL");
147 }
148 };
149
150 /// Used by postvisit implementation
151 /// We need to return the result unless the function
152 /// returns void, then we just return the original node
153 template<bool is_void>
154 struct __return;
155
156 template<>
157 struct __return<true> {
158 template<typename core_t, typename node_t>
159 static inline const node_t * result( core_t & core, const node_t * & node ) {
160 core.postvisit( node );
161 return node;
162 }
163 };
164
165 template<>
166 struct __return<false> {
167 template<typename core_t, typename node_t>
168 static inline auto result( core_t & core, const node_t * & node ) {
169 return core.postvisit( node );
170 }
171 };
172
173 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
174 // Deep magic (a.k.a template meta programming) to make the templated visitor work
175 // Basically the goal is to make 2 previsit
176 // 1 - Use when a pass implements a valid previsit. This uses overloading which means the any overload of
177 // 'pass.previsit( node )' that compiles will be used for that node for that type
178 // This requires that this option only compile for passes that actually define an appropriate visit.
179 // SFINAE will make sure the compilation errors in this function don't halt the build.
180 // See http://en.cppreference.com/w/cpp/language/sfinae for details on SFINAE
181 // 2 - Since the first implementation might not be specilizable, the second implementation exists and does nothing.
182 // This is needed only to eliminate the need for passes to specify any kind of handlers.
183 // The second implementation only works because it has a lower priority. This is due to the bogus last parameter.
184 // The second implementation takes a long while the first takes an int. Since the caller always passes an literal 0
185 // the first implementation takes priority in regards to overloading.
186 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
187 // PreVisit : may mutate the pointer passed in if the node is mutated in the previsit call
188 template<typename core_t, typename node_t>
189 static inline auto previsit( core_t & core, const node_t * & node, int ) -> decltype( core.previsit( node ), void() ) {
190 static_assert(
191 is_valid_previsit<core_t, node_t>::value,
192 "Previsit may not change the type of the node. It must return its paremeter or void."
193 );
194
195 __assign<
196 std::is_void<
197 decltype( core.previsit( node ) )
198 >::value
199 >::result( core, node );
200 }
201
202 template<typename core_t, typename node_t>
203 static inline auto previsit( core_t &, const node_t *, long ) {}
204
205 // PostVisit : never mutates the passed pointer but may return a different node
206 template<typename core_t, typename node_t>
207 static inline auto postvisit( core_t & core, const node_t * node, int ) ->
208 decltype( core.postvisit( node ), node->accept( *(Visitor*)nullptr ) )
209 {
210 return __return<
211 std::is_void<
212 decltype( core.postvisit( node ) )
213 >::value
214 >::result( core, node );
215 }
216
217 template<typename core_t, typename node_t>
218 static inline const node_t * postvisit( core_t &, const node_t * node, long ) { return node; }
219
220 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
221 // Deep magic (a.k.a template meta programming) continued
222 // To make the templated visitor be more expressive, we allow 'accessories' : classes/structs the implementation can inherit
223 // from in order to get extra functionallity for example
224 // class ErrorChecker : WithShortCircuiting { ... };
225 // Pass<ErrorChecker> checker;
226 // this would define a pass that uses the templated visitor with the additionnal feature that it has short circuiting
227 // Note that in all cases the accessories are not required but guarantee the requirements of the feature is matched
228 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
229 // For several accessories, the feature is enabled by detecting that a specific field is present
230 // Use a macro the encapsulate the logic of detecting a particular field
231 // The type is not strictly enforced but does match the accessory
232 #define FIELD_PTR( name, default_type ) \
233 template< typename core_t > \
234 static inline auto name( core_t & core, int ) -> decltype( &core.name ) { return &core.name; } \
235 \
236 template< typename core_t > \
237 static inline default_type * name( core_t &, long ) { return nullptr; }
238
239 // List of fields and their expected types
240 FIELD_PTR( typeSubs, const ast::TypeSubstitution * )
241 FIELD_PTR( stmtsToAddBefore, std::list< ast::ptr< ast::Stmt > > )
242 FIELD_PTR( stmtsToAddAfter , std::list< ast::ptr< ast::Stmt > > )
243 FIELD_PTR( declsToAddBefore, std::list< ast::ptr< ast::Decl > > )
244 FIELD_PTR( declsToAddAfter , std::list< ast::ptr< ast::Decl > > )
245 FIELD_PTR( visit_children, __pass::bool_ref )
246 FIELD_PTR( at_cleanup, __pass::at_cleanup_t )
247 FIELD_PTR( visitor, ast::Pass<core_t> * const )
248
249 // Remove the macro to make sure we don't clash
250 #undef FIELD_PTR
251
252 template< typename core_t >
253 static inline auto beginTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
254 // Stats::Heap::stacktrace_push(core_t::traceId);
255 }
256
257 template< typename core_t >
258 static inline auto endTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
259 // Stats::Heap::stacktrace_pop();
260 }
261
262 template< typename core_t >
263 static void beginTrace(core_t &, long) {}
264
265 template< typename core_t >
266 static void endTrace(core_t &, long) {}
267
268 // Allows visitor to handle an error on top-level declarations, and possibly suppress the error.
269 // If onError() returns false, the error will be ignored. By default, it returns true.
270
271 template< typename core_t >
272 static bool on_error (core_t &, ptr<Decl> &, long) { return true; }
273
274 template< typename core_t >
275 static auto on_error (core_t & core, ptr<Decl> & decl, int) -> decltype(core.on_error(decl)) {
276 return core.on_error(decl);
277 }
278
279 // Another feature of the templated visitor is that it calls beginScope()/endScope() for compound statement.
280 // All passes which have such functions are assumed desire this behaviour
281 // detect it using the same strategy
282 namespace scope {
283 template<typename core_t>
284 static inline auto enter( core_t & core, int ) -> decltype( core.beginScope(), void() ) {
285 core.beginScope();
286 }
287
288 template<typename core_t>
289 static inline void enter( core_t &, long ) {}
290
291 template<typename core_t>
292 static inline auto leave( core_t & core, int ) -> decltype( core.endScope(), void() ) {
293 core.endScope();
294 }
295
296 template<typename core_t>
297 static inline void leave( core_t &, long ) {}
298 } // namespace scope
299
300 // Certain passes desire an up to date symbol table automatically
301 // detect the presence of a member name `symtab` and call all the members appropriately
302 namespace symtab {
303 // Some simple scoping rules
304 template<typename core_t>
305 static inline auto enter( core_t & core, int ) -> decltype( core.symtab, void() ) {
306 core.symtab.enterScope();
307 }
308
309 template<typename core_t>
310 static inline auto enter( core_t &, long ) {}
311
312 template<typename core_t>
313 static inline auto leave( core_t & core, int ) -> decltype( core.symtab, void() ) {
314 core.symtab.leaveScope();
315 }
316
317 template<typename core_t>
318 static inline auto leave( core_t &, long ) {}
319
320 // The symbol table has 2 kind of functions mostly, 1 argument and 2 arguments
321 // Create macro to condense these common patterns
322 #define SYMTAB_FUNC1( func, type ) \
323 template<typename core_t> \
324 static inline auto func( core_t & core, int, type arg ) -> decltype( core.symtab.func( arg ), void() ) {\
325 core.symtab.func( arg ); \
326 } \
327 \
328 template<typename core_t> \
329 static inline void func( core_t &, long, type ) {}
330
331 #define SYMTAB_FUNC2( func, type1, type2 ) \
332 template<typename core_t> \
333 static inline auto func( core_t & core, int, type1 arg1, type2 arg2 ) -> decltype( core.symtab.func( arg1, arg2 ), void () ) {\
334 core.symtab.func( arg1, arg2 ); \
335 } \
336 \
337 template<typename core_t> \
338 static inline void func( core_t &, long, type1, type2 ) {}
339
340 SYMTAB_FUNC1( addId , const DeclWithType * );
341 SYMTAB_FUNC1( addType , const NamedTypeDecl * );
342 SYMTAB_FUNC1( addStruct , const StructDecl * );
343 SYMTAB_FUNC1( addEnum , const EnumDecl * );
344 SYMTAB_FUNC1( addUnion , const UnionDecl * );
345 SYMTAB_FUNC1( addTrait , const TraitDecl * );
346 SYMTAB_FUNC2( addWith , const std::vector< ptr<Expr> > &, const Decl * );
347
348 // A few extra functions have more complicated behaviour, they are hand written
349 template<typename core_t>
350 static inline auto addStructFwd( core_t & core, int, const ast::StructDecl * decl ) -> decltype( core.symtab.addStruct( decl ), void() ) {
351 ast::StructDecl * fwd = new ast::StructDecl( decl->location, decl->name );
352 fwd->params = decl->params;
353 core.symtab.addStruct( fwd );
354 }
355
356 template<typename core_t>
357 static inline void addStructFwd( core_t &, long, const ast::StructDecl * ) {}
358
359 template<typename core_t>
360 static inline auto addUnionFwd( core_t & core, int, const ast::UnionDecl * decl ) -> decltype( core.symtab.addUnion( decl ), void() ) {
361 UnionDecl * fwd = new UnionDecl( decl->location, decl->name );
362 fwd->params = decl->params;
363 core.symtab.addUnion( fwd );
364 }
365
366 template<typename core_t>
367 static inline void addUnionFwd( core_t &, long, const ast::UnionDecl * ) {}
368
369 template<typename core_t>
370 static inline auto addStruct( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addStruct( str ), void() ) {
371 if ( ! core.symtab.lookupStruct( str ) ) {
372 core.symtab.addStruct( str );
373 }
374 }
375
376 template<typename core_t>
377 static inline void addStruct( core_t &, long, const std::string & ) {}
378
379 template<typename core_t>
380 static inline auto addUnion( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addUnion( str ), void() ) {
381 if ( ! core.symtab.lookupUnion( str ) ) {
382 core.symtab.addUnion( str );
383 }
384 }
385
386 template<typename core_t>
387 static inline void addUnion( core_t &, long, const std::string & ) {}
388
389 #undef SYMTAB_FUNC1
390 #undef SYMTAB_FUNC2
391 } // namespace symtab
392
393 // Some passes need to mutate TypeDecl and properly update their pointing TypeInstType.
394 // Detect the presence of a member name `subs` and call all members appropriately
395 namespace forall {
396 // Some simple scoping rules
397 template<typename core_t>
398 static inline auto enter( core_t & core, int, const ast::ParameterizedType * type )
399 -> decltype( core.subs, void() ) {
400 if ( ! type->forall.empty() ) core.subs.beginScope();
401 }
402
403 template<typename core_t>
404 static inline auto enter( core_t &, long, const ast::ParameterizedType * ) {}
405
406 template<typename core_t>
407 static inline auto leave( core_t & core, int, const ast::ParameterizedType * type )
408 -> decltype( core.subs, void() ) {
409 if ( ! type->forall.empty() ) { core.subs.endScope(); }
410 }
411
412 template<typename core_t>
413 static inline auto leave( core_t &, long, const ast::ParameterizedType * ) {}
414
415 // Get the substitution table, if present
416 template<typename core_t>
417 static inline auto subs( core_t & core, int ) -> decltype( &core.subs ) {
418 return &core.subs;
419 }
420
421 template<typename core_t>
422 static inline ast::ForallSubstitutionTable * subs( core_t &, long ) { return nullptr; }
423
424 // Replaces a TypeInstType's base TypeDecl according to the table
425 template<typename core_t>
426 static inline auto replace( core_t & core, int, const ast::TypeInstType *& inst )
427 -> decltype( core.subs, void() ) {
428 inst = ast::mutate_field(
429 inst, &ast::TypeInstType::base, core.subs.replace( inst->base ) );
430 }
431
432 template<typename core_t>
433 static inline auto replace( core_t &, long, const ast::TypeInstType *& ) {}
434
435 } // namespace forall
436
437 template<typename core_t>
438 static inline auto get_result( core_t & core, char ) -> decltype( core.result() ) {
439 return core.result();
440 }
441
442 template<typename core_t>
443 static inline auto get_result( core_t & core, int ) -> decltype( core.result ) {
444 return core.result;
445 }
446
447 template<typename core_t>
448 static inline void get_result( core_t &, long ) {}
449} // namespace __pass
450} // namespace ast
Note: See TracBrowser for help on using the repository browser.