source: src/AST/Pass.proto.hpp@ bf4fe05

Last change on this file since bf4fe05 was c92bdcc, checked in by Andrew Beach <ajbeach@…>, 17 months ago

Updated the rest of the names in src/ (except for the generated files).

  • Property mode set to 100644
File size: 17.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Pass.proto.hpp --
8//
9// Author : Thierry Delisle
10// Created On : Thu May 09 15::37::05 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#pragma once
17// IWYU pragma: private, include "Pass.hpp"
18
19#include "Common/Iterate.hpp"
20#include "Common/Stats/Heap.hpp"
21#include "Common/Utility.hpp"
22namespace ast {
23 template<typename core_t> class Pass;
24 class TranslationUnit;
25 struct PureVisitor;
26 template<typename node_t> node_t * deepCopy( const node_t * );
27}
28
29#ifdef PEDANTIC_PASS_ASSERT
30#define __pedantic_pass_assert(...) assert(__VA_ARGS__)
31#define __pedantic_pass_assertf(...) assertf(__VA_ARGS__)
32#else
33#define __pedantic_pass_assert(...)
34#define __pedantic_pass_assertf(...)
35#endif
36
37namespace ast::__pass {
38
39typedef std::function<void( void * )> cleanup_func_t;
40typedef std::function<void( cleanup_func_t, void * )> at_cleanup_t;
41
42/// Implementation of the guard value
43/// Created inside the visit scope
44class guard_value {
45public:
46 /// Push onto the cleanup
47 guard_value( at_cleanup_t * at_cleanup ) {
48 if( at_cleanup ) {
49 *at_cleanup = [this]( cleanup_func_t && func, void* val ) {
50 push( std::move( func ), val );
51 };
52 }
53 }
54
55 ~guard_value() {
56 while( !cleanups.empty() ) {
57 auto& cleanup = cleanups.top();
58 cleanup.func( cleanup.val );
59 cleanups.pop();
60 }
61 }
62
63 void push( cleanup_func_t && func, void* val ) {
64 cleanups.emplace( std::move(func), val );
65 }
66
67private:
68 struct cleanup_t {
69 cleanup_func_t func;
70 void * val;
71
72 cleanup_t( cleanup_func_t&& func, void * val ) : func(func), val(val) {}
73 };
74
75 std::stack< cleanup_t, std::vector<cleanup_t> > cleanups;
76};
77
78// Guard structure implementation for whether or not children should be visited
79class visit_children_guard {
80public:
81
82 visit_children_guard( bool * ref ) :
83 m_ref( ref ), m_val( true )
84 {
85 if ( m_ref ) { m_val = *m_ref; *m_ref = true; }
86 }
87
88 ~visit_children_guard() {
89 if ( m_ref ) { *m_ref = m_val; }
90 }
91
92private:
93 bool * m_ref;
94 bool m_val;
95};
96
97/// The result is a single node.
98template< typename node_t >
99struct result1 {
100 bool differs = false;
101 const node_t * value = nullptr;
102
103 template< typename object_t, typename super_t, typename field_t >
104 void apply( object_t * object, field_t super_t::* field ) {
105 object->*field = value;
106 }
107};
108
109/// The result is a container of statements.
110template< template<class...> class container_t >
111struct resultNstmt {
112 /// The delta/change on a single node.
113 struct delta {
114 ptr<Stmt> new_val;
115 ssize_t old_idx;
116 bool is_old;
117
118 explicit delta(const Stmt * s) : new_val(s), old_idx(-1), is_old(false) {}
119 explicit delta(ssize_t i) : new_val(nullptr), old_idx(i), is_old(true) {}
120 };
121
122 bool differs = false;
123 container_t< delta > values;
124
125 template< typename object_t, typename super_t, typename field_t >
126 void apply( object_t * object, field_t super_t::* field ) {
127 field_t & container = object->*field;
128 __pedantic_pass_assert( container.size() <= values.size() );
129
130 auto cit = enumerate(container).begin();
131
132 container_t<ptr<Stmt>> nvals;
133 for ( delta & d : values ) {
134 if ( d.is_old ) {
135 __pedantic_pass_assert( cit.idx <= d.old_idx );
136 std::advance( cit, d.old_idx - cit.idx );
137 nvals.push_back( std::move( (*cit).val ) );
138 } else {
139 nvals.push_back( std::move( d.new_val ) );
140 }
141 }
142
143 container = std::move(nvals);
144 }
145
146 template< template<class...> class incontainer_t >
147 void take_all( incontainer_t<ptr<Stmt>> * stmts ) {
148 if ( !stmts || stmts->empty() ) return;
149
150 std::transform( stmts->begin(), stmts->end(), std::back_inserter( values ),
151 [](ast::ptr<ast::Stmt>& stmt) -> delta {
152 return delta( stmt.release() );
153 });
154 stmts->clear();
155 differs = true;
156 }
157
158 template< template<class...> class incontainer_t >
159 void take_all( incontainer_t<ptr<Decl>> * decls ) {
160 if ( !decls || decls->empty() ) return;
161
162 std::transform( decls->begin(), decls->end(), std::back_inserter( values ),
163 [](ast::ptr<ast::Decl>& decl) -> delta {
164 ast::Decl const * d = decl.release();
165 return delta( new DeclStmt( d->location, d ) );
166 });
167 decls->clear();
168 differs = true;
169 }
170};
171
172/// The result is a container of nodes.
173template< template<class...> class container_t, typename node_t >
174struct resultN {
175 bool differs = false;
176 container_t<ptr<node_t>> values;
177
178 template< typename object_t, typename super_t, typename field_t >
179 void apply( object_t * object, field_t super_t::* field ) {
180 field_t & container = object->*field;
181 __pedantic_pass_assert( container.size() == values.size() );
182
183 for ( size_t i = 0; i < container.size(); ++i ) {
184 // Take all the elements that are different in 'values'
185 // and swap them into 'container'
186 if ( values[i] != nullptr ) swap(container[i], values[i]);
187 }
188 // Now the original containers should still have the unchanged values
189 // but also contain the new values.
190 }
191};
192
193/// "Short hand" to check if this is a valid previsit function
194/// Mostly used to make the static_assert look (and print) prettier
195template<typename core_t, typename node_t>
196struct is_valid_previsit {
197 using ret_t = decltype( std::declval<core_t*>()->previsit( std::declval<const node_t *>() ) );
198
199 static constexpr bool value = std::is_void< ret_t >::value ||
200 std::is_base_of<const node_t, typename std::remove_pointer<ret_t>::type >::value;
201};
202
203//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
204// Deep magic (a.k.a template meta programming) to make the templated visitor work
205// Basically the goal is to make 2 previsit
206// 1 - Use when a pass implements a valid previsit. This uses overloading which means the any overload of
207// 'pass.previsit( node )' that compiles will be used for that node for that type
208// This requires that this option only compile for passes that actually define an appropriate visit.
209// SFINAE will make sure the compilation errors in this function don't halt the build.
210// See http://en.cppreference.com/w/cpp/language/sfinae for details on SFINAE
211// 2 - Since the first implementation might not be specilizable, the second implementation exists and does nothing.
212// This is needed only to eliminate the need for passes to specify any kind of handlers.
213// The second implementation only works because it has a lower priority. This is due to the bogus last parameter.
214// The second implementation takes a long while the first takes an int. Since the caller always passes an literal 0
215// the first implementation takes priority in regards to overloading.
216//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
217// PreVisit : may mutate the pointer passed in if the node is mutated in the previsit call
218template<typename core_t, typename node_t>
219static inline auto previsit( core_t & core, const node_t * & node, int ) -> decltype( core.previsit( node ), void() ) {
220 static_assert(
221 is_valid_previsit<core_t, node_t>::value,
222 "Previsit may not change the type of the node. It must return its paremeter or void."
223 );
224
225 // We need to reassign the result to 'node', unless the function
226 // returns void, then we just leave 'node' unchanged
227 if constexpr ( std::is_void_v<decltype( core.previsit( node ) )> ) {
228 core.previsit( node );
229 } else {
230 node = core.previsit( node );
231 assertf( node, "Previsit must not return nullptr." );
232 }
233}
234
235template<typename core_t, typename node_t>
236static inline auto previsit( core_t &, const node_t *, long ) {}
237
238// PostVisit : never mutates the passed pointer but may return a different node
239template<typename core_t, typename node_t>
240static inline auto postvisit( core_t & core, const node_t * node, int ) ->
241 decltype( core.postvisit( node ), node->accept( *(Visitor*)nullptr ) )
242{
243 // We need to return the result unless the function
244 // returns void, then we just return the original node
245 if constexpr ( std::is_void_v<decltype( core.postvisit( node ) )> ) {
246 core.postvisit( node );
247 return node;
248 } else {
249 return core.postvisit( node );
250 }
251}
252
253template<typename core_t, typename node_t>
254static inline const node_t * postvisit( core_t &, const node_t * node, long ) { return node; }
255
256//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
257// Deep magic (a.k.a template meta programming) continued
258// To make the templated visitor be more expressive, we allow 'accessories' : classes/structs the implementation can inherit
259// from in order to get extra functionallity for example
260// class ErrorChecker : WithShortCircuiting { ... };
261// Pass<ErrorChecker> checker;
262// this would define a pass that uses the templated visitor with the additionnal feature that it has short circuiting
263// Note that in all cases the accessories are not required but guarantee the requirements of the feature is matched
264//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
265// For several accessories, the feature is enabled by detecting that a specific field is present
266// Use a macro the encapsulate the logic of detecting a particular field
267// The type is not strictly enforced but does match the accessory
268#define FIELD_PTR( name, default_type ) \
269template< typename core_t > \
270static inline auto name( core_t & core, int ) -> decltype( &core.name ) { return &core.name; } \
271\
272template< typename core_t > \
273static inline default_type * name( core_t &, long ) { return nullptr; }
274
275// List of fields and their expected types
276FIELD_PTR( typeSubs, const ast::TypeSubstitution * )
277FIELD_PTR( stmtsToAddBefore, std::list< ast::ptr< ast::Stmt > > )
278FIELD_PTR( stmtsToAddAfter , std::list< ast::ptr< ast::Stmt > > )
279FIELD_PTR( declsToAddBefore, std::list< ast::ptr< ast::Decl > > )
280FIELD_PTR( declsToAddAfter , std::list< ast::ptr< ast::Decl > > )
281FIELD_PTR( visit_children, bool )
282FIELD_PTR( at_cleanup, __pass::at_cleanup_t )
283FIELD_PTR( visitor, ast::Pass<core_t> * const )
284FIELD_PTR( translationUnit, const TranslationUnit * )
285
286// Remove the macro to make sure we don't clash
287#undef FIELD_PTR
288
289template< typename core_t >
290static inline auto beginTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
291 // Stats::Heap::stacktrace_push(core_t::traceId);
292}
293
294template< typename core_t >
295static inline auto endTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
296 // Stats::Heap::stacktrace_pop();
297}
298
299template< typename core_t >
300static void beginTrace(core_t &, long) {}
301
302template< typename core_t >
303static void endTrace(core_t &, long) {}
304
305// Allows visitor to handle an error on top-level declarations, and possibly suppress the error.
306// If on_error() returns false, the error will be ignored. By default, it returns true.
307
308template< typename core_t >
309static bool on_error (core_t &, ptr<Decl> &, long) { return true; }
310
311template< typename core_t >
312static auto on_error (core_t & core, ptr<Decl> & decl, int) -> decltype(core.on_error(decl)) {
313 return core.on_error(decl);
314}
315
316template< typename core_t, typename node_t >
317static auto make_location_guard( core_t & core, node_t * node, int )
318 -> decltype( node->location, ValueGuardPtr<const CodeLocation *>( &core.location ) ) {
319 ValueGuardPtr<const CodeLocation *> guard( &core.location );
320 core.location = &node->location;
321 return guard;
322}
323
324template< typename core_t, typename node_t >
325static auto make_location_guard( core_t &, node_t *, long ) -> int {
326 return 0;
327}
328
329// Another feature of the templated visitor is that it calls beginScope()/endScope() for compound statement.
330// All passes which have such functions are assumed desire this behaviour
331// detect it using the same strategy
332namespace scope {
333 template<typename core_t>
334 static inline auto enter( core_t & core, int ) -> decltype( core.beginScope(), void() ) {
335 core.beginScope();
336 }
337
338 template<typename core_t>
339 static inline void enter( core_t &, long ) {}
340
341 template<typename core_t>
342 static inline auto leave( core_t & core, int ) -> decltype( core.endScope(), void() ) {
343 core.endScope();
344 }
345
346 template<typename core_t>
347 static inline void leave( core_t &, long ) {}
348} // namespace scope
349
350// Certain passes desire an up to date symbol table automatically
351// detect the presence of a member name `symtab` and call all the members appropriately
352namespace symtab {
353 // Some simple scoping rules
354 template<typename core_t>
355 static inline auto enter( core_t & core, int ) -> decltype( core.symtab, void() ) {
356 core.symtab.enterScope();
357 }
358
359 template<typename core_t>
360 static inline auto enter( core_t &, long ) {}
361
362 template<typename core_t>
363 static inline auto leave( core_t & core, int ) -> decltype( core.symtab, void() ) {
364 core.symtab.leaveScope();
365 }
366
367 template<typename core_t>
368 static inline auto leave( core_t &, long ) {}
369
370 // The symbol table has 2 kind of functions mostly, 1 argument and 2 arguments
371 // Create macro to condense these common patterns
372 #define SYMTAB_FUNC1( func, type ) \
373 template<typename core_t> \
374 static inline auto func( core_t & core, int, type arg ) -> decltype( core.symtab.func( arg ), void() ) {\
375 core.symtab.func( arg ); \
376 } \
377 \
378 template<typename core_t> \
379 static inline void func( core_t &, long, type ) {}
380
381 #define SYMTAB_FUNC2( func, type1, type2 ) \
382 template<typename core_t> \
383 static inline auto func( core_t & core, int, type1 arg1, type2 arg2 ) -> decltype( core.symtab.func( arg1, arg2 ), void () ) {\
384 core.symtab.func( arg1, arg2 ); \
385 } \
386 \
387 template<typename core_t> \
388 static inline void func( core_t &, long, type1, type2 ) {}
389
390 SYMTAB_FUNC1( addId , const DeclWithType * );
391 SYMTAB_FUNC1( addType , const NamedTypeDecl * );
392 SYMTAB_FUNC1( addStruct , const StructDecl * );
393 SYMTAB_FUNC1( addEnum , const EnumDecl * );
394 SYMTAB_FUNC1( addUnion , const UnionDecl * );
395 SYMTAB_FUNC1( addTrait , const TraitDecl * );
396 SYMTAB_FUNC2( addWith , const std::vector< ptr<Expr> > &, const Decl * );
397
398 // A few extra functions have more complicated behaviour, they are hand written
399 template<typename core_t>
400 static inline auto addStructFwd( core_t & core, int, const ast::StructDecl * decl ) -> decltype( core.symtab.addStruct( decl ), void() ) {
401 ast::StructDecl * fwd = new ast::StructDecl( decl->location, decl->name );
402 for ( const auto & param : decl->params ) {
403 fwd->params.push_back( deepCopy( param.get() ) );
404 }
405 core.symtab.addStruct( fwd );
406 }
407
408 template<typename core_t>
409 static inline void addStructFwd( core_t &, long, const ast::StructDecl * ) {}
410
411 template<typename core_t>
412 static inline auto addUnionFwd( core_t & core, int, const ast::UnionDecl * decl ) -> decltype( core.symtab.addUnion( decl ), void() ) {
413 ast::UnionDecl * fwd = new ast::UnionDecl( decl->location, decl->name );
414 for ( const auto & param : decl->params ) {
415 fwd->params.push_back( deepCopy( param.get() ) );
416 }
417 core.symtab.addUnion( fwd );
418 }
419
420 template<typename core_t>
421 static inline void addUnionFwd( core_t &, long, const ast::UnionDecl * ) {}
422
423 template<typename core_t>
424 static inline auto addStructId( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addStructId( str ), void() ) {
425 if ( ! core.symtab.lookupStruct( str ) ) {
426 core.symtab.addStructId( str );
427 }
428 }
429
430 template<typename core_t>
431 static inline void addStructId( core_t &, long, const std::string & ) {}
432
433 template<typename core_t>
434 static inline auto addUnionId( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addUnionId( str ), void() ) {
435 if ( ! core.symtab.lookupUnion( str ) ) {
436 core.symtab.addUnionId( str );
437 }
438 }
439
440 template<typename core_t>
441 static inline void addUnionId( core_t &, long, const std::string & ) {}
442
443 #undef SYMTAB_FUNC1
444 #undef SYMTAB_FUNC2
445} // namespace symtab
446
447// Some passes need to mutate TypeDecl and properly update their pointing TypeInstType.
448// Detect the presence of a member name `subs` and call all members appropriately
449namespace forall {
450 // Some simple scoping rules
451 template<typename core_t>
452 static inline auto enter( core_t & core, int, const ast::FunctionType * type )
453 -> decltype( core.subs, void() ) {
454 if ( ! type->forall.empty() ) core.subs.beginScope();
455 }
456
457 template<typename core_t>
458 static inline auto enter( core_t &, long, const ast::FunctionType * ) {}
459
460 template<typename core_t>
461 static inline auto leave( core_t & core, int, const ast::FunctionType * type )
462 -> decltype( core.subs, void() ) {
463 if ( ! type->forall.empty() ) { core.subs.endScope(); }
464 }
465
466 template<typename core_t>
467 static inline auto leave( core_t &, long, const ast::FunctionType * ) {}
468
469 // Replaces a TypeInstType's base TypeDecl according to the table
470 template<typename core_t>
471 static inline auto replace( core_t & core, int, const ast::TypeInstType *& inst )
472 -> decltype( core.subs, void() ) {
473 inst = ast::mutate_field(
474 inst, &ast::TypeInstType::base, core.subs.replace( inst->base ) );
475 }
476
477 template<typename core_t>
478 static inline auto replace( core_t &, long, const ast::TypeInstType *& ) {}
479} // namespace forall
480
481// For passes, usually utility passes, that have a result.
482namespace result {
483 template<typename core_t>
484 static inline auto get( core_t & core, char ) -> decltype( core.result() ) {
485 return core.result();
486 }
487
488 template<typename core_t>
489 static inline auto get( core_t & core, int ) -> decltype( core.result ) {
490 return core.result;
491 }
492
493 template<typename core_t>
494 static inline void get( core_t &, long ) {}
495}
496
497} // namespace ast::__pass
498
499#undef __pedantic_pass_assertf
500#undef __pedantic_pass_assert
Note: See TracBrowser for help on using the repository browser.