source: src/AST/Pass.proto.hpp@ a750c71b

Last change on this file since a750c71b was 822332e, checked in by Andrew Beach <ajbeach@…>, 16 months ago

It seems clang uses different scoping rules for the trailing return of a scoped runction declaration. This form seems compatable with clang and gcc. Since I switched over to clang for testing I also cleaned up all errors that clang or gcc mentioned.

  • Property mode set to 100644
File size: 18.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Pass.proto.hpp --
8//
9// Author : Thierry Delisle
10// Created On : Thu May 09 15::37::05 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#pragma once
17// IWYU pragma: private, include "Pass.hpp"
18
19#include "Common/Iterate.hpp"
20#include "Common/Stats/Heap.hpp"
21#include "Common/Utility.hpp"
22namespace ast {
23 template<typename core_t> class Pass;
24 class TranslationUnit;
25 struct PureVisitor;
26 template<typename node_t> node_t * deepCopy( const node_t * );
27}
28
29#ifdef PEDANTIC_PASS_ASSERT
30#define __pedantic_pass_assert(...) assert(__VA_ARGS__)
31#define __pedantic_pass_assertf(...) assertf(__VA_ARGS__)
32#else
33#define __pedantic_pass_assert(...)
34#define __pedantic_pass_assertf(...)
35#endif
36
37namespace ast::__pass {
38
39typedef std::function<void( void * )> cleanup_func_t;
40typedef std::function<void( cleanup_func_t, void * )> at_cleanup_t;
41
42/// Replaces guards we don't want to use.
43struct empty_guard {
44};
45
46/// Implementation of the value guard. Created inside the visit scope.
47class value_guard {
48public:
49 /// Push onto the cleanup
50 value_guard( at_cleanup_t & at_cleanup ) {
51 at_cleanup = [this]( cleanup_func_t && func, void* val ) {
52 push( std::move( func ), val );
53 };
54 }
55
56 ~value_guard() {
57 while( !cleanups.empty() ) {
58 auto& cleanup = cleanups.top();
59 cleanup.func( cleanup.val );
60 cleanups.pop();
61 }
62 }
63
64 void push( cleanup_func_t && func, void* val ) {
65 cleanups.emplace( std::move(func), val );
66 }
67
68private:
69 struct cleanup_t {
70 cleanup_func_t func;
71 void * val;
72
73 cleanup_t( cleanup_func_t&& func, void * val ) : func(func), val(val) {}
74 };
75
76 std::stack< cleanup_t, std::vector<cleanup_t> > cleanups;
77};
78
79/// The result is a single node.
80template< typename node_t >
81struct result1 {
82 bool differs = false;
83 const node_t * value = nullptr;
84
85 template< typename object_t, typename super_t, typename field_t >
86 void apply( object_t * object, field_t super_t::* field ) {
87 object->*field = value;
88 }
89};
90
91/// The result is a container of statements.
92template< template<class...> class container_t >
93struct resultNstmt {
94 /// The delta/change on a single node.
95 struct delta {
96 ptr<Stmt> new_val;
97 ssize_t old_idx;
98 bool is_old;
99
100 explicit delta(const Stmt * s) : new_val(s), old_idx(-1), is_old(false) {}
101 explicit delta(ssize_t i) : new_val(nullptr), old_idx(i), is_old(true) {}
102 };
103
104 bool differs = false;
105 container_t< delta > values;
106
107 template< typename object_t, typename super_t, typename field_t >
108 void apply( object_t * object, field_t super_t::* field ) {
109 field_t & container = object->*field;
110 __pedantic_pass_assert( container.size() <= values.size() );
111
112 auto cit = enumerate(container).begin();
113
114 container_t<ptr<Stmt>> nvals;
115 for ( delta & d : values ) {
116 if ( d.is_old ) {
117 __pedantic_pass_assert( cit.idx <= d.old_idx );
118 std::advance( cit, d.old_idx - cit.idx );
119 nvals.push_back( std::move( (*cit).val ) );
120 } else {
121 nvals.push_back( std::move( d.new_val ) );
122 }
123 }
124
125 container = std::move(nvals);
126 }
127
128 template< template<class...> class incontainer_t >
129 void take_all( incontainer_t<ptr<Stmt>> * stmts ) {
130 if ( !stmts || stmts->empty() ) return;
131
132 std::transform( stmts->begin(), stmts->end(), std::back_inserter( values ),
133 [](ast::ptr<ast::Stmt>& stmt) -> delta {
134 return delta( stmt.release() );
135 });
136 stmts->clear();
137 differs = true;
138 }
139
140 template< template<class...> class incontainer_t >
141 void take_all( incontainer_t<ptr<Decl>> * decls ) {
142 if ( !decls || decls->empty() ) return;
143
144 std::transform( decls->begin(), decls->end(), std::back_inserter( values ),
145 [](ast::ptr<ast::Decl>& decl) -> delta {
146 ast::Decl const * d = decl.release();
147 return delta( new DeclStmt( d->location, d ) );
148 });
149 decls->clear();
150 differs = true;
151 }
152};
153
154/// The result is a container of nodes.
155template< template<class...> class container_t, typename node_t >
156struct resultN {
157 bool differs = false;
158 container_t<ptr<node_t>> values;
159
160 template< typename object_t, typename super_t, typename field_t >
161 void apply( object_t * object, field_t super_t::* field ) {
162 field_t & container = object->*field;
163 __pedantic_pass_assert( container.size() == values.size() );
164
165 for ( size_t i = 0; i < container.size(); ++i ) {
166 // Take all the elements that are different in 'values'
167 // and swap them into 'container'
168 if ( values[i] != nullptr ) swap(container[i], values[i]);
169 }
170 // Now the original containers should still have the unchanged values
171 // but also contain the new values.
172 }
173};
174
175/// "Short hand" to check if this is a valid previsit function
176/// Mostly used to make the static_assert look (and print) prettier
177template<typename core_t, typename node_t>
178struct is_valid_previsit {
179 using ret_t = decltype( std::declval<core_t*>()->previsit( std::declval<const node_t *>() ) );
180
181 static constexpr bool value = std::is_void< ret_t >::value ||
182 std::is_base_of<const node_t, typename std::remove_pointer<ret_t>::type >::value;
183};
184
185//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
186// Deep magic (a.k.a template meta programming) to make the templated visitor work
187// Basically the goal is to make 2 previsit
188// 1 - Use when a pass implements a valid previsit. This uses overloading which means the any overload of
189// 'pass.previsit( node )' that compiles will be used for that node for that type
190// This requires that this option only compile for passes that actually define an appropriate visit.
191// SFINAE will make sure the compilation errors in this function don't halt the build.
192// See http://en.cppreference.com/w/cpp/language/sfinae for details on SFINAE
193// 2 - Since the first implementation might not be specilizable, the second implementation exists and does nothing.
194// This is needed only to eliminate the need for passes to specify any kind of handlers.
195// The second implementation only works because it has a lower priority. This is due to the bogus last parameter.
196// The second implementation takes a long while the first takes an int. Since the caller always passes an literal 0
197// the first implementation takes priority in regards to overloading.
198//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
199// PreVisit : may mutate the pointer passed in if the node is mutated in the previsit call
200template<typename core_t, typename node_t>
201static inline auto previsit( core_t & core, const node_t * & node, int ) -> decltype( core.previsit( node ), void() ) {
202 static_assert(
203 is_valid_previsit<core_t, node_t>::value,
204 "Previsit may not change the type of the node. It must return its paremeter or void."
205 );
206
207 // We need to reassign the result to 'node', unless the function
208 // returns void, then we just leave 'node' unchanged
209 if constexpr ( std::is_void_v<decltype( core.previsit( node ) )> ) {
210 core.previsit( node );
211 } else {
212 node = core.previsit( node );
213 assertf( node, "Previsit must not return nullptr." );
214 }
215}
216
217template<typename core_t, typename node_t>
218static inline auto previsit( core_t &, const node_t *, long ) {}
219
220// PostVisit : never mutates the passed pointer but may return a different node
221template<typename core_t, typename node_t>
222static inline auto postvisit( core_t & core, const node_t * node, int ) ->
223 decltype( core.postvisit( node ), node->accept( *(Visitor*)nullptr ) )
224{
225 // We need to return the result unless the function
226 // returns void, then we just return the original node
227 if constexpr ( std::is_void_v<decltype( core.postvisit( node ) )> ) {
228 core.postvisit( node );
229 return node;
230 } else {
231 return core.postvisit( node );
232 }
233}
234
235template<typename core_t, typename node_t>
236static inline const node_t * postvisit( core_t &, const node_t * node, long ) { return node; }
237
238//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
239// Deep magic (a.k.a template meta programming) continued
240// To make the templated visitor be more expressive, we allow 'accessories' : classes/structs the implementation can inherit
241// from in order to get extra functionallity for example
242// class ErrorChecker : WithShortCircuiting { ... };
243// Pass<ErrorChecker> checker;
244// this would define a pass that uses the templated visitor with the additionnal feature that it has short circuiting
245// Note that in all cases the accessories are not required but guarantee the requirements of the feature is matched
246//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
247// For several accessories, the feature is enabled by detecting that a specific field is present
248// Use a macro the encapsulate the logic of detecting a particular field
249// The type is not strictly enforced but does match the accessory
250#define FIELD_PTR( name, default_type ) \
251template< typename core_t > \
252static inline auto name( core_t & core, int ) -> decltype( &core.name ) { return &core.name; } \
253\
254template< typename core_t > \
255static inline default_type * name( core_t &, long ) { return nullptr; }
256
257// List of fields and their expected types
258FIELD_PTR( typeSubs, const ast::TypeSubstitution * )
259FIELD_PTR( stmtsToAddBefore, std::list< ast::ptr< ast::Stmt > > )
260FIELD_PTR( stmtsToAddAfter , std::list< ast::ptr< ast::Stmt > > )
261FIELD_PTR( declsToAddBefore, std::list< ast::ptr< ast::Decl > > )
262FIELD_PTR( declsToAddAfter , std::list< ast::ptr< ast::Decl > > )
263FIELD_PTR( visit_children, bool )
264FIELD_PTR( visitor, ast::Pass<core_t> * const )
265FIELD_PTR( translationUnit, const TranslationUnit * )
266
267// Remove the macro to make sure we don't clash
268#undef FIELD_PTR
269
270template< typename core_t >
271static inline auto beginTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
272 // Stats::Heap::stacktrace_push(core_t::traceId);
273}
274
275template< typename core_t >
276static inline auto endTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
277 // Stats::Heap::stacktrace_pop();
278}
279
280template< typename core_t >
281static void beginTrace(core_t &, long) {}
282
283template< typename core_t >
284static void endTrace(core_t &, long) {}
285
286// Allows visitor to handle an error on top-level declarations, and possibly suppress the error.
287// If on_error() returns false, the error will be ignored. By default, it returns true.
288
289template< typename core_t >
290static bool on_error (core_t &, ptr<Decl> &, long) { return true; }
291
292template< typename core_t >
293static auto on_error (core_t & core, ptr<Decl> & decl, int) -> decltype(core.on_error(decl)) {
294 return core.on_error(decl);
295}
296
297// These are the guards declared at the beginning of a visit.
298// They are replaced with empty objects when not used.
299
300template< typename core_t, typename node_t >
301static inline auto make_location_guard( core_t & core, node_t * node, int )
302 -> decltype( node->location, ValueGuardPtr<const CodeLocation *>( &core.location ) ) {
303 ValueGuardPtr<const CodeLocation *> guard( &core.location );
304 core.location = &node->location;
305 return guard;
306}
307
308template< typename core_t, typename node_t >
309static inline empty_guard make_location_guard( core_t &, node_t *, long ) {
310 return empty_guard();
311}
312
313template< typename core_t >
314static inline auto make_visit_children_guard( core_t & core, int )
315 -> decltype( ValueGuardPtr<bool>( &core.visit_children ) ) {
316 ValueGuardPtr<bool> guard( &core.visit_children );
317 core.visit_children = true;
318 return guard;
319}
320
321template< typename core_t >
322static inline empty_guard make_visit_children_guard( core_t &, long ) {
323 return empty_guard();
324}
325
326template< typename core_t >
327static inline auto make_value_guard( core_t & core, int )
328 -> decltype( __pass::value_guard( core.at_cleanup ) ) {
329 // Requires guaranteed copy elision:
330 return value_guard( core.at_cleanup );
331}
332
333template< typename core_t >
334static inline empty_guard make_value_guard( core_t &, long ) {
335 return empty_guard();
336}
337
338// Another feature of the templated visitor is that it calls beginScope()/endScope() for compound statement.
339// All passes which have such functions are assumed desire this behaviour
340// detect it using the same strategy
341namespace scope {
342 template<typename core_t>
343 static inline auto enter( core_t & core, int ) -> decltype( core.beginScope(), void() ) {
344 core.beginScope();
345 }
346
347 template<typename core_t>
348 static inline void enter( core_t &, long ) {}
349
350 template<typename core_t>
351 static inline auto leave( core_t & core, int ) -> decltype( core.endScope(), void() ) {
352 core.endScope();
353 }
354
355 template<typename core_t>
356 static inline void leave( core_t &, long ) {}
357} // namespace scope
358
359// Certain passes desire an up to date symbol table automatically
360// detect the presence of a member name `symtab` and call all the members appropriately
361namespace symtab {
362 // Some simple scoping rules
363 template<typename core_t>
364 static inline auto enter( core_t & core, int ) -> decltype( core.symtab, void() ) {
365 core.symtab.enterScope();
366 }
367
368 template<typename core_t>
369 static inline auto enter( core_t &, long ) {}
370
371 template<typename core_t>
372 static inline auto leave( core_t & core, int ) -> decltype( core.symtab, void() ) {
373 core.symtab.leaveScope();
374 }
375
376 template<typename core_t>
377 static inline auto leave( core_t &, long ) {}
378
379 // The symbol table has 2 kind of functions mostly, 1 argument and 2 arguments
380 // Create macro to condense these common patterns
381 #define SYMTAB_FUNC1( func, type ) \
382 template<typename core_t> \
383 static inline auto func( core_t & core, int, type arg ) -> decltype( core.symtab.func( arg ), void() ) {\
384 core.symtab.func( arg ); \
385 } \
386 \
387 template<typename core_t> \
388 static inline void func( core_t &, long, type ) {}
389
390 #define SYMTAB_FUNC2( func, type1, type2 ) \
391 template<typename core_t> \
392 static inline auto func( core_t & core, int, type1 arg1, type2 arg2 ) -> decltype( core.symtab.func( arg1, arg2 ), void () ) {\
393 core.symtab.func( arg1, arg2 ); \
394 } \
395 \
396 template<typename core_t> \
397 static inline void func( core_t &, long, type1, type2 ) {}
398
399 SYMTAB_FUNC1( addId , const DeclWithType * );
400 SYMTAB_FUNC1( addType , const NamedTypeDecl * );
401 SYMTAB_FUNC1( addStruct , const StructDecl * );
402 SYMTAB_FUNC1( addEnum , const EnumDecl * );
403 SYMTAB_FUNC1( addUnion , const UnionDecl * );
404 SYMTAB_FUNC1( addTrait , const TraitDecl * );
405 SYMTAB_FUNC2( addWith , const std::vector< ptr<Expr> > &, const Decl * );
406
407 // A few extra functions have more complicated behaviour, they are hand written
408 template<typename core_t>
409 static inline auto addStructFwd( core_t & core, int, const ast::StructDecl * decl ) -> decltype( core.symtab.addStruct( decl ), void() ) {
410 ast::StructDecl * fwd = new ast::StructDecl( decl->location, decl->name );
411 for ( const auto & param : decl->params ) {
412 fwd->params.push_back( deepCopy( param.get() ) );
413 }
414 core.symtab.addStruct( fwd );
415 }
416
417 template<typename core_t>
418 static inline void addStructFwd( core_t &, long, const ast::StructDecl * ) {}
419
420 template<typename core_t>
421 static inline auto addUnionFwd( core_t & core, int, const ast::UnionDecl * decl ) -> decltype( core.symtab.addUnion( decl ), void() ) {
422 ast::UnionDecl * fwd = new ast::UnionDecl( decl->location, decl->name );
423 for ( const auto & param : decl->params ) {
424 fwd->params.push_back( deepCopy( param.get() ) );
425 }
426 core.symtab.addUnion( fwd );
427 }
428
429 template<typename core_t>
430 static inline void addUnionFwd( core_t &, long, const ast::UnionDecl * ) {}
431
432 template<typename core_t>
433 static inline auto addStructId( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addStructId( str ), void() ) {
434 if ( ! core.symtab.lookupStruct( str ) ) {
435 core.symtab.addStructId( str );
436 }
437 }
438
439 template<typename core_t>
440 static inline void addStructId( core_t &, long, const std::string & ) {}
441
442 template<typename core_t>
443 static inline auto addUnionId( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addUnionId( str ), void() ) {
444 if ( ! core.symtab.lookupUnion( str ) ) {
445 core.symtab.addUnionId( str );
446 }
447 }
448
449 template<typename core_t>
450 static inline void addUnionId( core_t &, long, const std::string & ) {}
451
452 #undef SYMTAB_FUNC1
453 #undef SYMTAB_FUNC2
454} // namespace symtab
455
456// Some passes need to mutate TypeDecl and properly update their pointing TypeInstType.
457// Detect the presence of a member name `subs` and call all members appropriately
458namespace forall {
459 // Some simple scoping rules
460 template<typename core_t>
461 static inline auto enter( core_t & core, int, const ast::FunctionType * type )
462 -> decltype( core.subs, void() ) {
463 if ( ! type->forall.empty() ) core.subs.beginScope();
464 }
465
466 template<typename core_t>
467 static inline auto enter( core_t &, long, const ast::FunctionType * ) {}
468
469 template<typename core_t>
470 static inline auto leave( core_t & core, int, const ast::FunctionType * type )
471 -> decltype( core.subs, void() ) {
472 if ( ! type->forall.empty() ) { core.subs.endScope(); }
473 }
474
475 template<typename core_t>
476 static inline auto leave( core_t &, long, const ast::FunctionType * ) {}
477
478 // Replaces a TypeInstType's base TypeDecl according to the table
479 template<typename core_t>
480 static inline auto replace( core_t & core, int, const ast::TypeInstType *& inst )
481 -> decltype( core.subs, void() ) {
482 inst = ast::mutate_field(
483 inst, &ast::TypeInstType::base, core.subs.replace( inst->base ) );
484 }
485
486 template<typename core_t>
487 static inline auto replace( core_t &, long, const ast::TypeInstType *& ) {}
488} // namespace forall
489
490// For passes, usually utility passes, that have a result.
491namespace result {
492 template<typename core_t>
493 static inline auto get( core_t & core, char ) -> decltype( core.result() ) {
494 return core.result();
495 }
496
497 template<typename core_t>
498 static inline auto get( core_t & core, int ) -> decltype( core.result ) {
499 return core.result;
500 }
501
502 template<typename core_t>
503 static inline void get( core_t &, long ) {}
504}
505
506} // namespace ast::__pass
507
508#undef __pedantic_pass_assertf
509#undef __pedantic_pass_assert
Note: See TracBrowser for help on using the repository browser.