source: src/AST/Pass.proto.hpp@ 22226e4

ADT ast-experimental enum pthread-emulation qualifiedEnum
Last change on this file since 22226e4 was eb211bf, checked in by Andrew Beach <ajbeach@…>, 4 years ago

Did some clean-up with the ast::Pass class. Moved some things out of the main header and cut out some duplication.

  • Property mode set to 100644
File size: 16.9 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Pass.impl.hpp --
8//
9// Author : Thierry Delisle
10// Created On : Thu May 09 15::37::05 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#pragma once
17// IWYU pragma: private, include "Pass.hpp"
18
19#include "Common/Stats/Heap.h"
20
21namespace ast {
22template<typename core_t>
23class Pass;
24
25class TranslationUnit;
26
27struct PureVisitor;
28
29namespace __pass {
30 typedef std::function<void( void * )> cleanup_func_t;
31 typedef std::function<void( cleanup_func_t, void * )> at_cleanup_t;
32
33
34 // boolean reference that may be null
35 // either refers to a boolean value or is null and returns true
36 class bool_ref {
37 public:
38 bool_ref() = default;
39 ~bool_ref() = default;
40
41 operator bool() { return m_ref ? *m_ref : true; }
42 bool operator=( bool val ) { assert(m_ref); return *m_ref = val; }
43
44 private:
45
46 friend class visit_children_guard;
47
48 bool * set( bool * val ) {
49 bool * prev = m_ref;
50 m_ref = val;
51 return prev;
52 }
53
54 bool * m_ref = nullptr;
55 };
56
57 // Implementation of the guard value
58 // Created inside the visit scope
59 class guard_value {
60 public:
61 /// Push onto the cleanup
62 guard_value( at_cleanup_t * at_cleanup ) {
63 if( at_cleanup ) {
64 *at_cleanup = [this]( cleanup_func_t && func, void* val ) {
65 push( std::move( func ), val );
66 };
67 }
68 }
69
70 ~guard_value() {
71 while( !cleanups.empty() ) {
72 auto& cleanup = cleanups.top();
73 cleanup.func( cleanup.val );
74 cleanups.pop();
75 }
76 }
77
78 void push( cleanup_func_t && func, void* val ) {
79 cleanups.emplace( std::move(func), val );
80 }
81
82 private:
83 struct cleanup_t {
84 cleanup_func_t func;
85 void * val;
86
87 cleanup_t( cleanup_func_t&& func, void * val ) : func(func), val(val) {}
88 };
89
90 std::stack< cleanup_t, std::vector<cleanup_t> > cleanups;
91 };
92
93 // Guard structure implementation for whether or not children should be visited
94 class visit_children_guard {
95 public:
96
97 visit_children_guard( bool_ref * ref )
98 : m_val ( true )
99 , m_prev( ref ? ref->set( &m_val ) : nullptr )
100 , m_ref ( ref )
101 {}
102
103 ~visit_children_guard() {
104 if( m_ref ) {
105 m_ref->set( m_prev );
106 }
107 }
108
109 operator bool() { return m_val; }
110
111 private:
112 bool m_val;
113 bool * m_prev;
114 bool_ref * m_ref;
115 };
116
117 /// "Short hand" to check if this is a valid previsit function
118 /// Mostly used to make the static_assert look (and print) prettier
119 template<typename core_t, typename node_t>
120 struct is_valid_previsit {
121 using ret_t = decltype( std::declval<core_t*>()->previsit( std::declval<const node_t *>() ) );
122
123 static constexpr bool value = std::is_void< ret_t >::value ||
124 std::is_base_of<const node_t, typename std::remove_pointer<ret_t>::type >::value;
125 };
126
127 /// The result is a single node.
128 template< typename node_t >
129 struct result1 {
130 bool differs;
131 const node_t * value;
132
133 template< typename object_t, typename super_t, typename field_t >
134 void apply( object_t *, field_t super_t::* field );
135 };
136
137 /// The result is a container of statements.
138 template< template<class...> class container_t >
139 struct resultNstmt {
140 /// The delta/change on a single node.
141 struct delta {
142 ptr<Stmt> new_val;
143 ssize_t old_idx;
144 bool is_old;
145
146 delta(const Stmt * s, ssize_t i, bool old) :
147 new_val(s), old_idx(i), is_old(old) {}
148 };
149
150 bool differs;
151 container_t< delta > values;
152
153 template< typename object_t, typename super_t, typename field_t >
154 void apply( object_t *, field_t super_t::* field );
155
156 template< template<class...> class incontainer_t >
157 void take_all( incontainer_t<ptr<Stmt>> * stmts );
158
159 template< template<class...> class incontainer_t >
160 void take_all( incontainer_t<ptr<Decl>> * decls );
161 };
162
163 /// The result is a container of nodes.
164 template< template<class...> class container_t, typename node_t >
165 struct resultN {
166 bool differs;
167 container_t<ptr<node_t>> values;
168
169 template< typename object_t, typename super_t, typename field_t >
170 void apply( object_t *, field_t super_t::* field );
171 };
172
173 /// Used by previsit implementation
174 /// We need to reassign the result to 'node', unless the function
175 /// returns void, then we just leave 'node' unchanged
176 template<bool is_void>
177 struct __assign;
178
179 template<>
180 struct __assign<true> {
181 template<typename core_t, typename node_t>
182 static inline void result( core_t & core, const node_t * & node ) {
183 core.previsit( node );
184 }
185 };
186
187 template<>
188 struct __assign<false> {
189 template<typename core_t, typename node_t>
190 static inline void result( core_t & core, const node_t * & node ) {
191 node = core.previsit( node );
192 assertf(node, "Previsit must not return NULL");
193 }
194 };
195
196 /// Used by postvisit implementation
197 /// We need to return the result unless the function
198 /// returns void, then we just return the original node
199 template<bool is_void>
200 struct __return;
201
202 template<>
203 struct __return<true> {
204 template<typename core_t, typename node_t>
205 static inline const node_t * result( core_t & core, const node_t * & node ) {
206 core.postvisit( node );
207 return node;
208 }
209 };
210
211 template<>
212 struct __return<false> {
213 template<typename core_t, typename node_t>
214 static inline auto result( core_t & core, const node_t * & node ) {
215 return core.postvisit( node );
216 }
217 };
218
219 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
220 // Deep magic (a.k.a template meta programming) to make the templated visitor work
221 // Basically the goal is to make 2 previsit
222 // 1 - Use when a pass implements a valid previsit. This uses overloading which means the any overload of
223 // 'pass.previsit( node )' that compiles will be used for that node for that type
224 // This requires that this option only compile for passes that actually define an appropriate visit.
225 // SFINAE will make sure the compilation errors in this function don't halt the build.
226 // See http://en.cppreference.com/w/cpp/language/sfinae for details on SFINAE
227 // 2 - Since the first implementation might not be specilizable, the second implementation exists and does nothing.
228 // This is needed only to eliminate the need for passes to specify any kind of handlers.
229 // The second implementation only works because it has a lower priority. This is due to the bogus last parameter.
230 // The second implementation takes a long while the first takes an int. Since the caller always passes an literal 0
231 // the first implementation takes priority in regards to overloading.
232 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
233 // PreVisit : may mutate the pointer passed in if the node is mutated in the previsit call
234 template<typename core_t, typename node_t>
235 static inline auto previsit( core_t & core, const node_t * & node, int ) -> decltype( core.previsit( node ), void() ) {
236 static_assert(
237 is_valid_previsit<core_t, node_t>::value,
238 "Previsit may not change the type of the node. It must return its paremeter or void."
239 );
240
241 __assign<
242 std::is_void<
243 decltype( core.previsit( node ) )
244 >::value
245 >::result( core, node );
246 }
247
248 template<typename core_t, typename node_t>
249 static inline auto previsit( core_t &, const node_t *, long ) {}
250
251 // PostVisit : never mutates the passed pointer but may return a different node
252 template<typename core_t, typename node_t>
253 static inline auto postvisit( core_t & core, const node_t * node, int ) ->
254 decltype( core.postvisit( node ), node->accept( *(Visitor*)nullptr ) )
255 {
256 return __return<
257 std::is_void<
258 decltype( core.postvisit( node ) )
259 >::value
260 >::result( core, node );
261 }
262
263 template<typename core_t, typename node_t>
264 static inline const node_t * postvisit( core_t &, const node_t * node, long ) { return node; }
265
266 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
267 // Deep magic (a.k.a template meta programming) continued
268 // To make the templated visitor be more expressive, we allow 'accessories' : classes/structs the implementation can inherit
269 // from in order to get extra functionallity for example
270 // class ErrorChecker : WithShortCircuiting { ... };
271 // Pass<ErrorChecker> checker;
272 // this would define a pass that uses the templated visitor with the additionnal feature that it has short circuiting
273 // Note that in all cases the accessories are not required but guarantee the requirements of the feature is matched
274 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
275 // For several accessories, the feature is enabled by detecting that a specific field is present
276 // Use a macro the encapsulate the logic of detecting a particular field
277 // The type is not strictly enforced but does match the accessory
278 #define FIELD_PTR( name, default_type ) \
279 template< typename core_t > \
280 static inline auto name( core_t & core, int ) -> decltype( &core.name ) { return &core.name; } \
281 \
282 template< typename core_t > \
283 static inline default_type * name( core_t &, long ) { return nullptr; }
284
285 // List of fields and their expected types
286 FIELD_PTR( typeSubs, const ast::TypeSubstitution * )
287 FIELD_PTR( stmtsToAddBefore, std::list< ast::ptr< ast::Stmt > > )
288 FIELD_PTR( stmtsToAddAfter , std::list< ast::ptr< ast::Stmt > > )
289 FIELD_PTR( declsToAddBefore, std::list< ast::ptr< ast::Decl > > )
290 FIELD_PTR( declsToAddAfter , std::list< ast::ptr< ast::Decl > > )
291 FIELD_PTR( visit_children, __pass::bool_ref )
292 FIELD_PTR( at_cleanup, __pass::at_cleanup_t )
293 FIELD_PTR( visitor, ast::Pass<core_t> * const )
294
295 // Remove the macro to make sure we don't clash
296 #undef FIELD_PTR
297
298 template< typename core_t >
299 static inline auto beginTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
300 // Stats::Heap::stacktrace_push(core_t::traceId);
301 }
302
303 template< typename core_t >
304 static inline auto endTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
305 // Stats::Heap::stacktrace_pop();
306 }
307
308 template< typename core_t >
309 static void beginTrace(core_t &, long) {}
310
311 template< typename core_t >
312 static void endTrace(core_t &, long) {}
313
314 // Allows visitor to handle an error on top-level declarations, and possibly suppress the error.
315 // If onError() returns false, the error will be ignored. By default, it returns true.
316
317 template< typename core_t >
318 static bool on_error (core_t &, ptr<Decl> &, long) { return true; }
319
320 template< typename core_t >
321 static auto on_error (core_t & core, ptr<Decl> & decl, int) -> decltype(core.on_error(decl)) {
322 return core.on_error(decl);
323 }
324
325 // Another feature of the templated visitor is that it calls beginScope()/endScope() for compound statement.
326 // All passes which have such functions are assumed desire this behaviour
327 // detect it using the same strategy
328 namespace scope {
329 template<typename core_t>
330 static inline auto enter( core_t & core, int ) -> decltype( core.beginScope(), void() ) {
331 core.beginScope();
332 }
333
334 template<typename core_t>
335 static inline void enter( core_t &, long ) {}
336
337 template<typename core_t>
338 static inline auto leave( core_t & core, int ) -> decltype( core.endScope(), void() ) {
339 core.endScope();
340 }
341
342 template<typename core_t>
343 static inline void leave( core_t &, long ) {}
344 } // namespace scope
345
346 // Certain passes desire an up to date symbol table automatically
347 // detect the presence of a member name `symtab` and call all the members appropriately
348 namespace symtab {
349 // Some simple scoping rules
350 template<typename core_t>
351 static inline auto enter( core_t & core, int ) -> decltype( core.symtab, void() ) {
352 core.symtab.enterScope();
353 }
354
355 template<typename core_t>
356 static inline auto enter( core_t &, long ) {}
357
358 template<typename core_t>
359 static inline auto leave( core_t & core, int ) -> decltype( core.symtab, void() ) {
360 core.symtab.leaveScope();
361 }
362
363 template<typename core_t>
364 static inline auto leave( core_t &, long ) {}
365
366 // The symbol table has 2 kind of functions mostly, 1 argument and 2 arguments
367 // Create macro to condense these common patterns
368 #define SYMTAB_FUNC1( func, type ) \
369 template<typename core_t> \
370 static inline auto func( core_t & core, int, type arg ) -> decltype( core.symtab.func( arg ), void() ) {\
371 core.symtab.func( arg ); \
372 } \
373 \
374 template<typename core_t> \
375 static inline void func( core_t &, long, type ) {}
376
377 #define SYMTAB_FUNC2( func, type1, type2 ) \
378 template<typename core_t> \
379 static inline auto func( core_t & core, int, type1 arg1, type2 arg2 ) -> decltype( core.symtab.func( arg1, arg2 ), void () ) {\
380 core.symtab.func( arg1, arg2 ); \
381 } \
382 \
383 template<typename core_t> \
384 static inline void func( core_t &, long, type1, type2 ) {}
385
386 SYMTAB_FUNC1( addId , const DeclWithType * );
387 SYMTAB_FUNC1( addType , const NamedTypeDecl * );
388 SYMTAB_FUNC1( addStruct , const StructDecl * );
389 SYMTAB_FUNC1( addEnum , const EnumDecl * );
390 SYMTAB_FUNC1( addUnion , const UnionDecl * );
391 SYMTAB_FUNC1( addTrait , const TraitDecl * );
392 SYMTAB_FUNC2( addWith , const std::vector< ptr<Expr> > &, const Decl * );
393
394 // A few extra functions have more complicated behaviour, they are hand written
395 template<typename core_t>
396 static inline auto addStructFwd( core_t & core, int, const ast::StructDecl * decl ) -> decltype( core.symtab.addStruct( decl ), void() ) {
397 ast::StructDecl * fwd = new ast::StructDecl( decl->location, decl->name );
398 fwd->params = decl->params;
399 core.symtab.addStruct( fwd );
400 }
401
402 template<typename core_t>
403 static inline void addStructFwd( core_t &, long, const ast::StructDecl * ) {}
404
405 template<typename core_t>
406 static inline auto addUnionFwd( core_t & core, int, const ast::UnionDecl * decl ) -> decltype( core.symtab.addUnion( decl ), void() ) {
407 UnionDecl * fwd = new UnionDecl( decl->location, decl->name );
408 fwd->params = decl->params;
409 core.symtab.addUnion( fwd );
410 }
411
412 template<typename core_t>
413 static inline void addUnionFwd( core_t &, long, const ast::UnionDecl * ) {}
414
415 template<typename core_t>
416 static inline auto addStruct( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addStruct( str ), void() ) {
417 if ( ! core.symtab.lookupStruct( str ) ) {
418 core.symtab.addStruct( str );
419 }
420 }
421
422 template<typename core_t>
423 static inline void addStruct( core_t &, long, const std::string & ) {}
424
425 template<typename core_t>
426 static inline auto addUnion( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addUnion( str ), void() ) {
427 if ( ! core.symtab.lookupUnion( str ) ) {
428 core.symtab.addUnion( str );
429 }
430 }
431
432 template<typename core_t>
433 static inline void addUnion( core_t &, long, const std::string & ) {}
434
435 #undef SYMTAB_FUNC1
436 #undef SYMTAB_FUNC2
437 } // namespace symtab
438
439 // Some passes need to mutate TypeDecl and properly update their pointing TypeInstType.
440 // Detect the presence of a member name `subs` and call all members appropriately
441 namespace forall {
442 // Some simple scoping rules
443 template<typename core_t>
444 static inline auto enter( core_t & core, int, const ast::FunctionType * type )
445 -> decltype( core.subs, void() ) {
446 if ( ! type->forall.empty() ) core.subs.beginScope();
447 }
448
449 template<typename core_t>
450 static inline auto enter( core_t &, long, const ast::FunctionType * ) {}
451
452 template<typename core_t>
453 static inline auto leave( core_t & core, int, const ast::FunctionType * type )
454 -> decltype( core.subs, void() ) {
455 if ( ! type->forall.empty() ) { core.subs.endScope(); }
456 }
457
458 template<typename core_t>
459 static inline auto leave( core_t &, long, const ast::FunctionType * ) {}
460
461 // Replaces a TypeInstType's base TypeDecl according to the table
462 template<typename core_t>
463 static inline auto replace( core_t & core, int, const ast::TypeInstType *& inst )
464 -> decltype( core.subs, void() ) {
465 inst = ast::mutate_field(
466 inst, &ast::TypeInstType::base, core.subs.replace( inst->base ) );
467 }
468
469 template<typename core_t>
470 static inline auto replace( core_t &, long, const ast::TypeInstType *& ) {}
471
472 } // namespace forall
473
474 // For passes that need access to the global context. Sreaches `translationUnit`
475 namespace translation_unit {
476 template<typename core_t>
477 static inline auto get_cptr( core_t & core, int )
478 -> decltype( &core.translationUnit ) {
479 return &core.translationUnit;
480 }
481
482 template<typename core_t>
483 static inline const TranslationUnit ** get_cptr( core_t &, long ) {
484 return nullptr;
485 }
486 }
487
488 template<typename core_t>
489 static inline auto get_result( core_t & core, char ) -> decltype( core.result() ) {
490 return core.result();
491 }
492
493 template<typename core_t>
494 static inline auto get_result( core_t & core, int ) -> decltype( core.result ) {
495 return core.result;
496 }
497
498 template<typename core_t>
499 static inline void get_result( core_t &, long ) {}
500} // namespace __pass
501} // namespace ast
Note: See TracBrowser for help on using the repository browser.