source: src/AST/Pass.proto.hpp@ 0026d67

ADT ast-experimental
Last change on this file since 0026d67 was 95e5018, checked in by Andrew Beach <ajbeach@…>, 3 years ago

Changed ast::pass::make_location_guard so it should work with C++14.

  • Property mode set to 100644
File size: 17.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Pass.impl.hpp --
8//
9// Author : Thierry Delisle
10// Created On : Thu May 09 15::37::05 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#pragma once
17// IWYU pragma: private, include "Pass.hpp"
18
19#include "Common/Stats/Heap.h"
20
21namespace ast {
22template<typename core_t>
23class Pass;
24
25class TranslationUnit;
26
27struct PureVisitor;
28
29template<typename node_t>
30node_t * deepCopy( const node_t * localRoot );
31
32namespace __pass {
33 typedef std::function<void( void * )> cleanup_func_t;
34 typedef std::function<void( cleanup_func_t, void * )> at_cleanup_t;
35
36
37 // boolean reference that may be null
38 // either refers to a boolean value or is null and returns true
39 class bool_ref {
40 public:
41 bool_ref() = default;
42 ~bool_ref() = default;
43
44 operator bool() { return m_ref ? *m_ref : true; }
45 bool operator=( bool val ) { assert(m_ref); return *m_ref = val; }
46
47 private:
48
49 friend class visit_children_guard;
50
51 bool * set( bool * val ) {
52 bool * prev = m_ref;
53 m_ref = val;
54 return prev;
55 }
56
57 bool * m_ref = nullptr;
58 };
59
60 // Implementation of the guard value
61 // Created inside the visit scope
62 class guard_value {
63 public:
64 /// Push onto the cleanup
65 guard_value( at_cleanup_t * at_cleanup ) {
66 if( at_cleanup ) {
67 *at_cleanup = [this]( cleanup_func_t && func, void* val ) {
68 push( std::move( func ), val );
69 };
70 }
71 }
72
73 ~guard_value() {
74 while( !cleanups.empty() ) {
75 auto& cleanup = cleanups.top();
76 cleanup.func( cleanup.val );
77 cleanups.pop();
78 }
79 }
80
81 void push( cleanup_func_t && func, void* val ) {
82 cleanups.emplace( std::move(func), val );
83 }
84
85 private:
86 struct cleanup_t {
87 cleanup_func_t func;
88 void * val;
89
90 cleanup_t( cleanup_func_t&& func, void * val ) : func(func), val(val) {}
91 };
92
93 std::stack< cleanup_t, std::vector<cleanup_t> > cleanups;
94 };
95
96 // Guard structure implementation for whether or not children should be visited
97 class visit_children_guard {
98 public:
99
100 visit_children_guard( bool_ref * ref )
101 : m_val ( true )
102 , m_prev( ref ? ref->set( &m_val ) : nullptr )
103 , m_ref ( ref )
104 {}
105
106 ~visit_children_guard() {
107 if( m_ref ) {
108 m_ref->set( m_prev );
109 }
110 }
111
112 operator bool() { return m_val; }
113
114 private:
115 bool m_val;
116 bool * m_prev;
117 bool_ref * m_ref;
118 };
119
120 /// "Short hand" to check if this is a valid previsit function
121 /// Mostly used to make the static_assert look (and print) prettier
122 template<typename core_t, typename node_t>
123 struct is_valid_previsit {
124 using ret_t = decltype( std::declval<core_t*>()->previsit( std::declval<const node_t *>() ) );
125
126 static constexpr bool value = std::is_void< ret_t >::value ||
127 std::is_base_of<const node_t, typename std::remove_pointer<ret_t>::type >::value;
128 };
129
130 /// The result is a single node.
131 template< typename node_t >
132 struct result1 {
133 bool differs = false;
134 const node_t * value = nullptr;
135
136 template< typename object_t, typename super_t, typename field_t >
137 void apply( object_t *, field_t super_t::* field );
138 };
139
140 /// The result is a container of statements.
141 template< template<class...> class container_t >
142 struct resultNstmt {
143 /// The delta/change on a single node.
144 struct delta {
145 ptr<Stmt> new_val;
146 ssize_t old_idx;
147 bool is_old;
148
149 delta(const Stmt * s, ssize_t i, bool old) :
150 new_val(s), old_idx(i), is_old(old) {}
151 };
152
153 bool differs = false;
154 container_t< delta > values;
155
156 template< typename object_t, typename super_t, typename field_t >
157 void apply( object_t *, field_t super_t::* field );
158
159 template< template<class...> class incontainer_t >
160 void take_all( incontainer_t<ptr<Stmt>> * stmts );
161
162 template< template<class...> class incontainer_t >
163 void take_all( incontainer_t<ptr<Decl>> * decls );
164 };
165
166 /// The result is a container of nodes.
167 template< template<class...> class container_t, typename node_t >
168 struct resultN {
169 bool differs = false;
170 container_t<ptr<node_t>> values;
171
172 template< typename object_t, typename super_t, typename field_t >
173 void apply( object_t *, field_t super_t::* field );
174 };
175
176 /// Used by previsit implementation
177 /// We need to reassign the result to 'node', unless the function
178 /// returns void, then we just leave 'node' unchanged
179 template<bool is_void>
180 struct __assign;
181
182 template<>
183 struct __assign<true> {
184 template<typename core_t, typename node_t>
185 static inline void result( core_t & core, const node_t * & node ) {
186 core.previsit( node );
187 }
188 };
189
190 template<>
191 struct __assign<false> {
192 template<typename core_t, typename node_t>
193 static inline void result( core_t & core, const node_t * & node ) {
194 node = core.previsit( node );
195 assertf(node, "Previsit must not return NULL");
196 }
197 };
198
199 /// Used by postvisit implementation
200 /// We need to return the result unless the function
201 /// returns void, then we just return the original node
202 template<bool is_void>
203 struct __return;
204
205 template<>
206 struct __return<true> {
207 template<typename core_t, typename node_t>
208 static inline const node_t * result( core_t & core, const node_t * & node ) {
209 core.postvisit( node );
210 return node;
211 }
212 };
213
214 template<>
215 struct __return<false> {
216 template<typename core_t, typename node_t>
217 static inline auto result( core_t & core, const node_t * & node ) {
218 return core.postvisit( node );
219 }
220 };
221
222 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
223 // Deep magic (a.k.a template meta programming) to make the templated visitor work
224 // Basically the goal is to make 2 previsit
225 // 1 - Use when a pass implements a valid previsit. This uses overloading which means the any overload of
226 // 'pass.previsit( node )' that compiles will be used for that node for that type
227 // This requires that this option only compile for passes that actually define an appropriate visit.
228 // SFINAE will make sure the compilation errors in this function don't halt the build.
229 // See http://en.cppreference.com/w/cpp/language/sfinae for details on SFINAE
230 // 2 - Since the first implementation might not be specilizable, the second implementation exists and does nothing.
231 // This is needed only to eliminate the need for passes to specify any kind of handlers.
232 // The second implementation only works because it has a lower priority. This is due to the bogus last parameter.
233 // The second implementation takes a long while the first takes an int. Since the caller always passes an literal 0
234 // the first implementation takes priority in regards to overloading.
235 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
236 // PreVisit : may mutate the pointer passed in if the node is mutated in the previsit call
237 template<typename core_t, typename node_t>
238 static inline auto previsit( core_t & core, const node_t * & node, int ) -> decltype( core.previsit( node ), void() ) {
239 static_assert(
240 is_valid_previsit<core_t, node_t>::value,
241 "Previsit may not change the type of the node. It must return its paremeter or void."
242 );
243
244 __assign<
245 std::is_void<
246 decltype( core.previsit( node ) )
247 >::value
248 >::result( core, node );
249 }
250
251 template<typename core_t, typename node_t>
252 static inline auto previsit( core_t &, const node_t *, long ) {}
253
254 // PostVisit : never mutates the passed pointer but may return a different node
255 template<typename core_t, typename node_t>
256 static inline auto postvisit( core_t & core, const node_t * node, int ) ->
257 decltype( core.postvisit( node ), node->accept( *(Visitor*)nullptr ) )
258 {
259 return __return<
260 std::is_void<
261 decltype( core.postvisit( node ) )
262 >::value
263 >::result( core, node );
264 }
265
266 template<typename core_t, typename node_t>
267 static inline const node_t * postvisit( core_t &, const node_t * node, long ) { return node; }
268
269 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
270 // Deep magic (a.k.a template meta programming) continued
271 // To make the templated visitor be more expressive, we allow 'accessories' : classes/structs the implementation can inherit
272 // from in order to get extra functionallity for example
273 // class ErrorChecker : WithShortCircuiting { ... };
274 // Pass<ErrorChecker> checker;
275 // this would define a pass that uses the templated visitor with the additionnal feature that it has short circuiting
276 // Note that in all cases the accessories are not required but guarantee the requirements of the feature is matched
277 //-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
278 // For several accessories, the feature is enabled by detecting that a specific field is present
279 // Use a macro the encapsulate the logic of detecting a particular field
280 // The type is not strictly enforced but does match the accessory
281 #define FIELD_PTR( name, default_type ) \
282 template< typename core_t > \
283 static inline auto name( core_t & core, int ) -> decltype( &core.name ) { return &core.name; } \
284 \
285 template< typename core_t > \
286 static inline default_type * name( core_t &, long ) { return nullptr; }
287
288 // List of fields and their expected types
289 FIELD_PTR( typeSubs, const ast::TypeSubstitution * )
290 FIELD_PTR( stmtsToAddBefore, std::list< ast::ptr< ast::Stmt > > )
291 FIELD_PTR( stmtsToAddAfter , std::list< ast::ptr< ast::Stmt > > )
292 FIELD_PTR( declsToAddBefore, std::list< ast::ptr< ast::Decl > > )
293 FIELD_PTR( declsToAddAfter , std::list< ast::ptr< ast::Decl > > )
294 FIELD_PTR( visit_children, __pass::bool_ref )
295 FIELD_PTR( at_cleanup, __pass::at_cleanup_t )
296 FIELD_PTR( visitor, ast::Pass<core_t> * const )
297
298 // Remove the macro to make sure we don't clash
299 #undef FIELD_PTR
300
301 template< typename core_t >
302 static inline auto beginTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
303 // Stats::Heap::stacktrace_push(core_t::traceId);
304 }
305
306 template< typename core_t >
307 static inline auto endTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
308 // Stats::Heap::stacktrace_pop();
309 }
310
311 template< typename core_t >
312 static void beginTrace(core_t &, long) {}
313
314 template< typename core_t >
315 static void endTrace(core_t &, long) {}
316
317 // Allows visitor to handle an error on top-level declarations, and possibly suppress the error.
318 // If onError() returns false, the error will be ignored. By default, it returns true.
319
320 template< typename core_t >
321 static bool on_error (core_t &, ptr<Decl> &, long) { return true; }
322
323 template< typename core_t >
324 static auto on_error (core_t & core, ptr<Decl> & decl, int) -> decltype(core.on_error(decl)) {
325 return core.on_error(decl);
326 }
327
328 template< typename core_t, typename node_t >
329 static auto make_location_guard( core_t & core, node_t * node, int )
330 -> decltype( node->location, ValueGuardPtr<const CodeLocation *>( &core.location ) ) {
331 ValueGuardPtr<const CodeLocation *> guard( &core.location );
332 core.location = &node->location;
333 return guard;
334 }
335
336 template< typename core_t, typename node_t >
337 static auto make_location_guard( core_t &, node_t *, long ) -> int {
338 return 0;
339 }
340
341 // Another feature of the templated visitor is that it calls beginScope()/endScope() for compound statement.
342 // All passes which have such functions are assumed desire this behaviour
343 // detect it using the same strategy
344 namespace scope {
345 template<typename core_t>
346 static inline auto enter( core_t & core, int ) -> decltype( core.beginScope(), void() ) {
347 core.beginScope();
348 }
349
350 template<typename core_t>
351 static inline void enter( core_t &, long ) {}
352
353 template<typename core_t>
354 static inline auto leave( core_t & core, int ) -> decltype( core.endScope(), void() ) {
355 core.endScope();
356 }
357
358 template<typename core_t>
359 static inline void leave( core_t &, long ) {}
360 } // namespace scope
361
362 // Certain passes desire an up to date symbol table automatically
363 // detect the presence of a member name `symtab` and call all the members appropriately
364 namespace symtab {
365 // Some simple scoping rules
366 template<typename core_t>
367 static inline auto enter( core_t & core, int ) -> decltype( core.symtab, void() ) {
368 core.symtab.enterScope();
369 }
370
371 template<typename core_t>
372 static inline auto enter( core_t &, long ) {}
373
374 template<typename core_t>
375 static inline auto leave( core_t & core, int ) -> decltype( core.symtab, void() ) {
376 core.symtab.leaveScope();
377 }
378
379 template<typename core_t>
380 static inline auto leave( core_t &, long ) {}
381
382 // The symbol table has 2 kind of functions mostly, 1 argument and 2 arguments
383 // Create macro to condense these common patterns
384 #define SYMTAB_FUNC1( func, type ) \
385 template<typename core_t> \
386 static inline auto func( core_t & core, int, type arg ) -> decltype( core.symtab.func( arg ), void() ) {\
387 core.symtab.func( arg ); \
388 } \
389 \
390 template<typename core_t> \
391 static inline void func( core_t &, long, type ) {}
392
393 #define SYMTAB_FUNC2( func, type1, type2 ) \
394 template<typename core_t> \
395 static inline auto func( core_t & core, int, type1 arg1, type2 arg2 ) -> decltype( core.symtab.func( arg1, arg2 ), void () ) {\
396 core.symtab.func( arg1, arg2 ); \
397 } \
398 \
399 template<typename core_t> \
400 static inline void func( core_t &, long, type1, type2 ) {}
401
402 SYMTAB_FUNC1( addId , const DeclWithType * );
403 SYMTAB_FUNC1( addType , const NamedTypeDecl * );
404 SYMTAB_FUNC1( addStruct , const StructDecl * );
405 SYMTAB_FUNC1( addEnum , const EnumDecl * );
406 SYMTAB_FUNC1( addUnion , const UnionDecl * );
407 SYMTAB_FUNC1( addTrait , const TraitDecl * );
408 SYMTAB_FUNC2( addWith , const std::vector< ptr<Expr> > &, const Decl * );
409
410 // A few extra functions have more complicated behaviour, they are hand written
411 template<typename core_t>
412 static inline auto addStructFwd( core_t & core, int, const ast::StructDecl * decl ) -> decltype( core.symtab.addStruct( decl ), void() ) {
413 ast::StructDecl * fwd = new ast::StructDecl( decl->location, decl->name );
414 for ( const auto & param : decl->params ) {
415 fwd->params.push_back( deepCopy( param.get() ) );
416 }
417 core.symtab.addStruct( fwd );
418 }
419
420 template<typename core_t>
421 static inline void addStructFwd( core_t &, long, const ast::StructDecl * ) {}
422
423 template<typename core_t>
424 static inline auto addUnionFwd( core_t & core, int, const ast::UnionDecl * decl ) -> decltype( core.symtab.addUnion( decl ), void() ) {
425 ast::UnionDecl * fwd = new ast::UnionDecl( decl->location, decl->name );
426 for ( const auto & param : decl->params ) {
427 fwd->params.push_back( deepCopy( param.get() ) );
428 }
429 core.symtab.addUnion( fwd );
430 }
431
432 template<typename core_t>
433 static inline void addUnionFwd( core_t &, long, const ast::UnionDecl * ) {}
434
435 template<typename core_t>
436 static inline auto addStruct( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addStruct( str ), void() ) {
437 if ( ! core.symtab.lookupStruct( str ) ) {
438 core.symtab.addStruct( str );
439 }
440 }
441
442 template<typename core_t>
443 static inline void addStruct( core_t &, long, const std::string & ) {}
444
445 template<typename core_t>
446 static inline auto addUnion( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addUnion( str ), void() ) {
447 if ( ! core.symtab.lookupUnion( str ) ) {
448 core.symtab.addUnion( str );
449 }
450 }
451
452 template<typename core_t>
453 static inline void addUnion( core_t &, long, const std::string & ) {}
454
455 #undef SYMTAB_FUNC1
456 #undef SYMTAB_FUNC2
457 } // namespace symtab
458
459 // Some passes need to mutate TypeDecl and properly update their pointing TypeInstType.
460 // Detect the presence of a member name `subs` and call all members appropriately
461 namespace forall {
462 // Some simple scoping rules
463 template<typename core_t>
464 static inline auto enter( core_t & core, int, const ast::FunctionType * type )
465 -> decltype( core.subs, void() ) {
466 if ( ! type->forall.empty() ) core.subs.beginScope();
467 }
468
469 template<typename core_t>
470 static inline auto enter( core_t &, long, const ast::FunctionType * ) {}
471
472 template<typename core_t>
473 static inline auto leave( core_t & core, int, const ast::FunctionType * type )
474 -> decltype( core.subs, void() ) {
475 if ( ! type->forall.empty() ) { core.subs.endScope(); }
476 }
477
478 template<typename core_t>
479 static inline auto leave( core_t &, long, const ast::FunctionType * ) {}
480
481 // Replaces a TypeInstType's base TypeDecl according to the table
482 template<typename core_t>
483 static inline auto replace( core_t & core, int, const ast::TypeInstType *& inst )
484 -> decltype( core.subs, void() ) {
485 inst = ast::mutate_field(
486 inst, &ast::TypeInstType::base, core.subs.replace( inst->base ) );
487 }
488
489 template<typename core_t>
490 static inline auto replace( core_t &, long, const ast::TypeInstType *& ) {}
491
492 } // namespace forall
493
494 // For passes that need access to the global context. Sreaches `translationUnit`
495 namespace translation_unit {
496 template<typename core_t>
497 static inline auto get_cptr( core_t & core, int )
498 -> decltype( &core.translationUnit ) {
499 return &core.translationUnit;
500 }
501
502 template<typename core_t>
503 static inline const TranslationUnit ** get_cptr( core_t &, long ) {
504 return nullptr;
505 }
506 }
507
508 template<typename core_t>
509 static inline auto get_result( core_t & core, char ) -> decltype( core.result() ) {
510 return core.result();
511 }
512
513 template<typename core_t>
514 static inline auto get_result( core_t & core, int ) -> decltype( core.result ) {
515 return core.result;
516 }
517
518 template<typename core_t>
519 static inline void get_result( core_t &, long ) {}
520} // namespace __pass
521} // namespace ast
Note: See TracBrowser for help on using the repository browser.