source: src/AST/Expr.cpp@ 9802f4c

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 9802f4c was 3f3bfe5a, checked in by Andrew Beach <ajbeach@…>, 6 years ago

Merge from master to new-ast. Removing old lvalue support.

  • Property mode set to 100644
File size: 14.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Expr.cpp --
8//
9// Author : Aaron B. Moss
10// Created On : Wed May 15 17:00:00 2019
11// Last Modified By : Andrew Beach
12// Created On : Fri Oct 4 15:34:00 2019
13// Update Count : 4
14//
15
16#include "Expr.hpp"
17
18#include <cassert> // for strict_dynamic_cast
19#include <string> // for to_string
20#include <vector>
21
22#include "Copy.hpp" // for shallowCopy
23#include "Eval.hpp" // for call
24#include "GenericSubstitution.hpp"
25#include "LinkageSpec.hpp"
26#include "Stmt.hpp"
27#include "Type.hpp"
28#include "TypeSubstitution.hpp"
29#include "Common/utility.h"
30#include "Common/SemanticError.h"
31#include "GenPoly/Lvalue.h" // for referencesPermissable
32#include "InitTweak/InitTweak.h" // for getFunction, getPointerBase
33#include "ResolvExpr/typeops.h" // for extractResultType
34#include "Tuples/Tuples.h" // for makeTupleType
35
36namespace ast {
37
38namespace {
39 std::set<std::string> const lvalueFunctionNames = {"*?", "?[?]"};
40}
41
42// --- Expr
43bool Expr::get_lvalue() const {
44 return false;
45}
46
47// --- ApplicationExpr
48
49ApplicationExpr::ApplicationExpr( const CodeLocation & loc, const Expr * f,
50 std::vector<ptr<Expr>> && as )
51: Expr( loc ), func( f ), args( std::move(as) ) {
52 // ensure that `ApplicationExpr` result type is `FuncExpr`
53 const PointerType * pt = strict_dynamic_cast< const PointerType * >( f->result.get() );
54 const FunctionType * fn = strict_dynamic_cast< const FunctionType * >( pt->base.get() );
55
56 result = ResolvExpr::extractResultType( fn );
57 assert( result );
58}
59
60bool ApplicationExpr::get_lvalue() const {
61 if ( const DeclWithType * func = InitTweak::getFunction( this ) ) {
62 return func->linkage == Linkage::Intrinsic && lvalueFunctionNames.count( func->name );
63 }
64 return false;
65}
66
67// --- UntypedExpr
68
69UntypedExpr * UntypedExpr::createDeref( const CodeLocation & loc, Expr * arg ) {
70 assert( arg );
71
72 UntypedExpr * ret = call( loc, "*?", arg );
73 if ( const Type * ty = arg->result ) {
74 const Type * base = InitTweak::getPointerBase( ty );
75 assertf( base, "expected pointer type in dereference (type was %s)", toString( ty ).c_str() );
76
77 if ( GenPoly::referencesPermissable() ) {
78 // if references are still allowed in the AST, dereference returns a reference
79 ret->result = new ReferenceType{ base };
80 } else {
81 // references have been removed, in which case dereference returns an lvalue of the
82 // base type
83 ret->result = base;
84 }
85 }
86 return ret;
87}
88
89bool UntypedExpr::get_lvalue() const {
90 std::string fname = InitTweak::getFunctionName( this );
91 return lvalueFunctionNames.count( fname );
92}
93
94UntypedExpr * UntypedExpr::createAssign( const CodeLocation & loc, Expr * lhs, Expr * rhs ) {
95 assert( lhs && rhs );
96
97 UntypedExpr * ret = call( loc, "?=?", lhs, rhs );
98 if ( lhs->result && rhs->result ) {
99 // if both expressions are typed, assumes that this assignment is a C bitwise assignment,
100 // so the result is the type of the RHS
101 ret->result = rhs->result;
102 }
103 return ret;
104}
105
106// --- AddressExpr
107
108// Address expressions are typed based on the following inference rules:
109// E : lvalue T &..& (n references)
110// &E : T *&..& (n references)
111//
112// E : T &..& (m references)
113// &E : T *&..& (m-1 references)
114
115namespace {
116 /// The type of the address of a type.
117 /// Caller is responsible for managing returned memory
118 Type * addrType( const Type * type ) {
119 if ( const ReferenceType * refType = dynamic_cast< const ReferenceType * >( type ) ) {
120 return new ReferenceType{ addrType( refType->base ), refType->qualifiers };
121 } else {
122 return new PointerType{ type };
123 }
124 }
125}
126
127AddressExpr::AddressExpr( const CodeLocation & loc, const Expr * a ) : Expr( loc ), arg( a ) {
128 if ( arg->result ) {
129 if ( arg->get_lvalue() ) {
130 // lvalue, retains all levels of reference, and gains a pointer inside the references
131 Type * res = addrType( arg->result );
132 result = res;
133 } else {
134 // taking address of non-lvalue, must be a reference, loses one layer of reference
135 if ( const ReferenceType * refType =
136 dynamic_cast< const ReferenceType * >( arg->result.get() ) ) {
137 Type * res = addrType( refType->base );
138 result = res;
139 } else {
140 SemanticError( loc, arg->result.get(),
141 "Attempt to take address of non-lvalue expression: " );
142 }
143 }
144 }
145}
146
147// --- LabelAddressExpr
148
149// label address always has type `void*`
150LabelAddressExpr::LabelAddressExpr( const CodeLocation & loc, Label && a )
151: Expr( loc, new PointerType{ new VoidType{} } ), arg( a ) {}
152
153// --- CastExpr
154
155CastExpr::CastExpr( const CodeLocation & loc, const Expr * a, GeneratedFlag g )
156: Expr( loc, new VoidType{} ), arg( a ), isGenerated( g ) {}
157
158bool CastExpr::get_lvalue() const {
159 // This is actually wrong by C, but it works with our current set-up.
160 return arg->get_lvalue();
161}
162
163// --- KeywordCastExpr
164
165const std::string & KeywordCastExpr::targetString() const {
166 static const std::string targetStrs[] = {
167 "coroutine", "thread", "monitor"
168 };
169 static_assert(
170 (sizeof(targetStrs) / sizeof(targetStrs[0])) == ((unsigned long)NUMBER_OF_TARGETS),
171 "Each KeywordCastExpr::Target should have a corresponding string representation"
172 );
173 return targetStrs[(unsigned long)target];
174}
175
176// --- UntypedMemberExpr
177
178bool UntypedMemberExpr::get_lvalue() const {
179 return aggregate->get_lvalue();
180}
181
182// --- MemberExpr
183
184MemberExpr::MemberExpr( const CodeLocation & loc, const DeclWithType * mem, const Expr * agg )
185: Expr( loc ), member( mem ), aggregate( agg ) {
186 assert( member );
187 assert( aggregate );
188 assert( aggregate->result );
189
190 // Deep copy on result type avoids mutation on transitively multiply referenced object.
191 //
192 // Example, adapted from parts of builtins and bootloader:
193 //
194 // forall(dtype T)
195 // struct __Destructor {
196 // T * object;
197 // void (*dtor)(T *);
198 // };
199 //
200 // forall(dtype S)
201 // void foo(__Destructor(S) &d) {
202 // if (d.dtor) { // here
203 // }
204 // }
205 //
206 // Let e be the "d.dtor" guard espression, which is MemberExpr after resolve. Let d be the
207 // declaration of member __Destructor.dtor (an ObjectDecl), as accessed via the top-level
208 // declaration of __Destructor. Consider the types e.result and d.type. In the old AST, one
209 // is a clone of the other. Ordinary new-AST use would set them up as a multiply-referenced
210 // object.
211 //
212 // e.result: PointerType
213 // .base: FunctionType
214 // .params.front(): ObjectDecl, the anonymous parameter of type T*
215 // .type: PointerType
216 // .base: TypeInstType
217 // let x = that
218 // let y = similar, except start from d.type
219 //
220 // Consider two code lines down, genericSubstitution(...).apply(result).
221 //
222 // Applying this chosen-candidate's type substitution means modifying x, substituting
223 // S for T. This mutation should affect x and not y.
224
225 result = deepCopy(mem->get_type());
226
227 // substitute aggregate generic parameters into member type
228 genericSubstitution( aggregate->result ).apply( result );
229 // ensure appropriate restrictions from aggregate type
230 add_qualifiers( result, aggregate->result->qualifiers );
231}
232
233MemberExpr::MemberExpr( const CodeLocation & loc, const DeclWithType * mem, const Expr * agg,
234 MemberExpr::NoOpConstruction overloadSelector )
235: Expr( loc ), member( mem ), aggregate( agg ) {
236 assert( member );
237 assert( aggregate );
238 assert( aggregate->result );
239 (void) overloadSelector;
240}
241
242bool MemberExpr::get_lvalue() const {
243 // This is actually wrong by C, but it works with our current set-up.
244 return true;
245}
246
247// --- VariableExpr
248
249VariableExpr::VariableExpr( const CodeLocation & loc )
250: Expr( loc ), var( nullptr ) {}
251
252VariableExpr::VariableExpr( const CodeLocation & loc, const DeclWithType * v )
253: Expr( loc ), var( v ) {
254 assert( var );
255 assert( var->get_type() );
256 result = shallowCopy( var->get_type() );
257}
258
259bool VariableExpr::get_lvalue() const {
260 // It isn't always an lvalue, but it is never an rvalue.
261 return true;
262}
263
264VariableExpr * VariableExpr::functionPointer(
265 const CodeLocation & loc, const FunctionDecl * decl ) {
266 // wrap usually-determined result type in a pointer
267 VariableExpr * funcExpr = new VariableExpr{ loc, decl };
268 funcExpr->result = new PointerType{ funcExpr->result };
269 return funcExpr;
270}
271
272// --- ConstantExpr
273
274long long int ConstantExpr::intValue() const {
275 if ( const BasicType * bty = result.as< BasicType >() ) {
276 if ( bty->isInteger() ) {
277 assert(ival);
278 return ival.value();
279 }
280 } else if ( result.as< ZeroType >() ) {
281 return 0;
282 } else if ( result.as< OneType >() ) {
283 return 1;
284 }
285 SemanticError( this, "Constant expression of non-integral type " );
286}
287
288ConstantExpr * ConstantExpr::from_bool( const CodeLocation & loc, bool b ) {
289 return new ConstantExpr{
290 loc, new BasicType{ BasicType::Bool }, b ? "1" : "0", (unsigned long long)b };
291}
292
293ConstantExpr * ConstantExpr::from_int( const CodeLocation & loc, int i ) {
294 return new ConstantExpr{
295 loc, new BasicType{ BasicType::SignedInt }, std::to_string( i ), (unsigned long long)i };
296}
297
298ConstantExpr * ConstantExpr::from_ulong( const CodeLocation & loc, unsigned long i ) {
299 return new ConstantExpr{
300 loc, new BasicType{ BasicType::LongUnsignedInt }, std::to_string( i ),
301 (unsigned long long)i };
302}
303
304ConstantExpr * ConstantExpr::null( const CodeLocation & loc, const Type * ptrType ) {
305 return new ConstantExpr{
306 loc, ptrType ? ptrType : new PointerType{ new VoidType{} }, "0", (unsigned long long)0 };
307}
308
309// --- SizeofExpr
310
311SizeofExpr::SizeofExpr( const CodeLocation & loc, const Expr * e )
312: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( e ), type( nullptr ) {}
313
314SizeofExpr::SizeofExpr( const CodeLocation & loc, const Type * t )
315: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( nullptr ), type( t ) {}
316
317// --- AlignofExpr
318
319AlignofExpr::AlignofExpr( const CodeLocation & loc, const Expr * e )
320: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( e ), type( nullptr ) {}
321
322AlignofExpr::AlignofExpr( const CodeLocation & loc, const Type * t )
323: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( nullptr ), type( t ) {}
324
325// --- OffsetofExpr
326
327OffsetofExpr::OffsetofExpr( const CodeLocation & loc, const Type * ty, const DeclWithType * mem )
328: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), type( ty ), member( mem ) {
329 assert( type );
330 assert( member );
331}
332
333// --- OffsetPackExpr
334
335OffsetPackExpr::OffsetPackExpr( const CodeLocation & loc, const StructInstType * ty )
336: Expr( loc, new ArrayType{
337 new BasicType{ BasicType::LongUnsignedInt }, nullptr, FixedLen, DynamicDim }
338), type( ty ) {
339 assert( type );
340}
341
342// --- LogicalExpr
343
344LogicalExpr::LogicalExpr(
345 const CodeLocation & loc, const Expr * a1, const Expr * a2, LogicalFlag ia )
346: Expr( loc, new BasicType{ BasicType::SignedInt } ), arg1( a1 ), arg2( a2 ), isAnd( ia ) {}
347
348// --- CommaExpr
349bool CommaExpr::get_lvalue() const {
350 // This is wrong by C, but the current implementation uses it.
351 // (ex: Specialize, Lvalue and Box)
352 return arg2->get_lvalue();
353}
354
355// --- ConstructorExpr
356
357ConstructorExpr::ConstructorExpr( const CodeLocation & loc, const Expr * call )
358: Expr( loc ), callExpr( call ) {
359 // allow resolver to type a constructor used as an expression if it has the same type as its
360 // first argument
361 assert( callExpr );
362 const Expr * arg = InitTweak::getCallArg( callExpr, 0 );
363 assert( arg );
364 result = arg->result;
365}
366
367// --- CompoundLiteralExpr
368
369CompoundLiteralExpr::CompoundLiteralExpr( const CodeLocation & loc, const Type * t, const Init * i )
370: Expr( loc ), init( i ) {
371 assert( t && i );
372 result = t;
373}
374
375bool CompoundLiteralExpr::get_lvalue() const {
376 return true;
377}
378
379// --- TupleExpr
380
381TupleExpr::TupleExpr( const CodeLocation & loc, std::vector<ptr<Expr>> && xs )
382: Expr( loc, Tuples::makeTupleType( xs ) ), exprs( xs ) {}
383
384// --- TupleIndexExpr
385
386TupleIndexExpr::TupleIndexExpr( const CodeLocation & loc, const Expr * t, unsigned i )
387: Expr( loc ), tuple( t ), index( i ) {
388 const TupleType * type = strict_dynamic_cast< const TupleType * >( tuple->result.get() );
389 assertf( type->size() > index, "TupleIndexExpr index out of bounds: tuple size %d, requested "
390 "index %d in expr %s", type->size(), index, toString( tuple ).c_str() );
391 // like MemberExpr, TupleIndexExpr is always an lvalue
392 result = type->types[ index ];
393}
394
395bool TupleIndexExpr::get_lvalue() const {
396 return tuple->get_lvalue();
397}
398
399// --- TupleAssignExpr
400
401TupleAssignExpr::TupleAssignExpr(
402 const CodeLocation & loc, std::vector<ptr<Expr>> && assigns,
403 std::vector<ptr<ObjectDecl>> && tempDecls )
404: Expr( loc, Tuples::makeTupleType( assigns ) ), stmtExpr() {
405 // convert internally into a StmtExpr which contains the declarations and produces the tuple of
406 // the assignments
407 std::list<ptr<Stmt>> stmts;
408 for ( const ObjectDecl * obj : tempDecls ) {
409 stmts.emplace_back( new DeclStmt{ loc, obj } );
410 }
411 TupleExpr * tupleExpr = new TupleExpr{ loc, std::move(assigns) };
412 assert( tupleExpr->result );
413 stmts.emplace_back( new ExprStmt{ loc, tupleExpr } );
414 stmtExpr = new StmtExpr{ loc, new CompoundStmt{ loc, std::move(stmts) } };
415}
416
417TupleAssignExpr::TupleAssignExpr(
418 const CodeLocation & loc, const Type * result, const StmtExpr * s )
419: Expr( loc, result ), stmtExpr() {
420 stmtExpr = s;
421}
422
423// --- StmtExpr
424
425StmtExpr::StmtExpr( const CodeLocation & loc, const CompoundStmt * ss )
426: Expr( loc ), stmts( ss ), returnDecls(), dtors() { computeResult(); }
427
428void StmtExpr::computeResult() {
429 assert( stmts );
430 const std::list<ptr<Stmt>> & body = stmts->kids;
431 if ( ! returnDecls.empty() ) {
432 // prioritize return decl for result type, since if a return decl exists, then the StmtExpr
433 // is currently in an intermediate state where the body will always give a void result type
434 result = returnDecls.front()->get_type();
435 } else if ( ! body.empty() ) {
436 if ( const ExprStmt * exprStmt = body.back().as< ExprStmt >() ) {
437 result = exprStmt->expr->result;
438 }
439 }
440 // ensure a result type exists
441 if ( ! result ) { result = new VoidType{}; }
442}
443
444// --- UniqueExpr
445
446unsigned long long UniqueExpr::nextId = 0;
447
448UniqueExpr::UniqueExpr( const CodeLocation & loc, const Expr * e, unsigned long long i )
449: Expr( loc, e->result ), expr( e ), id( i ) {
450 assert( expr );
451 if ( id == -1ull ) {
452 assert( nextId != -1ull );
453 id = nextId++;
454 }
455}
456
457}
458
459// Local Variables: //
460// tab-width: 4 //
461// mode: c++ //
462// compile-command: "make install" //
463// End: //
Note: See TracBrowser for help on using the repository browser.