1 | // |
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo |
---|
3 | // |
---|
4 | // The contents of this file are covered under the licence agreement in the |
---|
5 | // file "LICENCE" distributed with Cforall. |
---|
6 | // |
---|
7 | // Expr.cpp -- |
---|
8 | // |
---|
9 | // Author : Aaron B. Moss |
---|
10 | // Created On : Wed May 15 17:00:00 2019 |
---|
11 | // Last Modified By : Peter A. Buhr |
---|
12 | // Created On : Wed May 18 13:56:00 2022 |
---|
13 | // Update Count : 12 |
---|
14 | // |
---|
15 | |
---|
16 | #include "Expr.hpp" |
---|
17 | |
---|
18 | #include <cassert> // for strict_dynamic_cast |
---|
19 | #include <string> // for to_string |
---|
20 | #include <vector> |
---|
21 | |
---|
22 | #include "Copy.hpp" // for shallowCopy |
---|
23 | #include "GenericSubstitution.hpp" |
---|
24 | #include "Inspect.hpp" |
---|
25 | #include "LinkageSpec.hpp" |
---|
26 | #include "Stmt.hpp" |
---|
27 | #include "Type.hpp" |
---|
28 | #include "TypeSubstitution.hpp" |
---|
29 | #include "Common/Utility.hpp" |
---|
30 | #include "Common/SemanticError.hpp" |
---|
31 | #include "GenPoly/Lvalue.hpp" // for referencesPermissable |
---|
32 | #include "ResolvExpr/Unify.hpp" // for extractResultType |
---|
33 | #include "Tuples/Tuples.hpp" // for makeTupleType |
---|
34 | |
---|
35 | namespace ast { |
---|
36 | |
---|
37 | namespace { |
---|
38 | std::set<std::string> const lvalueFunctionNames = {"*?", "?[?]"}; |
---|
39 | } |
---|
40 | |
---|
41 | // --- Expr |
---|
42 | bool Expr::get_lvalue() const { |
---|
43 | return false; |
---|
44 | } |
---|
45 | |
---|
46 | // --- ApplicationExpr |
---|
47 | |
---|
48 | ApplicationExpr::ApplicationExpr( const CodeLocation & loc, const Expr * f, |
---|
49 | std::vector<ptr<Expr>> && as ) |
---|
50 | : Expr( loc ), func( f ), args( std::move(as) ) { |
---|
51 | // ensure that `ApplicationExpr` result type is `FuncExpr` |
---|
52 | const PointerType * pt = strict_dynamic_cast< const PointerType * >( f->result.get() ); |
---|
53 | const FunctionType * fn = strict_dynamic_cast< const FunctionType * >( pt->base.get() ); |
---|
54 | |
---|
55 | result = ResolvExpr::extractResultType( fn ); |
---|
56 | assert( result ); |
---|
57 | } |
---|
58 | |
---|
59 | bool ApplicationExpr::get_lvalue() const { |
---|
60 | if ( const DeclWithType * func = getFunction( this ) ) { |
---|
61 | return func->linkage == Linkage::Intrinsic && lvalueFunctionNames.count( func->name ); |
---|
62 | } |
---|
63 | return false; |
---|
64 | } |
---|
65 | |
---|
66 | // --- UntypedExpr |
---|
67 | |
---|
68 | bool UntypedExpr::get_lvalue() const { |
---|
69 | std::string fname = getFunctionName( this ); |
---|
70 | return lvalueFunctionNames.count( fname ); |
---|
71 | } |
---|
72 | |
---|
73 | UntypedExpr * UntypedExpr::createDeref( const CodeLocation & loc, const Expr * arg ) { |
---|
74 | assert( arg ); |
---|
75 | |
---|
76 | UntypedExpr * ret = createCall( loc, "*?", { arg } ); |
---|
77 | if ( const Type * ty = arg->result ) { |
---|
78 | const Type * base = getPointerBase( ty ); |
---|
79 | assertf( base, "expected pointer type in dereference (type was %s)", toString( ty ).c_str() ); |
---|
80 | |
---|
81 | if ( GenPoly::referencesPermissable() ) { |
---|
82 | // if references are still allowed in the AST, dereference returns a reference |
---|
83 | ret->result = new ReferenceType{ base }; |
---|
84 | } else { |
---|
85 | // references have been removed, in which case dereference returns an lvalue of the |
---|
86 | // base type |
---|
87 | ret->result = base; |
---|
88 | } |
---|
89 | } |
---|
90 | return ret; |
---|
91 | } |
---|
92 | |
---|
93 | UntypedExpr * UntypedExpr::createAssign( const CodeLocation & loc, const Expr * lhs, const Expr * rhs ) { |
---|
94 | assert( lhs && rhs ); |
---|
95 | |
---|
96 | UntypedExpr * ret = createCall( loc, "?=?", { lhs, rhs } ); |
---|
97 | if ( lhs->result && rhs->result ) { |
---|
98 | // if both expressions are typed, assumes that this assignment is a C bitwise assignment, |
---|
99 | // so the result is the type of the RHS |
---|
100 | ret->result = rhs->result; |
---|
101 | } |
---|
102 | return ret; |
---|
103 | } |
---|
104 | |
---|
105 | UntypedExpr * UntypedExpr::createCall( const CodeLocation & loc, |
---|
106 | const std::string & name, std::vector<ptr<Expr>> && args ) { |
---|
107 | return new UntypedExpr( loc, |
---|
108 | new NameExpr( loc, name ), std::move( args ) ); |
---|
109 | } |
---|
110 | |
---|
111 | // --- VariableExpr |
---|
112 | |
---|
113 | VariableExpr::VariableExpr( const CodeLocation & loc ) |
---|
114 | : Expr( loc ), var( nullptr ) {} |
---|
115 | |
---|
116 | VariableExpr::VariableExpr( const CodeLocation & loc, const DeclWithType * v ) |
---|
117 | : Expr( loc ), var( v ) { |
---|
118 | assert( var ); |
---|
119 | assert( var->get_type() ); |
---|
120 | result = shallowCopy( var->get_type() ); |
---|
121 | } |
---|
122 | |
---|
123 | bool VariableExpr::get_lvalue() const { |
---|
124 | // It isn't always an lvalue, but it is never an rvalue. |
---|
125 | return true; |
---|
126 | } |
---|
127 | |
---|
128 | VariableExpr * VariableExpr::functionPointer( |
---|
129 | const CodeLocation & loc, const FunctionDecl * decl ) { |
---|
130 | // wrap usually-determined result type in a pointer |
---|
131 | VariableExpr * funcExpr = new VariableExpr{ loc, decl }; |
---|
132 | funcExpr->result = new PointerType{ funcExpr->result }; |
---|
133 | return funcExpr; |
---|
134 | } |
---|
135 | |
---|
136 | // --- AddressExpr |
---|
137 | |
---|
138 | // Address expressions are typed based on the following inference rules: |
---|
139 | // E : lvalue T &..& (n references) |
---|
140 | // &E : T *&..& (n references) |
---|
141 | // |
---|
142 | // E : T &..& (m references) |
---|
143 | // &E : T *&..& (m-1 references) |
---|
144 | |
---|
145 | namespace { |
---|
146 | /// The type of the address of a type. |
---|
147 | /// Caller is responsible for managing returned memory |
---|
148 | Type * addrType( const ptr<Type> & type ) { |
---|
149 | if ( auto refType = type.as< ReferenceType >() ) { |
---|
150 | return new ReferenceType( addrType( refType->base ), refType->qualifiers ); |
---|
151 | } else { |
---|
152 | return new PointerType( type ); |
---|
153 | } |
---|
154 | } |
---|
155 | |
---|
156 | /// The type of the address of an expression. |
---|
157 | /// Caller is responsible for managing returned memory |
---|
158 | Type * addrExprType( const CodeLocation & loc, const Expr * arg ) { |
---|
159 | assert( arg ); |
---|
160 | // If the expression's type is unknown, the address type is unknown. |
---|
161 | if ( nullptr == arg->result ) { |
---|
162 | return nullptr; |
---|
163 | // An lvalue is transformed directly. |
---|
164 | } else if ( arg->get_lvalue() ) { |
---|
165 | return addrType( arg->result ); |
---|
166 | // Strip a layer of reference to "create" an lvalue expression. |
---|
167 | } else if ( auto refType = arg->result.as< ReferenceType >() ) { |
---|
168 | return addrType( refType->base ); |
---|
169 | } else { |
---|
170 | SemanticError( loc, "Attempt to take address of non-lvalue expression %s", |
---|
171 | toString( arg->result.get() ).c_str() ); |
---|
172 | } |
---|
173 | } |
---|
174 | } |
---|
175 | |
---|
176 | AddressExpr::AddressExpr( const CodeLocation & loc, const Expr * a ) : |
---|
177 | Expr( loc, addrExprType( loc, a ) ), arg( a ) |
---|
178 | {} |
---|
179 | |
---|
180 | // --- LabelAddressExpr |
---|
181 | |
---|
182 | // label address always has type `void*` |
---|
183 | LabelAddressExpr::LabelAddressExpr( const CodeLocation & loc, Label && a ) |
---|
184 | : Expr( loc, new PointerType{ new VoidType{} } ), arg( a ) {} |
---|
185 | |
---|
186 | // --- CastExpr |
---|
187 | |
---|
188 | CastExpr::CastExpr( const CodeLocation & loc, const Expr * a, GeneratedFlag g, CastKind kind ) |
---|
189 | : Expr( loc, new VoidType{} ), arg( a ), isGenerated( g ), kind( kind ) {} |
---|
190 | |
---|
191 | bool CastExpr::get_lvalue() const { |
---|
192 | // This is actually wrong by C, but it works with our current set-up. |
---|
193 | return arg->get_lvalue(); |
---|
194 | } |
---|
195 | |
---|
196 | // --- KeywordCastExpr |
---|
197 | |
---|
198 | const char * KeywordCastExpr::targetString() const { |
---|
199 | return AggregateDecl::aggrString( target ); |
---|
200 | } |
---|
201 | |
---|
202 | // --- UntypedMemberExpr |
---|
203 | |
---|
204 | bool UntypedMemberExpr::get_lvalue() const { |
---|
205 | return aggregate->get_lvalue(); |
---|
206 | } |
---|
207 | |
---|
208 | // --- MemberExpr |
---|
209 | |
---|
210 | MemberExpr::MemberExpr( const CodeLocation & loc, const DeclWithType * mem, const Expr * agg ) |
---|
211 | : Expr( loc ), member( mem ), aggregate( agg ) { |
---|
212 | assert( member ); |
---|
213 | assert( aggregate ); |
---|
214 | assert( aggregate->result ); |
---|
215 | |
---|
216 | result = mem->get_type(); |
---|
217 | |
---|
218 | // substitute aggregate generic parameters into member type |
---|
219 | genericSubstitution( aggregate->result ).apply( result ); |
---|
220 | // ensure appropriate restrictions from aggregate type |
---|
221 | add_qualifiers( result, aggregate->result->qualifiers ); |
---|
222 | } |
---|
223 | |
---|
224 | bool MemberExpr::get_lvalue() const { |
---|
225 | // This is actually wrong by C, but it works with our current set-up. |
---|
226 | return true; |
---|
227 | } |
---|
228 | |
---|
229 | // --- ConstantExpr |
---|
230 | |
---|
231 | long long int ConstantExpr::intValue() const { |
---|
232 | if ( const BasicType * bty = result.as< BasicType >() ) { |
---|
233 | if ( bty->isInteger() ) { |
---|
234 | assert(ival); |
---|
235 | return ival.value(); |
---|
236 | } |
---|
237 | } else if ( result.as< ZeroType >() ) { |
---|
238 | return 0; |
---|
239 | } else if ( result.as< OneType >() ) { |
---|
240 | return 1; |
---|
241 | } |
---|
242 | SemanticError( this->location, "Constant expression of non-integral type %s", |
---|
243 | toString( this ).c_str() ); |
---|
244 | } |
---|
245 | |
---|
246 | ConstantExpr * ConstantExpr::from_bool( const CodeLocation & loc, bool b ) { |
---|
247 | return new ConstantExpr{ |
---|
248 | loc, new BasicType{ BasicKind::Bool }, b ? "1" : "0", (unsigned long long)b }; |
---|
249 | } |
---|
250 | |
---|
251 | ConstantExpr * ConstantExpr::from_int( const CodeLocation & loc, int i ) { |
---|
252 | return new ConstantExpr{ |
---|
253 | loc, new BasicType{ BasicKind::SignedInt }, std::to_string( i ), (unsigned long long)i }; |
---|
254 | } |
---|
255 | |
---|
256 | ConstantExpr * ConstantExpr::from_ulong( const CodeLocation & loc, unsigned long i ) { |
---|
257 | return new ConstantExpr{ |
---|
258 | loc, new BasicType{ BasicKind::LongUnsignedInt }, std::to_string( i ), |
---|
259 | (unsigned long long)i }; |
---|
260 | } |
---|
261 | |
---|
262 | ConstantExpr * ConstantExpr::from_string( const CodeLocation & loc, const std::string & str ) { |
---|
263 | const Type * charType = new BasicType( BasicKind::Char, ast::CV::Const ); |
---|
264 | // Adjust the length of the string for the terminator. |
---|
265 | const Expr * strSize = from_ulong( loc, str.size() + 1 ); |
---|
266 | const Type * strType = new ArrayType( charType, strSize, FixedLen, DynamicDim ); |
---|
267 | const std::string strValue = "\"" + str + "\""; |
---|
268 | return new ConstantExpr( loc, strType, strValue, std::nullopt ); |
---|
269 | } |
---|
270 | |
---|
271 | ConstantExpr * ConstantExpr::null( const CodeLocation & loc, const Type * ptrType ) { |
---|
272 | return new ConstantExpr{ |
---|
273 | loc, ptrType ? ptrType : new PointerType{ new VoidType{} }, "0", (unsigned long long)0 }; |
---|
274 | } |
---|
275 | |
---|
276 | // --- SizeofExpr |
---|
277 | |
---|
278 | SizeofExpr::SizeofExpr( const CodeLocation & loc, const Type * t ) |
---|
279 | : Expr( loc, new BasicType{ BasicKind::LongUnsignedInt } ), type( t ) {} |
---|
280 | |
---|
281 | // --- CountExpr |
---|
282 | |
---|
283 | CountExpr::CountExpr( const CodeLocation & loc, const Expr * e ) |
---|
284 | : Expr( loc, new BasicType( BasicKind::LongUnsignedInt) ), expr(e), type( nullptr ) {} |
---|
285 | |
---|
286 | CountExpr::CountExpr( const CodeLocation & loc, const Type * t ) |
---|
287 | : Expr( loc, new BasicType( BasicKind::LongUnsignedInt) ), expr(nullptr), type( t ) {} |
---|
288 | |
---|
289 | // --- AlignofExpr |
---|
290 | |
---|
291 | AlignofExpr::AlignofExpr( const CodeLocation & loc, const Type * t ) |
---|
292 | : Expr( loc, new BasicType{ BasicKind::LongUnsignedInt } ), type( t ) {} |
---|
293 | |
---|
294 | // --- OffsetofExpr |
---|
295 | |
---|
296 | OffsetofExpr::OffsetofExpr( const CodeLocation & loc, const Type * ty, const DeclWithType * mem ) |
---|
297 | : Expr( loc, new BasicType{ BasicKind::LongUnsignedInt } ), type( ty ), member( mem ) { |
---|
298 | assert( type ); |
---|
299 | assert( member ); |
---|
300 | } |
---|
301 | |
---|
302 | // --- OffsetPackExpr |
---|
303 | |
---|
304 | OffsetPackExpr::OffsetPackExpr( const CodeLocation & loc, const StructInstType * ty ) |
---|
305 | : Expr( loc, new ArrayType{ |
---|
306 | new BasicType{ BasicKind::LongUnsignedInt }, nullptr, FixedLen, DynamicDim } |
---|
307 | ), type( ty ) { |
---|
308 | assert( type ); |
---|
309 | } |
---|
310 | |
---|
311 | // --- LogicalExpr |
---|
312 | |
---|
313 | LogicalExpr::LogicalExpr( |
---|
314 | const CodeLocation & loc, const Expr * a1, const Expr * a2, LogicalFlag ia ) |
---|
315 | : Expr( loc, new BasicType{ BasicKind::SignedInt } ), arg1( a1 ), arg2( a2 ), isAnd( ia ) {} |
---|
316 | |
---|
317 | // --- CommaExpr |
---|
318 | bool CommaExpr::get_lvalue() const { |
---|
319 | // This is wrong by C, but the current implementation uses it. |
---|
320 | // (ex: Specialize, Lvalue and Box) |
---|
321 | return arg2->get_lvalue(); |
---|
322 | } |
---|
323 | |
---|
324 | // --- ConstructorExpr |
---|
325 | |
---|
326 | ConstructorExpr::ConstructorExpr( const CodeLocation & loc, const Expr * call ) |
---|
327 | : Expr( loc ), callExpr( call ) { |
---|
328 | // allow resolver to type a constructor used as an expression if it has the same type as its |
---|
329 | // first argument |
---|
330 | assert( callExpr ); |
---|
331 | const Expr * arg = getCallArg( callExpr, 0 ); |
---|
332 | assert( arg ); |
---|
333 | result = arg->result; |
---|
334 | } |
---|
335 | |
---|
336 | // --- CompoundLiteralExpr |
---|
337 | |
---|
338 | CompoundLiteralExpr::CompoundLiteralExpr( const CodeLocation & loc, const Type * t, const Init * i ) |
---|
339 | : Expr( loc ), init( i ) { |
---|
340 | assert( t && i ); |
---|
341 | result = t; |
---|
342 | } |
---|
343 | |
---|
344 | bool CompoundLiteralExpr::get_lvalue() const { |
---|
345 | return true; |
---|
346 | } |
---|
347 | |
---|
348 | // --- TupleExpr |
---|
349 | |
---|
350 | TupleExpr::TupleExpr( const CodeLocation & loc, std::vector<ptr<Expr>> && xs ) |
---|
351 | : Expr( loc, Tuples::makeTupleType( xs ) ), exprs( xs ) {} |
---|
352 | |
---|
353 | // --- TupleIndexExpr |
---|
354 | |
---|
355 | TupleIndexExpr::TupleIndexExpr( const CodeLocation & loc, const Expr * t, unsigned i ) |
---|
356 | : Expr( loc ), tuple( t ), index( i ) { |
---|
357 | const TupleType * type = strict_dynamic_cast< const TupleType * >( tuple->result.get() ); |
---|
358 | assertf( type->size() > index, "TupleIndexExpr index out of bounds: tuple size %d, requested " |
---|
359 | "index %d in expr %s", type->size(), index, toString( tuple ).c_str() ); |
---|
360 | // like MemberExpr, TupleIndexExpr is always an lvalue |
---|
361 | result = type->types[ index ]; |
---|
362 | } |
---|
363 | |
---|
364 | bool TupleIndexExpr::get_lvalue() const { |
---|
365 | return tuple->get_lvalue(); |
---|
366 | } |
---|
367 | |
---|
368 | // --- TupleAssignExpr |
---|
369 | |
---|
370 | TupleAssignExpr::TupleAssignExpr( |
---|
371 | const CodeLocation & loc, std::vector<ptr<Expr>> && assigns, |
---|
372 | std::vector<ptr<ObjectDecl>> && tempDecls ) |
---|
373 | : Expr( loc, Tuples::makeTupleType( assigns ) ), stmtExpr() { |
---|
374 | // convert internally into a StmtExpr which contains the declarations and produces the tuple of |
---|
375 | // the assignments |
---|
376 | std::list<ptr<Stmt>> stmts; |
---|
377 | for ( const ObjectDecl * obj : tempDecls ) { |
---|
378 | stmts.emplace_back( new DeclStmt{ loc, obj } ); |
---|
379 | } |
---|
380 | TupleExpr * tupleExpr = new TupleExpr{ loc, std::move(assigns) }; |
---|
381 | assert( tupleExpr->result ); |
---|
382 | stmts.emplace_back( new ExprStmt{ loc, tupleExpr } ); |
---|
383 | stmtExpr = new StmtExpr{ loc, new CompoundStmt{ loc, std::move(stmts) } }; |
---|
384 | } |
---|
385 | |
---|
386 | // --- StmtExpr |
---|
387 | |
---|
388 | StmtExpr::StmtExpr( const CodeLocation & loc, const CompoundStmt * ss ) |
---|
389 | : Expr( loc ), stmts( ss ), returnDecls(), dtors() { computeResult(); } |
---|
390 | |
---|
391 | void StmtExpr::computeResult() { |
---|
392 | assert( stmts ); |
---|
393 | const std::list<ptr<Stmt>> & body = stmts->kids; |
---|
394 | if ( ! returnDecls.empty() ) { |
---|
395 | // prioritize return decl for result type, since if a return decl exists, then the StmtExpr |
---|
396 | // is currently in an intermediate state where the body will always give a void result type |
---|
397 | result = returnDecls.front()->get_type(); |
---|
398 | } else if ( ! body.empty() ) { |
---|
399 | if ( const ExprStmt * exprStmt = body.back().as< ExprStmt >() ) { |
---|
400 | result = exprStmt->expr->result; |
---|
401 | } |
---|
402 | } |
---|
403 | // ensure a result type exists |
---|
404 | if ( ! result ) { result = new VoidType{}; } |
---|
405 | } |
---|
406 | |
---|
407 | // --- UniqueExpr |
---|
408 | |
---|
409 | unsigned long long UniqueExpr::nextId = 0; |
---|
410 | |
---|
411 | UniqueExpr::UniqueExpr( const CodeLocation & loc, const Expr * e, unsigned long long i ) |
---|
412 | : Expr( loc, e->result ), expr( e ), id( i ) { |
---|
413 | assert( expr ); |
---|
414 | if ( id == -1ull ) { |
---|
415 | assert( nextId != -1ull ); |
---|
416 | id = nextId++; |
---|
417 | } |
---|
418 | } |
---|
419 | |
---|
420 | } |
---|
421 | |
---|
422 | // Local Variables: // |
---|
423 | // tab-width: 4 // |
---|
424 | // mode: c++ // |
---|
425 | // compile-command: "make install" // |
---|
426 | // End: // |
---|