source: src/AST/Expr.cpp @ ad8b6df

Last change on this file since ad8b6df was eae8b37, checked in by JiadaL <j82liang@…>, 7 weeks ago

Move enum.hfa/enum.cfa to prelude

  • Property mode set to 100644
File size: 13.1 KB
RevLine 
[54e41b3]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Expr.cpp --
8//
9// Author           : Aaron B. Moss
10// Created On       : Wed May 15 17:00:00 2019
[b1f2007]11// Last Modified By : Peter A. Buhr
[e6cf857f]12// Created On       : Wed May 18 13:56:00 2022
[b1f2007]13// Update Count     : 12
[54e41b3]14//
15
16#include "Expr.hpp"
17
18#include <cassert>                 // for strict_dynamic_cast
19#include <string>                  // for to_string
20#include <vector>
21
[2890212]22#include "Copy.hpp"                // for shallowCopy
[d8938622]23#include "GenericSubstitution.hpp"
[e01eb4a]24#include "Inspect.hpp"
[cf32116]25#include "LinkageSpec.hpp"
[9b4f329]26#include "Stmt.hpp"
[54e41b3]27#include "Type.hpp"
[d8938622]28#include "TypeSubstitution.hpp"
[c92bdcc]29#include "Common/Utility.hpp"
30#include "Common/SemanticError.hpp"
31#include "GenPoly/Lvalue.hpp"      // for referencesPermissable
32#include "ResolvExpr/Unify.hpp"    // for extractResultType
33#include "Tuples/Tuples.hpp"       // for makeTupleType
[54e41b3]34
35namespace ast {
36
[cf32116]37namespace {
38        std::set<std::string> const lvalueFunctionNames = {"*?", "?[?]"};
39}
40
41// --- Expr
42bool Expr::get_lvalue() const {
43        return false;
44}
45
[54e41b3]46// --- ApplicationExpr
47
[87701b6]48ApplicationExpr::ApplicationExpr( const CodeLocation & loc, const Expr * f,
49        std::vector<ptr<Expr>> && as )
50: Expr( loc ), func( f ), args( std::move(as) ) {
[54e41b3]51        // ensure that `ApplicationExpr` result type is `FuncExpr`
52        const PointerType * pt = strict_dynamic_cast< const PointerType * >( f->result.get() );
53        const FunctionType * fn = strict_dynamic_cast< const FunctionType * >( pt->base.get() );
54
55        result = ResolvExpr::extractResultType( fn );
56        assert( result );
57}
58
[cf32116]59bool ApplicationExpr::get_lvalue() const {
[e01eb4a]60        if ( const DeclWithType * func = getFunction( this ) ) {
[cf32116]61                return func->linkage == Linkage::Intrinsic && lvalueFunctionNames.count( func->name );
62        }
63        return false;
64}
65
[54e41b3]66// --- UntypedExpr
67
[e6cf857f]68bool UntypedExpr::get_lvalue() const {
[e01eb4a]69        std::string fname = getFunctionName( this );
[e6cf857f]70        return lvalueFunctionNames.count( fname );
71}
72
[490fb92e]73UntypedExpr * UntypedExpr::createDeref( const CodeLocation & loc, const Expr * arg ) {
[54e41b3]74        assert( arg );
75
[e6cf857f]76        UntypedExpr * ret = createCall( loc, "*?", { arg } );
[54e41b3]77        if ( const Type * ty = arg->result ) {
[e01eb4a]78                const Type * base = getPointerBase( ty );
[54e41b3]79                assertf( base, "expected pointer type in dereference (type was %s)", toString( ty ).c_str() );
80
81                if ( GenPoly::referencesPermissable() ) {
82                        // if references are still allowed in the AST, dereference returns a reference
83                        ret->result = new ReferenceType{ base };
84                } else {
[87701b6]85                        // references have been removed, in which case dereference returns an lvalue of the
[54e41b3]86                        // base type
[d76c588]87                        ret->result = base;
[54e41b3]88                }
89        }
90        return ret;
91}
92
[490fb92e]93UntypedExpr * UntypedExpr::createAssign( const CodeLocation & loc, const Expr * lhs, const Expr * rhs ) {
[54e41b3]94        assert( lhs && rhs );
95
[e6cf857f]96        UntypedExpr * ret = createCall( loc, "?=?", { lhs, rhs } );
[54e41b3]97        if ( lhs->result && rhs->result ) {
98                // if both expressions are typed, assumes that this assignment is a C bitwise assignment,
99                // so the result is the type of the RHS
100                ret->result = rhs->result;
101        }
102        return ret;
103}
104
[e6cf857f]105UntypedExpr * UntypedExpr::createCall( const CodeLocation & loc,
106                const std::string & name, std::vector<ptr<Expr>> && args ) {
107        return new UntypedExpr( loc,
108                        new NameExpr( loc, name ), std::move( args ) );
109}
110
[d5631b3]111// --- VariableExpr
112
113VariableExpr::VariableExpr( const CodeLocation & loc )
114: Expr( loc ), var( nullptr ) {}
115
116VariableExpr::VariableExpr( const CodeLocation & loc, const DeclWithType * v )
117: Expr( loc ), var( v ) {
118        assert( var );
119        assert( var->get_type() );
120        result = shallowCopy( var->get_type() );
121}
122
123bool VariableExpr::get_lvalue() const {
124        // It isn't always an lvalue, but it is never an rvalue.
[eae8b37]125        if(dynamic_cast<const ast::EnumInstType *>(var->get_type())) return !var->isMember;
[d5631b3]126        return true;
127}
128
129VariableExpr * VariableExpr::functionPointer(
130                const CodeLocation & loc, const FunctionDecl * decl ) {
131        // wrap usually-determined result type in a pointer
132        VariableExpr * funcExpr = new VariableExpr{ loc, decl };
133        funcExpr->result = new PointerType{ funcExpr->result };
134        return funcExpr;
135}
136
[54e41b3]137// --- AddressExpr
138
139// Address expressions are typed based on the following inference rules:
140//    E : lvalue T  &..& (n references)
141//   &E :        T *&..& (n references)
142//
143//    E : T  &..&        (m references)
144//   &E : T *&..&        (m-1 references)
145
146namespace {
147        /// The type of the address of a type.
148        /// Caller is responsible for managing returned memory
[f27331c]149        Type * addrType( const ptr<Type> & type ) {
150                if ( auto refType = type.as< ReferenceType >() ) {
151                        return new ReferenceType( addrType( refType->base ), refType->qualifiers );
[54e41b3]152                } else {
[f27331c]153                        return new PointerType( type );
[54e41b3]154                }
155        }
156
[f27331c]157        /// The type of the address of an expression.
158        /// Caller is responsible for managing returned memory
159        Type * addrExprType( const CodeLocation & loc, const Expr * arg ) {
160                assert( arg );
161                // If the expression's type is unknown, the address type is unknown.
162                if ( nullptr == arg->result ) {
163                        return nullptr;
164                // An lvalue is transformed directly.
165                } else if ( arg->get_lvalue() ) {
166                        return addrType( arg->result );
167                // Strip a layer of reference to "create" an lvalue expression.
168                } else if ( auto refType = arg->result.as< ReferenceType >() ) {
169                        return addrType( refType->base );
[54e41b3]170                } else {
[b1f2007]171                        SemanticError( loc, "Attempt to take address of non-lvalue expression %s",
172                                                   toString( arg->result.get() ).c_str() );
[54e41b3]173                }
174        }
175}
176
[f27331c]177AddressExpr::AddressExpr( const CodeLocation & loc, const Expr * a ) :
178        Expr( loc, addrExprType( loc, a ) ), arg( a )
179{}
180
[54e41b3]181// --- LabelAddressExpr
182
183// label address always has type `void*`
[87701b6]184LabelAddressExpr::LabelAddressExpr( const CodeLocation & loc, Label && a )
[54e41b3]185: Expr( loc, new PointerType{ new VoidType{} } ), arg( a ) {}
186
187// --- CastExpr
188
[46da46b]189CastExpr::CastExpr( const CodeLocation & loc, const Expr * a, GeneratedFlag g, CastKind kind )
190: Expr( loc, new VoidType{} ), arg( a ), isGenerated( g ), kind( kind ) {}
[54e41b3]191
[cf32116]192bool CastExpr::get_lvalue() const {
193        // This is actually wrong by C, but it works with our current set-up.
194        return arg->get_lvalue();
195}
196
[54e41b3]197// --- KeywordCastExpr
198
[312029a]199const char * KeywordCastExpr::targetString() const {
200        return AggregateDecl::aggrString( target );
[54e41b3]201}
202
[cf32116]203// --- UntypedMemberExpr
204
205bool UntypedMemberExpr::get_lvalue() const {
206        return aggregate->get_lvalue();
207}
208
[54e41b3]209// --- MemberExpr
210
211MemberExpr::MemberExpr( const CodeLocation & loc, const DeclWithType * mem, const Expr * agg )
212: Expr( loc ), member( mem ), aggregate( agg ) {
213        assert( member );
214        assert( aggregate );
215        assert( aggregate->result );
216
[3e5dd913]217        result = mem->get_type();
[ae265b55]218
[335f2d8]219        // substitute aggregate generic parameters into member type
[60aaa51d]220        genericSubstitution( aggregate->result ).apply( result );
[3f3bfe5a]221        // ensure appropriate restrictions from aggregate type
222        add_qualifiers( result, aggregate->result->qualifiers );
[54e41b3]223}
224
[cf32116]225bool MemberExpr::get_lvalue() const {
226        // This is actually wrong by C, but it works with our current set-up.
227        return true;
228}
229
[54e41b3]230// --- ConstantExpr
231
232long long int ConstantExpr::intValue() const {
233        if ( const BasicType * bty = result.as< BasicType >() ) {
234                if ( bty->isInteger() ) {
[c36298d]235                        assert(ival);
236                        return ival.value();
[54e41b3]237                }
238        } else if ( result.as< ZeroType >() ) {
239                return 0;
240        } else if ( result.as< OneType >() ) {
241                return 1;
242        }
[b1f2007]243        SemanticError( this->location, "Constant expression of non-integral type %s",
244                                   toString( this ).c_str() );
[54e41b3]245}
246
247ConstantExpr * ConstantExpr::from_bool( const CodeLocation & loc, bool b ) {
[87701b6]248        return new ConstantExpr{
[7a780ad]249                loc, new BasicType{ BasicKind::Bool }, b ? "1" : "0", (unsigned long long)b };
[54e41b3]250}
251
252ConstantExpr * ConstantExpr::from_int( const CodeLocation & loc, int i ) {
[87701b6]253        return new ConstantExpr{
[7a780ad]254                loc, new BasicType{ BasicKind::SignedInt }, std::to_string( i ), (unsigned long long)i };
[54e41b3]255}
256
257ConstantExpr * ConstantExpr::from_ulong( const CodeLocation & loc, unsigned long i ) {
[87701b6]258        return new ConstantExpr{
[7a780ad]259                loc, new BasicType{ BasicKind::LongUnsignedInt }, std::to_string( i ),
[54e41b3]260                (unsigned long long)i };
261}
262
[b91bfde]263ConstantExpr * ConstantExpr::from_string( const CodeLocation & loc, const std::string & str ) {
[c2cf2d0]264        const Type * charType = new BasicType( BasicKind::Char, ast::CV::Const );
[b91bfde]265        // Adjust the length of the string for the terminator.
266        const Expr * strSize = from_ulong( loc, str.size() + 1 );
[6a896b0]267        const Type * strType = new ArrayType( charType, strSize, FixedLen, DynamicDim );
[b91bfde]268        const std::string strValue = "\"" + str + "\"";
269        return new ConstantExpr( loc, strType, strValue, std::nullopt );
270}
271
[54e41b3]272ConstantExpr * ConstantExpr::null( const CodeLocation & loc, const Type * ptrType ) {
273        return new ConstantExpr{
274                loc, ptrType ? ptrType : new PointerType{ new VoidType{} }, "0", (unsigned long long)0 };
275}
276
277// --- SizeofExpr
278
279SizeofExpr::SizeofExpr( const CodeLocation & loc, const Type * t )
[b6f2e7ab]280: Expr( loc, new BasicType{ BasicKind::LongUnsignedInt } ), type( t ) {}
[54e41b3]281
[525f7ad]282// --- CountExpr
283
[0c327ce]284CountExpr::CountExpr( const CodeLocation & loc, const Expr * e )
285: Expr( loc, new BasicType( BasicKind::LongUnsignedInt) ), expr(e), type( nullptr ) {}
286
[525f7ad]287CountExpr::CountExpr( const CodeLocation & loc, const Type * t )
[0c327ce]288: Expr( loc, new BasicType( BasicKind::LongUnsignedInt) ), expr(nullptr), type( t ) {}
[525f7ad]289
[54e41b3]290// --- AlignofExpr
291
292AlignofExpr::AlignofExpr( const CodeLocation & loc, const Type * t )
[b6f2e7ab]293: Expr( loc, new BasicType{ BasicKind::LongUnsignedInt } ), type( t ) {}
[54e41b3]294
295// --- OffsetofExpr
296
297OffsetofExpr::OffsetofExpr( const CodeLocation & loc, const Type * ty, const DeclWithType * mem )
[7a780ad]298: Expr( loc, new BasicType{ BasicKind::LongUnsignedInt } ), type( ty ), member( mem ) {
[54e41b3]299        assert( type );
300        assert( member );
301}
302
303// --- OffsetPackExpr
304
305OffsetPackExpr::OffsetPackExpr( const CodeLocation & loc, const StructInstType * ty )
[87701b6]306: Expr( loc, new ArrayType{
[7a780ad]307        new BasicType{ BasicKind::LongUnsignedInt }, nullptr, FixedLen, DynamicDim }
[54e41b3]308), type( ty ) {
309        assert( type );
310}
311
312// --- LogicalExpr
313
[87701b6]314LogicalExpr::LogicalExpr(
[54e41b3]315        const CodeLocation & loc, const Expr * a1, const Expr * a2, LogicalFlag ia )
[7a780ad]316: Expr( loc, new BasicType{ BasicKind::SignedInt } ), arg1( a1 ), arg2( a2 ), isAnd( ia ) {}
[54e41b3]317
[cf32116]318// --- CommaExpr
319bool CommaExpr::get_lvalue() const {
320        // This is wrong by C, but the current implementation uses it.
321        // (ex: Specialize, Lvalue and Box)
322        return arg2->get_lvalue();
323}
324
[9b4f329]325// --- ConstructorExpr
326
[10a1225]327ConstructorExpr::ConstructorExpr( const CodeLocation & loc, const Expr * call )
[9b4f329]328: Expr( loc ), callExpr( call ) {
[10a1225]329        // allow resolver to type a constructor used as an expression if it has the same type as its
[9b4f329]330        // first argument
331        assert( callExpr );
[e01eb4a]332        const Expr * arg = getCallArg( callExpr, 0 );
[9b4f329]333        assert( arg );
334        result = arg->result;
335}
336
337// --- CompoundLiteralExpr
338
339CompoundLiteralExpr::CompoundLiteralExpr( const CodeLocation & loc, const Type * t, const Init * i )
340: Expr( loc ), init( i ) {
341        assert( t && i );
[d76c588]342        result = t;
[9b4f329]343}
344
[cf32116]345bool CompoundLiteralExpr::get_lvalue() const {
346        return true;
347}
348
[9b4f329]349// --- TupleExpr
350
351TupleExpr::TupleExpr( const CodeLocation & loc, std::vector<ptr<Expr>> && xs )
352: Expr( loc, Tuples::makeTupleType( xs ) ), exprs( xs ) {}
353
354// --- TupleIndexExpr
355
356TupleIndexExpr::TupleIndexExpr( const CodeLocation & loc, const Expr * t, unsigned i )
357: Expr( loc ), tuple( t ), index( i ) {
[10a1225]358        const TupleType * type = strict_dynamic_cast< const TupleType * >( tuple->result.get() );
[9b4f329]359        assertf( type->size() > index, "TupleIndexExpr index out of bounds: tuple size %d, requested "
360                "index %d in expr %s", type->size(), index, toString( tuple ).c_str() );
361        // like MemberExpr, TupleIndexExpr is always an lvalue
[d76c588]362        result = type->types[ index ];
[9b4f329]363}
364
[cf32116]365bool TupleIndexExpr::get_lvalue() const {
366        return tuple->get_lvalue();
367}
368
[9b4f329]369// --- TupleAssignExpr
370
[10a1225]371TupleAssignExpr::TupleAssignExpr(
372        const CodeLocation & loc, std::vector<ptr<Expr>> && assigns,
[9b4f329]373        std::vector<ptr<ObjectDecl>> && tempDecls )
374: Expr( loc, Tuples::makeTupleType( assigns ) ), stmtExpr() {
[10a1225]375        // convert internally into a StmtExpr which contains the declarations and produces the tuple of
[9b4f329]376        // the assignments
377        std::list<ptr<Stmt>> stmts;
378        for ( const ObjectDecl * obj : tempDecls ) {
379                stmts.emplace_back( new DeclStmt{ loc, obj } );
380        }
381        TupleExpr * tupleExpr = new TupleExpr{ loc, std::move(assigns) };
382        assert( tupleExpr->result );
383        stmts.emplace_back( new ExprStmt{ loc, tupleExpr } );
384        stmtExpr = new StmtExpr{ loc, new CompoundStmt{ loc, std::move(stmts) } };
385}
386
387// --- StmtExpr
388
[10a1225]389StmtExpr::StmtExpr( const CodeLocation & loc, const CompoundStmt * ss )
[9b4f329]390: Expr( loc ), stmts( ss ), returnDecls(), dtors() { computeResult(); }
391
392void StmtExpr::computeResult() {
393        assert( stmts );
394        const std::list<ptr<Stmt>> & body = stmts->kids;
395        if ( ! returnDecls.empty() ) {
[10a1225]396                // prioritize return decl for result type, since if a return decl exists, then the StmtExpr
[9b4f329]397                // is currently in an intermediate state where the body will always give a void result type
398                result = returnDecls.front()->get_type();
399        } else if ( ! body.empty() ) {
400                if ( const ExprStmt * exprStmt = body.back().as< ExprStmt >() ) {
401                        result = exprStmt->expr->result;
402                }
403        }
404        // ensure a result type exists
405        if ( ! result ) { result = new VoidType{}; }
406}
407
408// --- UniqueExpr
409
410unsigned long long UniqueExpr::nextId = 0;
411
[10a1225]412UniqueExpr::UniqueExpr( const CodeLocation & loc, const Expr * e, unsigned long long i )
[d76f32c]413: Expr( loc, e->result ), expr( e ), id( i ) {
[9b4f329]414        assert( expr );
[10a1225]415        if ( id == -1ull ) {
416                assert( nextId != -1ull );
[9b4f329]417                id = nextId++;
418        }
[54e41b3]419}
420
[10a1225]421}
422
[54e41b3]423// Local Variables: //
424// tab-width: 4 //
425// mode: c++ //
426// compile-command: "make install" //
[d76f32c]427// End: //
Note: See TracBrowser for help on using the repository browser.