source: src/AST/Expr.cpp @ a0bd9a2

Last change on this file since a0bd9a2 was 7b5694d, checked in by Andrew Beach <ajbeach@…>, 22 months ago

Header Clean-up: Moved more things from typeops to Unify.

  • Property mode set to 100644
File size: 13.4 KB
RevLine 
[54e41b3]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Expr.cpp --
8//
9// Author           : Aaron B. Moss
10// Created On       : Wed May 15 17:00:00 2019
[f27331c]11// Last Modified By : Andrew Beach
[e6cf857f]12// Created On       : Wed May 18 13:56:00 2022
13// Update Count     : 8
[54e41b3]14//
15
16#include "Expr.hpp"
17
18#include <cassert>                 // for strict_dynamic_cast
19#include <string>                  // for to_string
20#include <vector>
21
[2890212]22#include "Copy.hpp"                // for shallowCopy
[d8938622]23#include "GenericSubstitution.hpp"
[e01eb4a]24#include "Inspect.hpp"
[cf32116]25#include "LinkageSpec.hpp"
[9b4f329]26#include "Stmt.hpp"
[54e41b3]27#include "Type.hpp"
[d8938622]28#include "TypeSubstitution.hpp"
[733074e]29#include "Common/utility.h"
[54e41b3]30#include "Common/SemanticError.h"
31#include "GenPoly/Lvalue.h"        // for referencesPermissable
[7b5694d]32#include "ResolvExpr/Unify.h"      // for extractResultType
[9b4f329]33#include "Tuples/Tuples.h"         // for makeTupleType
[54e41b3]34
35namespace ast {
36
[cf32116]37namespace {
38        std::set<std::string> const lvalueFunctionNames = {"*?", "?[?]"};
39}
40
41// --- Expr
42bool Expr::get_lvalue() const {
43        return false;
44}
45
[54e41b3]46// --- ApplicationExpr
47
[87701b6]48ApplicationExpr::ApplicationExpr( const CodeLocation & loc, const Expr * f,
49        std::vector<ptr<Expr>> && as )
50: Expr( loc ), func( f ), args( std::move(as) ) {
[54e41b3]51        // ensure that `ApplicationExpr` result type is `FuncExpr`
52        const PointerType * pt = strict_dynamic_cast< const PointerType * >( f->result.get() );
53        const FunctionType * fn = strict_dynamic_cast< const FunctionType * >( pt->base.get() );
54
55        result = ResolvExpr::extractResultType( fn );
56        assert( result );
57}
58
[cf32116]59bool ApplicationExpr::get_lvalue() const {
[e01eb4a]60        if ( const DeclWithType * func = getFunction( this ) ) {
[cf32116]61                return func->linkage == Linkage::Intrinsic && lvalueFunctionNames.count( func->name );
62        }
63        return false;
64}
65
[54e41b3]66// --- UntypedExpr
67
[e6cf857f]68bool UntypedExpr::get_lvalue() const {
[e01eb4a]69        std::string fname = getFunctionName( this );
[e6cf857f]70        return lvalueFunctionNames.count( fname );
71}
72
[490fb92e]73UntypedExpr * UntypedExpr::createDeref( const CodeLocation & loc, const Expr * arg ) {
[54e41b3]74        assert( arg );
75
[e6cf857f]76        UntypedExpr * ret = createCall( loc, "*?", { arg } );
[54e41b3]77        if ( const Type * ty = arg->result ) {
[e01eb4a]78                const Type * base = getPointerBase( ty );
[54e41b3]79                assertf( base, "expected pointer type in dereference (type was %s)", toString( ty ).c_str() );
80
81                if ( GenPoly::referencesPermissable() ) {
82                        // if references are still allowed in the AST, dereference returns a reference
83                        ret->result = new ReferenceType{ base };
84                } else {
[87701b6]85                        // references have been removed, in which case dereference returns an lvalue of the
[54e41b3]86                        // base type
[d76c588]87                        ret->result = base;
[54e41b3]88                }
89        }
90        return ret;
91}
92
[490fb92e]93UntypedExpr * UntypedExpr::createAssign( const CodeLocation & loc, const Expr * lhs, const Expr * rhs ) {
[54e41b3]94        assert( lhs && rhs );
95
[e6cf857f]96        UntypedExpr * ret = createCall( loc, "?=?", { lhs, rhs } );
[54e41b3]97        if ( lhs->result && rhs->result ) {
98                // if both expressions are typed, assumes that this assignment is a C bitwise assignment,
99                // so the result is the type of the RHS
100                ret->result = rhs->result;
101        }
102        return ret;
103}
104
[e6cf857f]105UntypedExpr * UntypedExpr::createCall( const CodeLocation & loc,
106                const std::string & name, std::vector<ptr<Expr>> && args ) {
107        return new UntypedExpr( loc,
108                        new NameExpr( loc, name ), std::move( args ) );
109}
110
[d5631b3]111// --- VariableExpr
112
113VariableExpr::VariableExpr( const CodeLocation & loc )
114: Expr( loc ), var( nullptr ) {}
115
116VariableExpr::VariableExpr( const CodeLocation & loc, const DeclWithType * v )
117: Expr( loc ), var( v ) {
118        assert( var );
119        assert( var->get_type() );
120        result = shallowCopy( var->get_type() );
121}
122
123bool VariableExpr::get_lvalue() const {
124        // It isn't always an lvalue, but it is never an rvalue.
125        return true;
126}
127
128VariableExpr * VariableExpr::functionPointer(
129                const CodeLocation & loc, const FunctionDecl * decl ) {
130        // wrap usually-determined result type in a pointer
131        VariableExpr * funcExpr = new VariableExpr{ loc, decl };
132        funcExpr->result = new PointerType{ funcExpr->result };
133        return funcExpr;
134}
135
[54e41b3]136// --- AddressExpr
137
138// Address expressions are typed based on the following inference rules:
139//    E : lvalue T  &..& (n references)
140//   &E :        T *&..& (n references)
141//
142//    E : T  &..&        (m references)
143//   &E : T *&..&        (m-1 references)
144
145namespace {
146        /// The type of the address of a type.
147        /// Caller is responsible for managing returned memory
[f27331c]148        Type * addrType( const ptr<Type> & type ) {
149                if ( auto refType = type.as< ReferenceType >() ) {
150                        return new ReferenceType( addrType( refType->base ), refType->qualifiers );
[54e41b3]151                } else {
[f27331c]152                        return new PointerType( type );
[54e41b3]153                }
154        }
155
[f27331c]156        /// The type of the address of an expression.
157        /// Caller is responsible for managing returned memory
158        Type * addrExprType( const CodeLocation & loc, const Expr * arg ) {
159                assert( arg );
160                // If the expression's type is unknown, the address type is unknown.
161                if ( nullptr == arg->result ) {
162                        return nullptr;
163                // An lvalue is transformed directly.
164                } else if ( arg->get_lvalue() ) {
165                        return addrType( arg->result );
166                // Strip a layer of reference to "create" an lvalue expression.
167                } else if ( auto refType = arg->result.as< ReferenceType >() ) {
168                        return addrType( refType->base );
[54e41b3]169                } else {
[f27331c]170                        SemanticError( loc, arg->result.get(),
171                                "Attempt to take address of non-lvalue expression: " );
[54e41b3]172                }
173        }
174}
175
[f27331c]176AddressExpr::AddressExpr( const CodeLocation & loc, const Expr * a ) :
177        Expr( loc, addrExprType( loc, a ) ), arg( a )
178{}
179
[54e41b3]180// --- LabelAddressExpr
181
182// label address always has type `void*`
[87701b6]183LabelAddressExpr::LabelAddressExpr( const CodeLocation & loc, Label && a )
[54e41b3]184: Expr( loc, new PointerType{ new VoidType{} } ), arg( a ) {}
185
186// --- CastExpr
187
[87701b6]188CastExpr::CastExpr( const CodeLocation & loc, const Expr * a, GeneratedFlag g )
[54e41b3]189: Expr( loc, new VoidType{} ), arg( a ), isGenerated( g ) {}
190
[cf32116]191bool CastExpr::get_lvalue() const {
192        // This is actually wrong by C, but it works with our current set-up.
193        return arg->get_lvalue();
194}
195
[54e41b3]196// --- KeywordCastExpr
197
[312029a]198const char * KeywordCastExpr::targetString() const {
199        return AggregateDecl::aggrString( target );
[54e41b3]200}
201
[cf32116]202// --- UntypedMemberExpr
203
204bool UntypedMemberExpr::get_lvalue() const {
205        return aggregate->get_lvalue();
206}
207
[54e41b3]208// --- MemberExpr
209
210MemberExpr::MemberExpr( const CodeLocation & loc, const DeclWithType * mem, const Expr * agg )
211: Expr( loc ), member( mem ), aggregate( agg ) {
212        assert( member );
213        assert( aggregate );
214        assert( aggregate->result );
215
[3e5dd913]216        result = mem->get_type();
[ae265b55]217
[335f2d8]218        // substitute aggregate generic parameters into member type
[60aaa51d]219        genericSubstitution( aggregate->result ).apply( result );
[3f3bfe5a]220        // ensure appropriate restrictions from aggregate type
221        add_qualifiers( result, aggregate->result->qualifiers );
[54e41b3]222}
223
[ae265b55]224MemberExpr::MemberExpr( const CodeLocation & loc, const DeclWithType * mem, const Expr * agg,
225    MemberExpr::NoOpConstruction overloadSelector )
226: Expr( loc ), member( mem ), aggregate( agg ) {
227        assert( member );
228        assert( aggregate );
229        assert( aggregate->result );
230        (void) overloadSelector;
231}
232
[cf32116]233bool MemberExpr::get_lvalue() const {
234        // This is actually wrong by C, but it works with our current set-up.
235        return true;
236}
237
[54e41b3]238// --- ConstantExpr
239
240long long int ConstantExpr::intValue() const {
241        if ( const BasicType * bty = result.as< BasicType >() ) {
242                if ( bty->isInteger() ) {
[c36298d]243                        assert(ival);
244                        return ival.value();
[54e41b3]245                }
246        } else if ( result.as< ZeroType >() ) {
247                return 0;
248        } else if ( result.as< OneType >() ) {
249                return 1;
250        }
251        SemanticError( this, "Constant expression of non-integral type " );
252}
253
254ConstantExpr * ConstantExpr::from_bool( const CodeLocation & loc, bool b ) {
[87701b6]255        return new ConstantExpr{
[54e41b3]256                loc, new BasicType{ BasicType::Bool }, b ? "1" : "0", (unsigned long long)b };
257}
258
259ConstantExpr * ConstantExpr::from_int( const CodeLocation & loc, int i ) {
[87701b6]260        return new ConstantExpr{
[54e41b3]261                loc, new BasicType{ BasicType::SignedInt }, std::to_string( i ), (unsigned long long)i };
262}
263
264ConstantExpr * ConstantExpr::from_ulong( const CodeLocation & loc, unsigned long i ) {
[87701b6]265        return new ConstantExpr{
266                loc, new BasicType{ BasicType::LongUnsignedInt }, std::to_string( i ),
[54e41b3]267                (unsigned long long)i };
268}
269
[b91bfde]270ConstantExpr * ConstantExpr::from_string( const CodeLocation & loc, const std::string & str ) {
271        const Type * charType = new BasicType( BasicType::Char );
272        // Adjust the length of the string for the terminator.
273        const Expr * strSize = from_ulong( loc, str.size() + 1 );
[6a896b0]274        const Type * strType = new ArrayType( charType, strSize, FixedLen, DynamicDim );
[b91bfde]275        const std::string strValue = "\"" + str + "\"";
276        return new ConstantExpr( loc, strType, strValue, std::nullopt );
277}
278
[54e41b3]279ConstantExpr * ConstantExpr::null( const CodeLocation & loc, const Type * ptrType ) {
280        return new ConstantExpr{
281                loc, ptrType ? ptrType : new PointerType{ new VoidType{} }, "0", (unsigned long long)0 };
282}
283
284// --- SizeofExpr
285
286SizeofExpr::SizeofExpr( const CodeLocation & loc, const Expr * e )
287: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( e ), type( nullptr ) {}
288
289SizeofExpr::SizeofExpr( const CodeLocation & loc, const Type * t )
290: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( nullptr ), type( t ) {}
291
292// --- AlignofExpr
293
294AlignofExpr::AlignofExpr( const CodeLocation & loc, const Expr * e )
295: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( e ), type( nullptr ) {}
296
297AlignofExpr::AlignofExpr( const CodeLocation & loc, const Type * t )
298: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( nullptr ), type( t ) {}
299
300// --- OffsetofExpr
301
302OffsetofExpr::OffsetofExpr( const CodeLocation & loc, const Type * ty, const DeclWithType * mem )
303: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), type( ty ), member( mem ) {
304        assert( type );
305        assert( member );
306}
307
308// --- OffsetPackExpr
309
310OffsetPackExpr::OffsetPackExpr( const CodeLocation & loc, const StructInstType * ty )
[87701b6]311: Expr( loc, new ArrayType{
312        new BasicType{ BasicType::LongUnsignedInt }, nullptr, FixedLen, DynamicDim }
[54e41b3]313), type( ty ) {
314        assert( type );
315}
316
317// --- LogicalExpr
318
[87701b6]319LogicalExpr::LogicalExpr(
[54e41b3]320        const CodeLocation & loc, const Expr * a1, const Expr * a2, LogicalFlag ia )
321: Expr( loc, new BasicType{ BasicType::SignedInt } ), arg1( a1 ), arg2( a2 ), isAnd( ia ) {}
322
[cf32116]323// --- CommaExpr
324bool CommaExpr::get_lvalue() const {
325        // This is wrong by C, but the current implementation uses it.
326        // (ex: Specialize, Lvalue and Box)
327        return arg2->get_lvalue();
328}
329
[9b4f329]330// --- ConstructorExpr
331
[10a1225]332ConstructorExpr::ConstructorExpr( const CodeLocation & loc, const Expr * call )
[9b4f329]333: Expr( loc ), callExpr( call ) {
[10a1225]334        // allow resolver to type a constructor used as an expression if it has the same type as its
[9b4f329]335        // first argument
336        assert( callExpr );
[e01eb4a]337        const Expr * arg = getCallArg( callExpr, 0 );
[9b4f329]338        assert( arg );
339        result = arg->result;
340}
341
342// --- CompoundLiteralExpr
343
344CompoundLiteralExpr::CompoundLiteralExpr( const CodeLocation & loc, const Type * t, const Init * i )
345: Expr( loc ), init( i ) {
346        assert( t && i );
[d76c588]347        result = t;
[9b4f329]348}
349
[cf32116]350bool CompoundLiteralExpr::get_lvalue() const {
351        return true;
352}
353
[9b4f329]354// --- TupleExpr
355
356TupleExpr::TupleExpr( const CodeLocation & loc, std::vector<ptr<Expr>> && xs )
357: Expr( loc, Tuples::makeTupleType( xs ) ), exprs( xs ) {}
358
359// --- TupleIndexExpr
360
361TupleIndexExpr::TupleIndexExpr( const CodeLocation & loc, const Expr * t, unsigned i )
362: Expr( loc ), tuple( t ), index( i ) {
[10a1225]363        const TupleType * type = strict_dynamic_cast< const TupleType * >( tuple->result.get() );
[9b4f329]364        assertf( type->size() > index, "TupleIndexExpr index out of bounds: tuple size %d, requested "
365                "index %d in expr %s", type->size(), index, toString( tuple ).c_str() );
366        // like MemberExpr, TupleIndexExpr is always an lvalue
[d76c588]367        result = type->types[ index ];
[9b4f329]368}
369
[cf32116]370bool TupleIndexExpr::get_lvalue() const {
371        return tuple->get_lvalue();
372}
373
[9b4f329]374// --- TupleAssignExpr
375
[10a1225]376TupleAssignExpr::TupleAssignExpr(
377        const CodeLocation & loc, std::vector<ptr<Expr>> && assigns,
[9b4f329]378        std::vector<ptr<ObjectDecl>> && tempDecls )
379: Expr( loc, Tuples::makeTupleType( assigns ) ), stmtExpr() {
[10a1225]380        // convert internally into a StmtExpr which contains the declarations and produces the tuple of
[9b4f329]381        // the assignments
382        std::list<ptr<Stmt>> stmts;
383        for ( const ObjectDecl * obj : tempDecls ) {
384                stmts.emplace_back( new DeclStmt{ loc, obj } );
385        }
386        TupleExpr * tupleExpr = new TupleExpr{ loc, std::move(assigns) };
387        assert( tupleExpr->result );
388        stmts.emplace_back( new ExprStmt{ loc, tupleExpr } );
389        stmtExpr = new StmtExpr{ loc, new CompoundStmt{ loc, std::move(stmts) } };
390}
391
[0b57626]392TupleAssignExpr::TupleAssignExpr(
[20de6fb]393        const CodeLocation & loc, const Type * result, const StmtExpr * s )
394: Expr( loc, result ), stmtExpr() {
395        stmtExpr = s;
396}
397
[9b4f329]398// --- StmtExpr
399
[10a1225]400StmtExpr::StmtExpr( const CodeLocation & loc, const CompoundStmt * ss )
[9b4f329]401: Expr( loc ), stmts( ss ), returnDecls(), dtors() { computeResult(); }
402
403void StmtExpr::computeResult() {
404        assert( stmts );
405        const std::list<ptr<Stmt>> & body = stmts->kids;
406        if ( ! returnDecls.empty() ) {
[10a1225]407                // prioritize return decl for result type, since if a return decl exists, then the StmtExpr
[9b4f329]408                // is currently in an intermediate state where the body will always give a void result type
409                result = returnDecls.front()->get_type();
410        } else if ( ! body.empty() ) {
411                if ( const ExprStmt * exprStmt = body.back().as< ExprStmt >() ) {
412                        result = exprStmt->expr->result;
413                }
414        }
415        // ensure a result type exists
416        if ( ! result ) { result = new VoidType{}; }
417}
418
419// --- UniqueExpr
420
421unsigned long long UniqueExpr::nextId = 0;
422
[10a1225]423UniqueExpr::UniqueExpr( const CodeLocation & loc, const Expr * e, unsigned long long i )
[d76f32c]424: Expr( loc, e->result ), expr( e ), id( i ) {
[9b4f329]425        assert( expr );
[10a1225]426        if ( id == -1ull ) {
427                assert( nextId != -1ull );
[9b4f329]428                id = nextId++;
429        }
[54e41b3]430}
431
[10a1225]432}
433
[54e41b3]434// Local Variables: //
435// tab-width: 4 //
436// mode: c++ //
437// compile-command: "make install" //
[d76f32c]438// End: //
Note: See TracBrowser for help on using the repository browser.