source: src/AST/Expr.cpp@ 9e72bae3

Last change on this file since 9e72bae3 was 857b5f9, checked in by Andrew Beach <ajbeach@…>, 8 months ago

CountExpr -> CountofExpr. Actually the main fix was making countof use the same pattern as sizeof/alignof, using a typeof to combine the two cases and have one field instead of two.

  • Property mode set to 100644
File size: 13.2 KB
RevLine 
[54e41b3]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Expr.cpp --
8//
9// Author : Aaron B. Moss
10// Created On : Wed May 15 17:00:00 2019
[b1f2007d]11// Last Modified By : Peter A. Buhr
[e6cf857f]12// Created On : Wed May 18 13:56:00 2022
[b1f2007d]13// Update Count : 12
[54e41b3]14//
15
16#include "Expr.hpp"
17
18#include <cassert> // for strict_dynamic_cast
19#include <string> // for to_string
20#include <vector>
21
[2890212]22#include "Copy.hpp" // for shallowCopy
[d8938622]23#include "GenericSubstitution.hpp"
[e01eb4a]24#include "Inspect.hpp"
[cf32116]25#include "LinkageSpec.hpp"
[9b4f329]26#include "Stmt.hpp"
[54e41b3]27#include "Type.hpp"
[d8938622]28#include "TypeSubstitution.hpp"
[c92bdcc]29#include "Common/Utility.hpp"
30#include "Common/SemanticError.hpp"
31#include "GenPoly/Lvalue.hpp" // for referencesPermissable
32#include "ResolvExpr/Unify.hpp" // for extractResultType
33#include "Tuples/Tuples.hpp" // for makeTupleType
[54e41b3]34
35namespace ast {
36
[cf32116]37namespace {
38 std::set<std::string> const lvalueFunctionNames = {"*?", "?[?]"};
39}
40
41// --- Expr
42bool Expr::get_lvalue() const {
43 return false;
44}
45
[54e41b3]46// --- ApplicationExpr
47
[87701b6]48ApplicationExpr::ApplicationExpr( const CodeLocation & loc, const Expr * f,
49 std::vector<ptr<Expr>> && as )
50: Expr( loc ), func( f ), args( std::move(as) ) {
[54e41b3]51 // ensure that `ApplicationExpr` result type is `FuncExpr`
52 const PointerType * pt = strict_dynamic_cast< const PointerType * >( f->result.get() );
53 const FunctionType * fn = strict_dynamic_cast< const FunctionType * >( pt->base.get() );
54
55 result = ResolvExpr::extractResultType( fn );
56 assert( result );
57}
58
[cf32116]59bool ApplicationExpr::get_lvalue() const {
[e01eb4a]60 if ( const DeclWithType * func = getFunction( this ) ) {
[cf32116]61 return func->linkage == Linkage::Intrinsic && lvalueFunctionNames.count( func->name );
62 }
63 return false;
64}
65
[54e41b3]66// --- UntypedExpr
67
[e6cf857f]68bool UntypedExpr::get_lvalue() const {
[e01eb4a]69 std::string fname = getFunctionName( this );
[e6cf857f]70 return lvalueFunctionNames.count( fname );
71}
72
[490fb92e]73UntypedExpr * UntypedExpr::createDeref( const CodeLocation & loc, const Expr * arg ) {
[54e41b3]74 assert( arg );
75
[e6cf857f]76 UntypedExpr * ret = createCall( loc, "*?", { arg } );
[54e41b3]77 if ( const Type * ty = arg->result ) {
[e01eb4a]78 const Type * base = getPointerBase( ty );
[54e41b3]79 assertf( base, "expected pointer type in dereference (type was %s)", toString( ty ).c_str() );
80
81 if ( GenPoly::referencesPermissable() ) {
82 // if references are still allowed in the AST, dereference returns a reference
83 ret->result = new ReferenceType{ base };
84 } else {
[87701b6]85 // references have been removed, in which case dereference returns an lvalue of the
[54e41b3]86 // base type
[d76c588]87 ret->result = base;
[54e41b3]88 }
89 }
90 return ret;
91}
92
[490fb92e]93UntypedExpr * UntypedExpr::createAssign( const CodeLocation & loc, const Expr * lhs, const Expr * rhs ) {
[54e41b3]94 assert( lhs && rhs );
95
[e6cf857f]96 UntypedExpr * ret = createCall( loc, "?=?", { lhs, rhs } );
[54e41b3]97 if ( lhs->result && rhs->result ) {
98 // if both expressions are typed, assumes that this assignment is a C bitwise assignment,
99 // so the result is the type of the RHS
100 ret->result = rhs->result;
101 }
102 return ret;
103}
104
[e6cf857f]105UntypedExpr * UntypedExpr::createCall( const CodeLocation & loc,
106 const std::string & name, std::vector<ptr<Expr>> && args ) {
107 return new UntypedExpr( loc,
108 new NameExpr( loc, name ), std::move( args ) );
109}
110
[d5631b3]111// --- VariableExpr
112
113VariableExpr::VariableExpr( const CodeLocation & loc )
114: Expr( loc ), var( nullptr ) {}
115
116VariableExpr::VariableExpr( const CodeLocation & loc, const DeclWithType * v )
117: Expr( loc ), var( v ) {
118 assert( var );
119 assert( var->get_type() );
120 result = shallowCopy( var->get_type() );
121}
122
123bool VariableExpr::get_lvalue() const {
[5cc53b2]124 // Special case for enumeration labels (more literals than variables):
[eae8b37]125 if(dynamic_cast<const ast::EnumInstType *>(var->get_type())) return !var->isMember;
[5cc53b2]126 // The remaining uses are either actual variables (lvalues) or function
127 // names which are a special value catagory that can be treated as
128 // lvalues in the places we are worried about.
[d5631b3]129 return true;
130}
131
132VariableExpr * VariableExpr::functionPointer(
133 const CodeLocation & loc, const FunctionDecl * decl ) {
134 // wrap usually-determined result type in a pointer
135 VariableExpr * funcExpr = new VariableExpr{ loc, decl };
136 funcExpr->result = new PointerType{ funcExpr->result };
137 return funcExpr;
138}
139
[54e41b3]140// --- AddressExpr
141
142// Address expressions are typed based on the following inference rules:
143// E : lvalue T &..& (n references)
144// &E : T *&..& (n references)
145//
146// E : T &..& (m references)
147// &E : T *&..& (m-1 references)
148
149namespace {
150 /// The type of the address of a type.
151 /// Caller is responsible for managing returned memory
[f27331c]152 Type * addrType( const ptr<Type> & type ) {
153 if ( auto refType = type.as< ReferenceType >() ) {
154 return new ReferenceType( addrType( refType->base ), refType->qualifiers );
[54e41b3]155 } else {
[f27331c]156 return new PointerType( type );
[54e41b3]157 }
158 }
159
[f27331c]160 /// The type of the address of an expression.
161 /// Caller is responsible for managing returned memory
162 Type * addrExprType( const CodeLocation & loc, const Expr * arg ) {
163 assert( arg );
164 // If the expression's type is unknown, the address type is unknown.
165 if ( nullptr == arg->result ) {
166 return nullptr;
167 // An lvalue is transformed directly.
168 } else if ( arg->get_lvalue() ) {
169 return addrType( arg->result );
170 // Strip a layer of reference to "create" an lvalue expression.
171 } else if ( auto refType = arg->result.as< ReferenceType >() ) {
172 return addrType( refType->base );
[54e41b3]173 } else {
[b1f2007d]174 SemanticError( loc, "Attempt to take address of non-lvalue expression %s",
175 toString( arg->result.get() ).c_str() );
[54e41b3]176 }
177 }
178}
179
[f27331c]180AddressExpr::AddressExpr( const CodeLocation & loc, const Expr * a ) :
181 Expr( loc, addrExprType( loc, a ) ), arg( a )
182{}
183
[54e41b3]184// --- LabelAddressExpr
185
186// label address always has type `void*`
[87701b6]187LabelAddressExpr::LabelAddressExpr( const CodeLocation & loc, Label && a )
[54e41b3]188: Expr( loc, new PointerType{ new VoidType{} } ), arg( a ) {}
189
190// --- CastExpr
191
[46da46b]192CastExpr::CastExpr( const CodeLocation & loc, const Expr * a, GeneratedFlag g, CastKind kind )
193: Expr( loc, new VoidType{} ), arg( a ), isGenerated( g ), kind( kind ) {}
[54e41b3]194
[cf32116]195bool CastExpr::get_lvalue() const {
196 // This is actually wrong by C, but it works with our current set-up.
197 return arg->get_lvalue();
198}
199
[54e41b3]200// --- KeywordCastExpr
201
[312029a]202const char * KeywordCastExpr::targetString() const {
203 return AggregateDecl::aggrString( target );
[54e41b3]204}
205
[cf32116]206// --- UntypedMemberExpr
207
208bool UntypedMemberExpr::get_lvalue() const {
209 return aggregate->get_lvalue();
210}
211
[54e41b3]212// --- MemberExpr
213
214MemberExpr::MemberExpr( const CodeLocation & loc, const DeclWithType * mem, const Expr * agg )
215: Expr( loc ), member( mem ), aggregate( agg ) {
216 assert( member );
217 assert( aggregate );
218 assert( aggregate->result );
219
[3e5dd913]220 result = mem->get_type();
[ae265b55]221
[335f2d8]222 // substitute aggregate generic parameters into member type
[60aaa51d]223 genericSubstitution( aggregate->result ).apply( result );
[3f3bfe5a]224 // ensure appropriate restrictions from aggregate type
225 add_qualifiers( result, aggregate->result->qualifiers );
[54e41b3]226}
227
[cf32116]228bool MemberExpr::get_lvalue() const {
229 // This is actually wrong by C, but it works with our current set-up.
230 return true;
231}
232
[54e41b3]233// --- ConstantExpr
234
235long long int ConstantExpr::intValue() const {
236 if ( const BasicType * bty = result.as< BasicType >() ) {
237 if ( bty->isInteger() ) {
[c36298d]238 assert(ival);
239 return ival.value();
[54e41b3]240 }
241 } else if ( result.as< ZeroType >() ) {
242 return 0;
243 } else if ( result.as< OneType >() ) {
244 return 1;
245 }
[b1f2007d]246 SemanticError( this->location, "Constant expression of non-integral type %s",
247 toString( this ).c_str() );
[54e41b3]248}
249
250ConstantExpr * ConstantExpr::from_bool( const CodeLocation & loc, bool b ) {
[87701b6]251 return new ConstantExpr{
[7a780ad]252 loc, new BasicType{ BasicKind::Bool }, b ? "1" : "0", (unsigned long long)b };
[54e41b3]253}
254
255ConstantExpr * ConstantExpr::from_int( const CodeLocation & loc, int i ) {
[87701b6]256 return new ConstantExpr{
[7a780ad]257 loc, new BasicType{ BasicKind::SignedInt }, std::to_string( i ), (unsigned long long)i };
[54e41b3]258}
259
260ConstantExpr * ConstantExpr::from_ulong( const CodeLocation & loc, unsigned long i ) {
[87701b6]261 return new ConstantExpr{
[7a780ad]262 loc, new BasicType{ BasicKind::LongUnsignedInt }, std::to_string( i ),
[54e41b3]263 (unsigned long long)i };
264}
265
[b91bfde]266ConstantExpr * ConstantExpr::from_string( const CodeLocation & loc, const std::string & str ) {
[c2cf2d0]267 const Type * charType = new BasicType( BasicKind::Char, ast::CV::Const );
[b91bfde]268 // Adjust the length of the string for the terminator.
269 const Expr * strSize = from_ulong( loc, str.size() + 1 );
[6a896b0]270 const Type * strType = new ArrayType( charType, strSize, FixedLen, DynamicDim );
[b91bfde]271 const std::string strValue = "\"" + str + "\"";
272 return new ConstantExpr( loc, strType, strValue, std::nullopt );
273}
274
[54e41b3]275ConstantExpr * ConstantExpr::null( const CodeLocation & loc, const Type * ptrType ) {
276 return new ConstantExpr{
277 loc, ptrType ? ptrType : new PointerType{ new VoidType{} }, "0", (unsigned long long)0 };
278}
279
280// --- SizeofExpr
281
282SizeofExpr::SizeofExpr( const CodeLocation & loc, const Type * t )
[b6f2e7ab]283: Expr( loc, new BasicType{ BasicKind::LongUnsignedInt } ), type( t ) {}
[54e41b3]284
285// --- AlignofExpr
286
287AlignofExpr::AlignofExpr( const CodeLocation & loc, const Type * t )
[b6f2e7ab]288: Expr( loc, new BasicType{ BasicKind::LongUnsignedInt } ), type( t ) {}
[54e41b3]289
[857b5f9]290// --- CountofExpr
291
292CountofExpr::CountofExpr( const CodeLocation & loc, const Type * t )
293: Expr( loc, new BasicType( BasicKind::LongUnsignedInt) ), type( t ) {}
294
[54e41b3]295// --- OffsetofExpr
296
297OffsetofExpr::OffsetofExpr( const CodeLocation & loc, const Type * ty, const DeclWithType * mem )
[7a780ad]298: Expr( loc, new BasicType{ BasicKind::LongUnsignedInt } ), type( ty ), member( mem ) {
[54e41b3]299 assert( type );
300 assert( member );
301}
302
303// --- OffsetPackExpr
304
305OffsetPackExpr::OffsetPackExpr( const CodeLocation & loc, const StructInstType * ty )
[87701b6]306: Expr( loc, new ArrayType{
[7a780ad]307 new BasicType{ BasicKind::LongUnsignedInt }, nullptr, FixedLen, DynamicDim }
[54e41b3]308), type( ty ) {
309 assert( type );
310}
311
312// --- LogicalExpr
313
[87701b6]314LogicalExpr::LogicalExpr(
[54e41b3]315 const CodeLocation & loc, const Expr * a1, const Expr * a2, LogicalFlag ia )
[7a780ad]316: Expr( loc, new BasicType{ BasicKind::SignedInt } ), arg1( a1 ), arg2( a2 ), isAnd( ia ) {}
[54e41b3]317
[cf32116]318// --- CommaExpr
319bool CommaExpr::get_lvalue() const {
320 // This is wrong by C, but the current implementation uses it.
321 // (ex: Specialize, Lvalue and Box)
322 return arg2->get_lvalue();
323}
324
[9b4f329]325// --- ConstructorExpr
326
[10a1225]327ConstructorExpr::ConstructorExpr( const CodeLocation & loc, const Expr * call )
[9b4f329]328: Expr( loc ), callExpr( call ) {
[10a1225]329 // allow resolver to type a constructor used as an expression if it has the same type as its
[9b4f329]330 // first argument
331 assert( callExpr );
[e01eb4a]332 const Expr * arg = getCallArg( callExpr, 0 );
[9b4f329]333 assert( arg );
334 result = arg->result;
335}
336
337// --- CompoundLiteralExpr
338
339CompoundLiteralExpr::CompoundLiteralExpr( const CodeLocation & loc, const Type * t, const Init * i )
340: Expr( loc ), init( i ) {
341 assert( t && i );
[d76c588]342 result = t;
[9b4f329]343}
344
[cf32116]345bool CompoundLiteralExpr::get_lvalue() const {
346 return true;
347}
348
[9b4f329]349// --- TupleExpr
350
351TupleExpr::TupleExpr( const CodeLocation & loc, std::vector<ptr<Expr>> && xs )
352: Expr( loc, Tuples::makeTupleType( xs ) ), exprs( xs ) {}
353
354// --- TupleIndexExpr
355
356TupleIndexExpr::TupleIndexExpr( const CodeLocation & loc, const Expr * t, unsigned i )
357: Expr( loc ), tuple( t ), index( i ) {
[10a1225]358 const TupleType * type = strict_dynamic_cast< const TupleType * >( tuple->result.get() );
[9b4f329]359 assertf( type->size() > index, "TupleIndexExpr index out of bounds: tuple size %d, requested "
360 "index %d in expr %s", type->size(), index, toString( tuple ).c_str() );
361 // like MemberExpr, TupleIndexExpr is always an lvalue
[d76c588]362 result = type->types[ index ];
[9b4f329]363}
364
[cf32116]365bool TupleIndexExpr::get_lvalue() const {
366 return tuple->get_lvalue();
367}
368
[9b4f329]369// --- TupleAssignExpr
370
[10a1225]371TupleAssignExpr::TupleAssignExpr(
372 const CodeLocation & loc, std::vector<ptr<Expr>> && assigns,
[9b4f329]373 std::vector<ptr<ObjectDecl>> && tempDecls )
374: Expr( loc, Tuples::makeTupleType( assigns ) ), stmtExpr() {
[10a1225]375 // convert internally into a StmtExpr which contains the declarations and produces the tuple of
[9b4f329]376 // the assignments
377 std::list<ptr<Stmt>> stmts;
378 for ( const ObjectDecl * obj : tempDecls ) {
379 stmts.emplace_back( new DeclStmt{ loc, obj } );
380 }
381 TupleExpr * tupleExpr = new TupleExpr{ loc, std::move(assigns) };
382 assert( tupleExpr->result );
383 stmts.emplace_back( new ExprStmt{ loc, tupleExpr } );
384 stmtExpr = new StmtExpr{ loc, new CompoundStmt{ loc, std::move(stmts) } };
385}
386
387// --- StmtExpr
388
[10a1225]389StmtExpr::StmtExpr( const CodeLocation & loc, const CompoundStmt * ss )
[9b4f329]390: Expr( loc ), stmts( ss ), returnDecls(), dtors() { computeResult(); }
391
392void StmtExpr::computeResult() {
393 assert( stmts );
394 const std::list<ptr<Stmt>> & body = stmts->kids;
395 if ( ! returnDecls.empty() ) {
[10a1225]396 // prioritize return decl for result type, since if a return decl exists, then the StmtExpr
[9b4f329]397 // is currently in an intermediate state where the body will always give a void result type
398 result = returnDecls.front()->get_type();
399 } else if ( ! body.empty() ) {
400 if ( const ExprStmt * exprStmt = body.back().as< ExprStmt >() ) {
401 result = exprStmt->expr->result;
402 }
403 }
404 // ensure a result type exists
405 if ( ! result ) { result = new VoidType{}; }
406}
407
408// --- UniqueExpr
409
410unsigned long long UniqueExpr::nextId = 0;
411
[10a1225]412UniqueExpr::UniqueExpr( const CodeLocation & loc, const Expr * e, unsigned long long i )
[d76f32c]413: Expr( loc, e->result ), expr( e ), id( i ) {
[9b4f329]414 assert( expr );
[10a1225]415 if ( id == -1ull ) {
416 assert( nextId != -1ull );
[9b4f329]417 id = nextId++;
418 }
[54e41b3]419}
420
[10a1225]421}
422
[54e41b3]423// Local Variables: //
424// tab-width: 4 //
425// mode: c++ //
426// compile-command: "make install" //
[d76f32c]427// End: //
Note: See TracBrowser for help on using the repository browser.