source: src/AST/Expr.cpp@ 4ec9513

ADT ast-experimental enum pthread-emulation qualifiedEnum
Last change on this file since 4ec9513 was f27331c, checked in by Andrew Beach <ajbeach@…>, 4 years ago

Factored the AddressExpr constructor body into a helper that makes it clear what it does.

  • Property mode set to 100644
File size: 13.3 KB
RevLine 
[54e41b3]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Expr.cpp --
8//
9// Author : Aaron B. Moss
10// Created On : Wed May 15 17:00:00 2019
[f27331c]11// Last Modified By : Andrew Beach
12// Created On : Tue Nov 30 14:23:00 2021
13// Update Count : 7
[54e41b3]14//
15
16#include "Expr.hpp"
17
18#include <cassert> // for strict_dynamic_cast
19#include <string> // for to_string
20#include <vector>
21
[2890212]22#include "Copy.hpp" // for shallowCopy
[417117e]23#include "Eval.hpp" // for call
[d8938622]24#include "GenericSubstitution.hpp"
[cf32116]25#include "LinkageSpec.hpp"
[9b4f329]26#include "Stmt.hpp"
[54e41b3]27#include "Type.hpp"
[d8938622]28#include "TypeSubstitution.hpp"
[733074e]29#include "Common/utility.h"
[54e41b3]30#include "Common/SemanticError.h"
31#include "GenPoly/Lvalue.h" // for referencesPermissable
[cf32116]32#include "InitTweak/InitTweak.h" // for getFunction, getPointerBase
[54e41b3]33#include "ResolvExpr/typeops.h" // for extractResultType
[9b4f329]34#include "Tuples/Tuples.h" // for makeTupleType
[54e41b3]35
36namespace ast {
37
[cf32116]38namespace {
39 std::set<std::string> const lvalueFunctionNames = {"*?", "?[?]"};
40}
41
42// --- Expr
43bool Expr::get_lvalue() const {
44 return false;
45}
46
[54e41b3]47// --- ApplicationExpr
48
[87701b6]49ApplicationExpr::ApplicationExpr( const CodeLocation & loc, const Expr * f,
50 std::vector<ptr<Expr>> && as )
51: Expr( loc ), func( f ), args( std::move(as) ) {
[54e41b3]52 // ensure that `ApplicationExpr` result type is `FuncExpr`
53 const PointerType * pt = strict_dynamic_cast< const PointerType * >( f->result.get() );
54 const FunctionType * fn = strict_dynamic_cast< const FunctionType * >( pt->base.get() );
55
56 result = ResolvExpr::extractResultType( fn );
57 assert( result );
58}
59
[cf32116]60bool ApplicationExpr::get_lvalue() const {
61 if ( const DeclWithType * func = InitTweak::getFunction( this ) ) {
62 return func->linkage == Linkage::Intrinsic && lvalueFunctionNames.count( func->name );
63 }
64 return false;
65}
66
[54e41b3]67// --- UntypedExpr
68
[490fb92e]69UntypedExpr * UntypedExpr::createDeref( const CodeLocation & loc, const Expr * arg ) {
[54e41b3]70 assert( arg );
71
[417117e]72 UntypedExpr * ret = call( loc, "*?", arg );
[54e41b3]73 if ( const Type * ty = arg->result ) {
74 const Type * base = InitTweak::getPointerBase( ty );
75 assertf( base, "expected pointer type in dereference (type was %s)", toString( ty ).c_str() );
76
77 if ( GenPoly::referencesPermissable() ) {
78 // if references are still allowed in the AST, dereference returns a reference
79 ret->result = new ReferenceType{ base };
80 } else {
[87701b6]81 // references have been removed, in which case dereference returns an lvalue of the
[54e41b3]82 // base type
[d76c588]83 ret->result = base;
[54e41b3]84 }
85 }
86 return ret;
87}
88
[cf32116]89bool UntypedExpr::get_lvalue() const {
90 std::string fname = InitTweak::getFunctionName( this );
91 return lvalueFunctionNames.count( fname );
92}
93
[490fb92e]94UntypedExpr * UntypedExpr::createAssign( const CodeLocation & loc, const Expr * lhs, const Expr * rhs ) {
[54e41b3]95 assert( lhs && rhs );
96
[417117e]97 UntypedExpr * ret = call( loc, "?=?", lhs, rhs );
[54e41b3]98 if ( lhs->result && rhs->result ) {
99 // if both expressions are typed, assumes that this assignment is a C bitwise assignment,
100 // so the result is the type of the RHS
101 ret->result = rhs->result;
102 }
103 return ret;
104}
105
[d5631b3]106// --- VariableExpr
107
108VariableExpr::VariableExpr( const CodeLocation & loc )
109: Expr( loc ), var( nullptr ) {}
110
111VariableExpr::VariableExpr( const CodeLocation & loc, const DeclWithType * v )
112: Expr( loc ), var( v ) {
113 assert( var );
114 assert( var->get_type() );
115 result = shallowCopy( var->get_type() );
116}
117
118bool VariableExpr::get_lvalue() const {
119 // It isn't always an lvalue, but it is never an rvalue.
120 return true;
121}
122
123VariableExpr * VariableExpr::functionPointer(
124 const CodeLocation & loc, const FunctionDecl * decl ) {
125 // wrap usually-determined result type in a pointer
126 VariableExpr * funcExpr = new VariableExpr{ loc, decl };
127 funcExpr->result = new PointerType{ funcExpr->result };
128 return funcExpr;
129}
130
[54e41b3]131// --- AddressExpr
132
133// Address expressions are typed based on the following inference rules:
134// E : lvalue T &..& (n references)
135// &E : T *&..& (n references)
136//
137// E : T &..& (m references)
138// &E : T *&..& (m-1 references)
139
140namespace {
141 /// The type of the address of a type.
142 /// Caller is responsible for managing returned memory
[f27331c]143 Type * addrType( const ptr<Type> & type ) {
144 if ( auto refType = type.as< ReferenceType >() ) {
145 return new ReferenceType( addrType( refType->base ), refType->qualifiers );
[54e41b3]146 } else {
[f27331c]147 return new PointerType( type );
[54e41b3]148 }
149 }
150
[f27331c]151 /// The type of the address of an expression.
152 /// Caller is responsible for managing returned memory
153 Type * addrExprType( const CodeLocation & loc, const Expr * arg ) {
154 assert( arg );
155 // If the expression's type is unknown, the address type is unknown.
156 if ( nullptr == arg->result ) {
157 return nullptr;
158 // An lvalue is transformed directly.
159 } else if ( arg->get_lvalue() ) {
160 return addrType( arg->result );
161 // Strip a layer of reference to "create" an lvalue expression.
162 } else if ( auto refType = arg->result.as< ReferenceType >() ) {
163 return addrType( refType->base );
[54e41b3]164 } else {
[f27331c]165 SemanticError( loc, arg->result.get(),
166 "Attempt to take address of non-lvalue expression: " );
[54e41b3]167 }
168 }
169}
170
[f27331c]171AddressExpr::AddressExpr( const CodeLocation & loc, const Expr * a ) :
172 Expr( loc, addrExprType( loc, a ) ), arg( a )
173{}
174
[54e41b3]175// --- LabelAddressExpr
176
177// label address always has type `void*`
[87701b6]178LabelAddressExpr::LabelAddressExpr( const CodeLocation & loc, Label && a )
[54e41b3]179: Expr( loc, new PointerType{ new VoidType{} } ), arg( a ) {}
180
181// --- CastExpr
182
[87701b6]183CastExpr::CastExpr( const CodeLocation & loc, const Expr * a, GeneratedFlag g )
[54e41b3]184: Expr( loc, new VoidType{} ), arg( a ), isGenerated( g ) {}
185
[cf32116]186bool CastExpr::get_lvalue() const {
187 // This is actually wrong by C, but it works with our current set-up.
188 return arg->get_lvalue();
189}
190
[54e41b3]191// --- KeywordCastExpr
192
[312029a]193const char * KeywordCastExpr::targetString() const {
194 return AggregateDecl::aggrString( target );
[54e41b3]195}
196
[cf32116]197// --- UntypedMemberExpr
198
199bool UntypedMemberExpr::get_lvalue() const {
200 return aggregate->get_lvalue();
201}
202
[54e41b3]203// --- MemberExpr
204
205MemberExpr::MemberExpr( const CodeLocation & loc, const DeclWithType * mem, const Expr * agg )
206: Expr( loc ), member( mem ), aggregate( agg ) {
207 assert( member );
208 assert( aggregate );
209 assert( aggregate->result );
210
[3e5dd913]211 result = mem->get_type();
[ae265b55]212
[335f2d8]213 // substitute aggregate generic parameters into member type
[60aaa51d]214 genericSubstitution( aggregate->result ).apply( result );
[3f3bfe5a]215 // ensure appropriate restrictions from aggregate type
216 add_qualifiers( result, aggregate->result->qualifiers );
[54e41b3]217}
218
[ae265b55]219MemberExpr::MemberExpr( const CodeLocation & loc, const DeclWithType * mem, const Expr * agg,
220 MemberExpr::NoOpConstruction overloadSelector )
221: Expr( loc ), member( mem ), aggregate( agg ) {
222 assert( member );
223 assert( aggregate );
224 assert( aggregate->result );
225 (void) overloadSelector;
226}
227
[cf32116]228bool MemberExpr::get_lvalue() const {
229 // This is actually wrong by C, but it works with our current set-up.
230 return true;
231}
232
[54e41b3]233// --- ConstantExpr
234
235long long int ConstantExpr::intValue() const {
236 if ( const BasicType * bty = result.as< BasicType >() ) {
237 if ( bty->isInteger() ) {
[c36298d]238 assert(ival);
239 return ival.value();
[54e41b3]240 }
241 } else if ( result.as< ZeroType >() ) {
242 return 0;
243 } else if ( result.as< OneType >() ) {
244 return 1;
245 }
246 SemanticError( this, "Constant expression of non-integral type " );
247}
248
249ConstantExpr * ConstantExpr::from_bool( const CodeLocation & loc, bool b ) {
[87701b6]250 return new ConstantExpr{
[54e41b3]251 loc, new BasicType{ BasicType::Bool }, b ? "1" : "0", (unsigned long long)b };
252}
253
254ConstantExpr * ConstantExpr::from_int( const CodeLocation & loc, int i ) {
[87701b6]255 return new ConstantExpr{
[54e41b3]256 loc, new BasicType{ BasicType::SignedInt }, std::to_string( i ), (unsigned long long)i };
257}
258
259ConstantExpr * ConstantExpr::from_ulong( const CodeLocation & loc, unsigned long i ) {
[87701b6]260 return new ConstantExpr{
261 loc, new BasicType{ BasicType::LongUnsignedInt }, std::to_string( i ),
[54e41b3]262 (unsigned long long)i };
263}
264
[b91bfde]265ConstantExpr * ConstantExpr::from_string( const CodeLocation & loc, const std::string & str ) {
266 const Type * charType = new BasicType( BasicType::Char );
267 // Adjust the length of the string for the terminator.
268 const Expr * strSize = from_ulong( loc, str.size() + 1 );
269 const Type * strType = new ArrayType( charType, strSize, FixedLen, StaticDim );
270 const std::string strValue = "\"" + str + "\"";
271 return new ConstantExpr( loc, strType, strValue, std::nullopt );
272}
273
[54e41b3]274ConstantExpr * ConstantExpr::null( const CodeLocation & loc, const Type * ptrType ) {
275 return new ConstantExpr{
276 loc, ptrType ? ptrType : new PointerType{ new VoidType{} }, "0", (unsigned long long)0 };
277}
278
279// --- SizeofExpr
280
281SizeofExpr::SizeofExpr( const CodeLocation & loc, const Expr * e )
282: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( e ), type( nullptr ) {}
283
284SizeofExpr::SizeofExpr( const CodeLocation & loc, const Type * t )
285: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( nullptr ), type( t ) {}
286
287// --- AlignofExpr
288
289AlignofExpr::AlignofExpr( const CodeLocation & loc, const Expr * e )
290: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( e ), type( nullptr ) {}
291
292AlignofExpr::AlignofExpr( const CodeLocation & loc, const Type * t )
293: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), expr( nullptr ), type( t ) {}
294
295// --- OffsetofExpr
296
297OffsetofExpr::OffsetofExpr( const CodeLocation & loc, const Type * ty, const DeclWithType * mem )
298: Expr( loc, new BasicType{ BasicType::LongUnsignedInt } ), type( ty ), member( mem ) {
299 assert( type );
300 assert( member );
301}
302
303// --- OffsetPackExpr
304
305OffsetPackExpr::OffsetPackExpr( const CodeLocation & loc, const StructInstType * ty )
[87701b6]306: Expr( loc, new ArrayType{
307 new BasicType{ BasicType::LongUnsignedInt }, nullptr, FixedLen, DynamicDim }
[54e41b3]308), type( ty ) {
309 assert( type );
310}
311
312// --- LogicalExpr
313
[87701b6]314LogicalExpr::LogicalExpr(
[54e41b3]315 const CodeLocation & loc, const Expr * a1, const Expr * a2, LogicalFlag ia )
316: Expr( loc, new BasicType{ BasicType::SignedInt } ), arg1( a1 ), arg2( a2 ), isAnd( ia ) {}
317
[cf32116]318// --- CommaExpr
319bool CommaExpr::get_lvalue() const {
320 // This is wrong by C, but the current implementation uses it.
321 // (ex: Specialize, Lvalue and Box)
322 return arg2->get_lvalue();
323}
324
[9b4f329]325// --- ConstructorExpr
326
[10a1225]327ConstructorExpr::ConstructorExpr( const CodeLocation & loc, const Expr * call )
[9b4f329]328: Expr( loc ), callExpr( call ) {
[10a1225]329 // allow resolver to type a constructor used as an expression if it has the same type as its
[9b4f329]330 // first argument
331 assert( callExpr );
332 const Expr * arg = InitTweak::getCallArg( callExpr, 0 );
333 assert( arg );
334 result = arg->result;
335}
336
337// --- CompoundLiteralExpr
338
339CompoundLiteralExpr::CompoundLiteralExpr( const CodeLocation & loc, const Type * t, const Init * i )
340: Expr( loc ), init( i ) {
341 assert( t && i );
[d76c588]342 result = t;
[9b4f329]343}
344
[cf32116]345bool CompoundLiteralExpr::get_lvalue() const {
346 return true;
347}
348
[9b4f329]349// --- TupleExpr
350
351TupleExpr::TupleExpr( const CodeLocation & loc, std::vector<ptr<Expr>> && xs )
352: Expr( loc, Tuples::makeTupleType( xs ) ), exprs( xs ) {}
353
354// --- TupleIndexExpr
355
356TupleIndexExpr::TupleIndexExpr( const CodeLocation & loc, const Expr * t, unsigned i )
357: Expr( loc ), tuple( t ), index( i ) {
[10a1225]358 const TupleType * type = strict_dynamic_cast< const TupleType * >( tuple->result.get() );
[9b4f329]359 assertf( type->size() > index, "TupleIndexExpr index out of bounds: tuple size %d, requested "
360 "index %d in expr %s", type->size(), index, toString( tuple ).c_str() );
361 // like MemberExpr, TupleIndexExpr is always an lvalue
[d76c588]362 result = type->types[ index ];
[9b4f329]363}
364
[cf32116]365bool TupleIndexExpr::get_lvalue() const {
366 return tuple->get_lvalue();
367}
368
[9b4f329]369// --- TupleAssignExpr
370
[10a1225]371TupleAssignExpr::TupleAssignExpr(
372 const CodeLocation & loc, std::vector<ptr<Expr>> && assigns,
[9b4f329]373 std::vector<ptr<ObjectDecl>> && tempDecls )
374: Expr( loc, Tuples::makeTupleType( assigns ) ), stmtExpr() {
[10a1225]375 // convert internally into a StmtExpr which contains the declarations and produces the tuple of
[9b4f329]376 // the assignments
377 std::list<ptr<Stmt>> stmts;
378 for ( const ObjectDecl * obj : tempDecls ) {
379 stmts.emplace_back( new DeclStmt{ loc, obj } );
380 }
381 TupleExpr * tupleExpr = new TupleExpr{ loc, std::move(assigns) };
382 assert( tupleExpr->result );
383 stmts.emplace_back( new ExprStmt{ loc, tupleExpr } );
384 stmtExpr = new StmtExpr{ loc, new CompoundStmt{ loc, std::move(stmts) } };
385}
386
[0b57626]387TupleAssignExpr::TupleAssignExpr(
[20de6fb]388 const CodeLocation & loc, const Type * result, const StmtExpr * s )
389: Expr( loc, result ), stmtExpr() {
390 stmtExpr = s;
391}
392
[9b4f329]393// --- StmtExpr
394
[10a1225]395StmtExpr::StmtExpr( const CodeLocation & loc, const CompoundStmt * ss )
[9b4f329]396: Expr( loc ), stmts( ss ), returnDecls(), dtors() { computeResult(); }
397
398void StmtExpr::computeResult() {
399 assert( stmts );
400 const std::list<ptr<Stmt>> & body = stmts->kids;
401 if ( ! returnDecls.empty() ) {
[10a1225]402 // prioritize return decl for result type, since if a return decl exists, then the StmtExpr
[9b4f329]403 // is currently in an intermediate state where the body will always give a void result type
404 result = returnDecls.front()->get_type();
405 } else if ( ! body.empty() ) {
406 if ( const ExprStmt * exprStmt = body.back().as< ExprStmt >() ) {
407 result = exprStmt->expr->result;
408 }
409 }
410 // ensure a result type exists
411 if ( ! result ) { result = new VoidType{}; }
412}
413
414// --- UniqueExpr
415
416unsigned long long UniqueExpr::nextId = 0;
417
[10a1225]418UniqueExpr::UniqueExpr( const CodeLocation & loc, const Expr * e, unsigned long long i )
[d76f32c]419: Expr( loc, e->result ), expr( e ), id( i ) {
[9b4f329]420 assert( expr );
[10a1225]421 if ( id == -1ull ) {
422 assert( nextId != -1ull );
[9b4f329]423 id = nextId++;
424 }
[54e41b3]425}
426
[10a1225]427}
428
[54e41b3]429// Local Variables: //
430// tab-width: 4 //
431// mode: c++ //
432// compile-command: "make install" //
[d76f32c]433// End: //
Note: See TracBrowser for help on using the repository browser.