source: libcfa/src/vec/vec4.hfa@ 5a7789f

Last change on this file since 5a7789f was 5454d77, checked in by Peter A. Buhr <pabuhr@…>, 2 years ago

update types to use new void-creation stream macros

  • Property mode set to 100644
File size: 6.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2021 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io/types.hfa --
8//
9// Author : Dimitry Kobets
10// Created On :
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#pragma once
17
18#include <iostream.hfa>
19#include "vec.hfa"
20
21forall (T) {
22 struct vec4 {
23 T x, y, z, w;
24 };
25}
26
27forall (T) {
28 static inline {
29
30 void ?{}(vec4(T)& v, T x, T y, T z, T w) {
31 v.[x, y, z, w] = [x, y, z, w];
32 }
33
34 forall(| zero_assign(T))
35 void ?{}(vec4(T)& vec, zero_t) with (vec) {
36 x = y = z = w = 0;
37 }
38
39 void ?{}(vec4(T)& vec, T val) with (vec) {
40 x = y = z = w = val;
41 }
42
43 void ?{}(vec4(T)& vec, vec4(T) other) with (vec) {
44 [x,y,z,w] = other.[x,y,z,w];
45 }
46
47 void ?=?(vec4(T)& vec, vec4(T) other) with (vec) {
48 [x,y,z,w] = other.[x,y,z,w];
49 }
50 forall(| zero_assign(T))
51 void ?=?(vec4(T)& vec, zero_t) with (vec) {
52 x = y = z = w = 0;
53 }
54
55 // Primitive mathematical operations
56
57 // -
58 forall(| subtract(T)) {
59 vec4(T) ?-?(vec4(T) u, vec4(T) v) {
60 return [u.x - v.x, u.y - v.y, u.z - v.z, u.w - v.w];
61 }
62 vec4(T)& ?-=?(vec4(T)& u, vec4(T) v) {
63 u = u - v;
64 return u;
65 }
66 }
67 forall(| negate(T)) {
68 vec4(T) -?(vec4(T) v) with (v) {
69 return [-x, -y, -z, -w];
70 }
71 }
72 forall(| { T --?(T&); }) {
73 vec4(T)& --?(vec4(T)& v) {
74 --v.x;
75 --v.y;
76 --v.z;
77 --v.w;
78 return v;
79 }
80 vec4(T) ?--(vec4(T)& v) {
81 vec4(T) copy = v;
82 --v;
83 return copy;
84 }
85 }
86
87 // +
88 forall(| add(T)) {
89 vec4(T) ?+?(vec4(T) u, vec4(T) v) {
90 return [u.x + v.x, u.y + v.y, u.z + v.z, u.w + v.w];
91 }
92 vec4(T)& ?+=?(vec4(T)& u, vec4(T) v) {
93 u = u + v;
94 return u;
95 }
96 }
97
98 forall(| { T ++?(T&); }) {
99 vec4(T)& ++?(vec4(T)& v) {
100 ++v.x;
101 ++v.y;
102 ++v.z;
103 ++v.w;
104 return v;
105 }
106 vec4(T) ?++(vec4(T)& v) {
107 vec4(T) copy = v;
108 ++v;
109 return copy;
110 }
111 }
112
113 // *
114 forall(| multiply(T)) {
115 vec4(T) ?*?(vec4(T) v, T scalar) with (v) {
116 return [x * scalar, y * scalar, z * scalar, w * scalar];
117 }
118 vec4(T) ?*?(T scalar, vec4(T) v) {
119 return v * scalar;
120 }
121 vec4(T) ?*?(vec4(T) u, vec4(T) v) {
122 return [u.x * v.x, u.y * v.y, u.z * v.z, u.w * v.w];
123 }
124 vec4(T)& ?*=?(vec4(T)& v, T scalar) {
125 v = v * scalar;
126 return v;
127 }
128 vec4(T)& ?*=?(vec4(T)& u, vec4(T) v) {
129 u = u * v;
130 return u;
131 }
132 }
133
134 // /
135 forall(| divide(T)) {
136 vec4(T) ?/?(vec4(T) v, T scalar) with (v) {
137 return [x / scalar, y / scalar, z / scalar, w / scalar];
138 }
139 vec4(T) ?/?(vec4(T) u, vec4(T) v) {
140 return [u.x / v.x, u.y / v.y, u.z / v.z, u.w / v.w];
141 }
142 vec4(T)& ?/=?(vec4(T)& v, T scalar) {
143 v = v / scalar;
144 return v;
145 }
146 vec4(T)& ?/=?(vec4(T)& u, vec4(T) v) {
147 u = u / v;
148 return u;
149 }
150 }
151
152 // %
153 forall(| { T ?%?(T,T); }) {
154 vec4(T) ?%?(vec4(T) v, T scalar) with (v) {
155 return [x % scalar, y % scalar, z % scalar, w % scalar];
156 }
157 vec4(T)& ?%=?(vec4(T)& u, T scalar) {
158 u = u % scalar;
159 return u;
160 }
161 vec4(T) ?%?(vec4(T) u, vec4(T) v) {
162 return [u.x % v.x, u.y % v.y, u.z % v.z, u.w % v.w];
163 }
164 vec4(T)& ?%=?(vec4(T)& u, vec4(T) v) {
165 u = u % v;
166 return u;
167 }
168 }
169
170 // &
171 forall(| { T ?&?(T,T); }) {
172 vec4(T) ?&?(vec4(T) v, T scalar) with (v) {
173 return [x & scalar, y & scalar, z & scalar, w & scalar];
174 }
175 vec4(T)& ?&=?(vec4(T)& u, T scalar) {
176 u = u & scalar;
177 return u;
178 }
179 vec4(T) ?&?(vec4(T) u, vec4(T) v) {
180 return [u.x & v.x, u.y & v.y, u.z & v.z, u.w & v.w];
181 }
182 vec4(T)& ?&=?(vec4(T)& u, vec4(T) v) {
183 u = u & v;
184 return u;
185 }
186 }
187
188 // |
189 forall(| { T ?|?(T,T); }) {
190 vec4(T) ?|?(vec4(T) v, T scalar) with (v) {
191 return [x | scalar, y | scalar, z | scalar, w | scalar];
192 }
193 vec4(T)& ?|=?(vec4(T)& u, T scalar) {
194 u = u | scalar;
195 return u;
196 }
197 vec4(T) ?|?(vec4(T) u, vec4(T) v) {
198 return [u.x | v.x, u.y | v.y, u.z | v.z, u.w | v.w];
199 }
200 vec4(T)& ?|=?(vec4(T)& u, vec4(T) v) {
201 u = u | v;
202 return u;
203 }
204 }
205
206 // ^
207 forall(| { T ?^?(T,T); }) {
208 vec4(T) ?^?(vec4(T) v, T scalar) with (v) {
209 return [x ^ scalar, y ^ scalar, z ^ scalar, w ^ scalar];
210 }
211 vec4(T)& ?^=?(vec4(T)& u, T scalar) {
212 u = u ^ scalar;
213 return u;
214 }
215 vec4(T) ?^?(vec4(T) u, vec4(T) v) {
216 return [u.x ^ v.x, u.y ^ v.y, u.z ^ v.z, u.w ^ v.w];
217 }
218 vec4(T)& ?^=?(vec4(T)& u, vec4(T) v) {
219 u = u ^ v;
220 return u;
221 }
222 }
223
224 // <<
225 forall(| { T ?<<?(T,T); }) {
226 vec4(T) ?<<?(vec4(T) v, T scalar) with (v) {
227 return [x << scalar, y << scalar, z << scalar, w << scalar];
228 }
229 vec4(T)& ?<<=?(vec4(T)& u, T scalar) {
230 u = u << scalar;
231 return u;
232 }
233 vec4(T) ?<<?(vec4(T) u, vec4(T) v) {
234 return [u.x << v.x, u.y << v.y, u.z << v.z, u.w << v.w];
235 }
236 vec4(T)& ?<<=?(vec4(T)& u, vec4(T) v) {
237 u = u << v;
238 return u;
239 }
240 }
241
242 // >>
243 forall(| { T ?>>?(T,T); }) {
244 vec4(T) ?>>?(vec4(T) v, T scalar) with (v) {
245 return [x >> scalar, y >> scalar, z >> scalar, w >> scalar];
246 }
247 vec4(T)& ?>>=?(vec4(T)& u, T scalar) {
248 u = u >> scalar;
249 return u;
250 }
251 vec4(T) ?>>?(vec4(T) u, vec4(T) v) {
252 return [u.x >> v.x, u.y >> v.y, u.z >> v.z, u.w >> v.w];
253 }
254 vec4(T)& ?>>=?(vec4(T)& u, vec4(T) v) {
255 u = u >> v;
256 return u;
257 }
258 }
259
260 // ~
261 forall(| { T ~?(T); })
262 vec4(T) ~?(vec4(T) v) with (v) {
263 return [~x, ~y, ~z, ~w];
264 }
265
266 // relational
267 forall(| equality(T)) {
268 bool ?==?(vec4(T) u, vec4(T) v) with (u) {
269 return x == v.x && y == v.y && z == v.z && w == v.w;
270 }
271 bool ?!=?(vec4(T) u, vec4(T) v) {
272 return !(u == v);
273 }
274 }
275
276 // Geometric functions
277 forall(| add(T) | multiply(T))
278 T dot(vec4(T) u, vec4(T) v) {
279 return u.x * v.x + u.y * v.y + u.z * v.z + u.w * v.w;
280 }
281
282 } // static inline
283}
284
285forall(ostype &, T | writeable(T, ostype)) {
286 ostype & ?|?(ostype & os, vec4(T) v) with (v) {
287 return os | '<' | x | ',' | y | ',' | z | ',' | w | '>';
288 }
289 OSTYPE_VOID_IMPL( vec4(T) )
290}
291
Note: See TracBrowser for help on using the repository browser.