source: libcfa/src/vec/vec3.hfa@ aefb247

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since aefb247 was 250dbae, checked in by Dmitry Kobets <dkobets@…>, 6 years ago

Refactor vector library classes

  • Property mode set to 100644
File size: 6.2 KB
Line 
1#pragma once
2
3#include <iostream.hfa>
4#include "vec.hfa"
5
6forall (otype T) {
7 struct vec3 {
8 T x, y, z;
9 };
10}
11
12forall (otype T) {
13 static inline {
14
15 void ?{}(vec3(T)& v, T x, T y, T z) {
16 v.[x, y, z] = [x, y, z];
17 }
18
19 forall(| zero_assign(T))
20 void ?{}(vec3(T)& vec, zero_t) with (vec) {
21 x = y = z = 0;
22 }
23
24 void ?{}(vec3(T)& vec, T val) with (vec) {
25 x = y = z = val;
26 }
27
28 void ?{}(vec3(T)& vec, vec3(T) other) with (vec) {
29 [x,y,z] = other.[x,y,z];
30 }
31
32 void ?=?(vec3(T)& vec, vec3(T) other) with (vec) {
33 [x,y,z] = other.[x,y,z];
34 }
35 forall(| zero_assign(T))
36 void ?=?(vec3(T)& vec, zero_t) with (vec) {
37 x = y = z = 0;
38 }
39
40 // Primitive mathematical operations
41
42 // -
43 forall(| subtract(T)) {
44 vec3(T) ?-?(vec3(T) u, vec3(T) v) {
45 return [u.x - v.x, u.y - v.y, u.z - v.z];
46 }
47 vec3(T)& ?-=?(vec3(T)& u, vec3(T) v) {
48 u = u - v;
49 return u;
50 }
51 }
52 forall(| negate(T)) {
53 vec3(T) -?(vec3(T) v) with (v) {
54 return [-x, -y, -z];
55 }
56 }
57 forall(| { T --?(T&); }) {
58 vec3(T)& --?(vec3(T)& v) {
59 --v.x;
60 --v.y;
61 --v.z;
62 return v;
63 }
64 vec3(T) ?--(vec3(T)& v) {
65 vec3(T) copy = v;
66 --v;
67 return copy;
68 }
69 }
70
71 // +
72 forall(| add(T)) {
73 vec3(T) ?+?(vec3(T) u, vec3(T) v) {
74 return [u.x + v.x, u.y + v.y, u.z + v.z];
75 }
76 vec3(T)& ?+=?(vec3(T)& u, vec3(T) v) {
77 u = u + v;
78 return u;
79 }
80 }
81
82 forall(| { T ++?(T&); }) {
83 vec3(T)& ++?(vec3(T)& v) {
84 ++v.x;
85 ++v.y;
86 ++v.z;
87 return v;
88 }
89 vec3(T) ?++(vec3(T)& v) {
90 vec3(T) copy = v;
91 ++v;
92 return copy;
93 }
94 }
95
96 // *
97 forall(| multiply(T)) {
98 vec3(T) ?*?(vec3(T) v, T scalar) with (v) {
99 return [x * scalar, y * scalar, z * scalar];
100 }
101 vec3(T) ?*?(T scalar, vec3(T) v) {
102 return v * scalar;
103 }
104 vec3(T) ?*?(vec3(T) u, vec3(T) v) {
105 return [u.x * v.x, u.y * v.y, u.z * v.z];
106 }
107 vec3(T)& ?*=?(vec3(T)& v, T scalar) {
108 v = v * scalar;
109 return v;
110 }
111 vec3(T)& ?*=?(vec3(T)& u, vec3(T) v) {
112 u = u * v;
113 return u;
114 }
115 }
116
117 // /
118 forall(| divide(T)) {
119 vec3(T) ?/?(vec3(T) v, T scalar) with (v) {
120 return [x / scalar, y / scalar, z / scalar];
121 }
122 vec3(T) ?/?(vec3(T) u, vec3(T) v) {
123 return [u.x / v.x, u.y / v.y, u.z / v.z];
124 }
125 vec3(T)& ?/=?(vec3(T)& v, T scalar) {
126 v = v / scalar;
127 return v;
128 }
129 vec3(T)& ?/=?(vec3(T)& u, vec3(T) v) {
130 u = u / v;
131 return u;
132 }
133 }
134
135 // %
136 forall(| { T ?%?(T,T); }) {
137 vec3(T) ?%?(vec3(T) v, T scalar) with (v) {
138 return [x % scalar, y % scalar, z % scalar];
139 }
140 vec3(T)& ?%=?(vec3(T)& u, T scalar) {
141 u = u % scalar;
142 return u;
143 }
144 vec3(T) ?%?(vec3(T) u, vec3(T) v) {
145 return [u.x % v.x, u.y % v.y, u.z % v.z];
146 }
147 vec3(T)& ?%=?(vec3(T)& u, vec3(T) v) {
148 u = u % v;
149 return u;
150 }
151 }
152
153 // &
154 forall(| { T ?&?(T,T); }) {
155 vec3(T) ?&?(vec3(T) v, T scalar) with (v) {
156 return [x & scalar, y & scalar, z & scalar];
157 }
158 vec3(T)& ?&=?(vec3(T)& u, T scalar) {
159 u = u & scalar;
160 return u;
161 }
162 vec3(T) ?&?(vec3(T) u, vec3(T) v) {
163 return [u.x & v.x, u.y & v.y, u.z & v.z];
164 }
165 vec3(T)& ?&=?(vec3(T)& u, vec3(T) v) {
166 u = u & v;
167 return u;
168 }
169 }
170
171 // |
172 forall(| { T ?|?(T,T); }) {
173 vec3(T) ?|?(vec3(T) v, T scalar) with (v) {
174 return [x | scalar, y | scalar, z | scalar];
175 }
176 vec3(T)& ?|=?(vec3(T)& u, T scalar) {
177 u = u | scalar;
178 return u;
179 }
180 vec3(T) ?|?(vec3(T) u, vec3(T) v) {
181 return [u.x | v.x, u.y | v.y, u.z | v.z];
182 }
183 vec3(T)& ?|=?(vec3(T)& u, vec3(T) v) {
184 u = u | v;
185 return u;
186 }
187 }
188
189 // ^
190 forall(| { T ?^?(T,T); }) {
191 vec3(T) ?^?(vec3(T) v, T scalar) with (v) {
192 return [x ^ scalar, y ^ scalar, z ^ scalar];
193 }
194 vec3(T)& ?^=?(vec3(T)& u, T scalar) {
195 u = u ^ scalar;
196 return u;
197 }
198 vec3(T) ?^?(vec3(T) u, vec3(T) v) {
199 return [u.x ^ v.x, u.y ^ v.y, u.z ^ v.z];
200 }
201 vec3(T)& ?^=?(vec3(T)& u, vec3(T) v) {
202 u = u ^ v;
203 return u;
204 }
205 }
206
207 // <<
208 forall(| { T ?<<?(T,T); }) {
209 vec3(T) ?<<?(vec3(T) v, T scalar) with (v) {
210 return [x << scalar, y << scalar, z << scalar];
211 }
212 vec3(T)& ?<<=?(vec3(T)& u, T scalar) {
213 u = u << scalar;
214 return u;
215 }
216 vec3(T) ?<<?(vec3(T) u, vec3(T) v) {
217 return [u.x << v.x, u.y << v.y, u.z << v.z];
218 }
219 vec3(T)& ?<<=?(vec3(T)& u, vec3(T) v) {
220 u = u << v;
221 return u;
222 }
223 }
224
225 // >>
226 forall(| { T ?>>?(T,T); }) {
227 vec3(T) ?>>?(vec3(T) v, T scalar) with (v) {
228 return [x >> scalar, y >> scalar, z >> scalar];
229 }
230 vec3(T)& ?>>=?(vec3(T)& u, T scalar) {
231 u = u >> scalar;
232 return u;
233 }
234 vec3(T) ?>>?(vec3(T) u, vec3(T) v) {
235 return [u.x >> v.x, u.y >> v.y, u.z >> v.z];
236 }
237 vec3(T)& ?>>=?(vec3(T)& u, vec3(T) v) {
238 u = u >> v;
239 return u;
240 }
241 }
242
243 // ~
244 forall(| { T ~?(T); })
245 vec3(T) ~?(vec3(T) v) with (v) {
246 return [~v.x, ~v.y, ~v.z];
247 }
248
249 // relational
250 forall(| equality(T)) {
251 bool ?==?(vec3(T) u, vec3(T) v) with (u) {
252 return x == v.x && y == v.y && z == v.z;
253 }
254 bool ?!=?(vec3(T) u, vec3(T) v) {
255 return !(u == v);
256 }
257 }
258
259 // Geometric functions
260 forall(| add(T) | multiply(T))
261 T dot(vec3(T) u, vec3(T) v) {
262 return u.x * v.x + u.y * v.y + u.z * v.z;
263 }
264
265 forall(| subtract(T) | multiply(T))
266 vec3(T) cross(vec3(T) u, vec3(T) v) {
267 return (vec3(T)){ u.y * v.z - v.y * u.z,
268 u.z * v.x - v.z * u.x,
269 u.x * v.y - v.x * u.y };
270 }
271
272 } // static inline
273}
274
275forall(dtype ostype, otype T | writeable(T, ostype)) {
276 ostype & ?|?(ostype & os, vec3(T) v) with (v) {
277 return os | '<' | x | ',' | y | ',' | z | '>';
278 }
279 void ?|?(ostype & os, vec3(T) v ) with (v) {
280 (ostype &)(os | v); ends(os);
281 }
282}
Note: See TracBrowser for help on using the repository browser.