source: libcfa/src/vec/vec3.hfa@ 3f0b062

Last change on this file since 3f0b062 was 5454d77, checked in by Peter A. Buhr <pabuhr@…>, 2 years ago

update types to use new void-creation stream macros

  • Property mode set to 100644
File size: 6.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2021 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io/types.hfa --
8//
9// Author : Dimitry Kobets
10// Created On :
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#pragma once
17
18#include <iostream.hfa>
19#include "vec.hfa"
20
21forall (T) {
22 struct vec3 {
23 T x, y, z;
24 };
25}
26
27forall (T) {
28 static inline {
29
30 void ?{}(vec3(T)& v, T x, T y, T z) {
31 v.[x, y, z] = [x, y, z];
32 }
33
34 forall(| zero_assign(T))
35 void ?{}(vec3(T)& vec, zero_t) with (vec) {
36 x = y = z = 0;
37 }
38
39 void ?{}(vec3(T)& vec, T val) with (vec) {
40 x = y = z = val;
41 }
42
43 void ?{}(vec3(T)& vec, vec3(T) other) with (vec) {
44 [x,y,z] = other.[x,y,z];
45 }
46
47 void ?=?(vec3(T)& vec, vec3(T) other) with (vec) {
48 [x,y,z] = other.[x,y,z];
49 }
50 forall(| zero_assign(T))
51 void ?=?(vec3(T)& vec, zero_t) with (vec) {
52 x = y = z = 0;
53 }
54
55 // Primitive mathematical operations
56
57 // -
58 forall(| subtract(T)) {
59 vec3(T) ?-?(vec3(T) u, vec3(T) v) {
60 return [u.x - v.x, u.y - v.y, u.z - v.z];
61 }
62 vec3(T)& ?-=?(vec3(T)& u, vec3(T) v) {
63 u = u - v;
64 return u;
65 }
66 }
67 forall(| negate(T)) {
68 vec3(T) -?(vec3(T) v) with (v) {
69 return [-x, -y, -z];
70 }
71 }
72 forall(| { T --?(T&); }) {
73 vec3(T)& --?(vec3(T)& v) {
74 --v.x;
75 --v.y;
76 --v.z;
77 return v;
78 }
79 vec3(T) ?--(vec3(T)& v) {
80 vec3(T) copy = v;
81 --v;
82 return copy;
83 }
84 }
85
86 // +
87 forall(| add(T)) {
88 vec3(T) ?+?(vec3(T) u, vec3(T) v) {
89 return [u.x + v.x, u.y + v.y, u.z + v.z];
90 }
91 vec3(T)& ?+=?(vec3(T)& u, vec3(T) v) {
92 u = u + v;
93 return u;
94 }
95 }
96
97 forall(| { T ++?(T&); }) {
98 vec3(T)& ++?(vec3(T)& v) {
99 ++v.x;
100 ++v.y;
101 ++v.z;
102 return v;
103 }
104 vec3(T) ?++(vec3(T)& v) {
105 vec3(T) copy = v;
106 ++v;
107 return copy;
108 }
109 }
110
111 // *
112 forall(| multiply(T)) {
113 vec3(T) ?*?(vec3(T) v, T scalar) with (v) {
114 return [x * scalar, y * scalar, z * scalar];
115 }
116 vec3(T) ?*?(T scalar, vec3(T) v) {
117 return v * scalar;
118 }
119 vec3(T) ?*?(vec3(T) u, vec3(T) v) {
120 return [u.x * v.x, u.y * v.y, u.z * v.z];
121 }
122 vec3(T)& ?*=?(vec3(T)& v, T scalar) {
123 v = v * scalar;
124 return v;
125 }
126 vec3(T)& ?*=?(vec3(T)& u, vec3(T) v) {
127 u = u * v;
128 return u;
129 }
130 }
131
132 // /
133 forall(| divide(T)) {
134 vec3(T) ?/?(vec3(T) v, T scalar) with (v) {
135 return [x / scalar, y / scalar, z / scalar];
136 }
137 vec3(T) ?/?(vec3(T) u, vec3(T) v) {
138 return [u.x / v.x, u.y / v.y, u.z / v.z];
139 }
140 vec3(T)& ?/=?(vec3(T)& v, T scalar) {
141 v = v / scalar;
142 return v;
143 }
144 vec3(T)& ?/=?(vec3(T)& u, vec3(T) v) {
145 u = u / v;
146 return u;
147 }
148 }
149
150 // %
151 forall(| { T ?%?(T,T); }) {
152 vec3(T) ?%?(vec3(T) v, T scalar) with (v) {
153 return [x % scalar, y % scalar, z % scalar];
154 }
155 vec3(T)& ?%=?(vec3(T)& u, T scalar) {
156 u = u % scalar;
157 return u;
158 }
159 vec3(T) ?%?(vec3(T) u, vec3(T) v) {
160 return [u.x % v.x, u.y % v.y, u.z % v.z];
161 }
162 vec3(T)& ?%=?(vec3(T)& u, vec3(T) v) {
163 u = u % v;
164 return u;
165 }
166 }
167
168 // &
169 forall(| { T ?&?(T,T); }) {
170 vec3(T) ?&?(vec3(T) v, T scalar) with (v) {
171 return [x & scalar, y & scalar, z & scalar];
172 }
173 vec3(T)& ?&=?(vec3(T)& u, T scalar) {
174 u = u & scalar;
175 return u;
176 }
177 vec3(T) ?&?(vec3(T) u, vec3(T) v) {
178 return [u.x & v.x, u.y & v.y, u.z & v.z];
179 }
180 vec3(T)& ?&=?(vec3(T)& u, vec3(T) v) {
181 u = u & v;
182 return u;
183 }
184 }
185
186 // |
187 forall(| { T ?|?(T,T); }) {
188 vec3(T) ?|?(vec3(T) v, T scalar) with (v) {
189 return [x | scalar, y | scalar, z | scalar];
190 }
191 vec3(T)& ?|=?(vec3(T)& u, T scalar) {
192 u = u | scalar;
193 return u;
194 }
195 vec3(T) ?|?(vec3(T) u, vec3(T) v) {
196 return [u.x | v.x, u.y | v.y, u.z | v.z];
197 }
198 vec3(T)& ?|=?(vec3(T)& u, vec3(T) v) {
199 u = u | v;
200 return u;
201 }
202 }
203
204 // ^
205 forall(| { T ?^?(T,T); }) {
206 vec3(T) ?^?(vec3(T) v, T scalar) with (v) {
207 return [x ^ scalar, y ^ scalar, z ^ scalar];
208 }
209 vec3(T)& ?^=?(vec3(T)& u, T scalar) {
210 u = u ^ scalar;
211 return u;
212 }
213 vec3(T) ?^?(vec3(T) u, vec3(T) v) {
214 return [u.x ^ v.x, u.y ^ v.y, u.z ^ v.z];
215 }
216 vec3(T)& ?^=?(vec3(T)& u, vec3(T) v) {
217 u = u ^ v;
218 return u;
219 }
220 }
221
222 // <<
223 forall(| { T ?<<?(T,T); }) {
224 vec3(T) ?<<?(vec3(T) v, T scalar) with (v) {
225 return [x << scalar, y << scalar, z << scalar];
226 }
227 vec3(T)& ?<<=?(vec3(T)& u, T scalar) {
228 u = u << scalar;
229 return u;
230 }
231 vec3(T) ?<<?(vec3(T) u, vec3(T) v) {
232 return [u.x << v.x, u.y << v.y, u.z << v.z];
233 }
234 vec3(T)& ?<<=?(vec3(T)& u, vec3(T) v) {
235 u = u << v;
236 return u;
237 }
238 }
239
240 // >>
241 forall(| { T ?>>?(T,T); }) {
242 vec3(T) ?>>?(vec3(T) v, T scalar) with (v) {
243 return [x >> scalar, y >> scalar, z >> scalar];
244 }
245 vec3(T)& ?>>=?(vec3(T)& u, T scalar) {
246 u = u >> scalar;
247 return u;
248 }
249 vec3(T) ?>>?(vec3(T) u, vec3(T) v) {
250 return [u.x >> v.x, u.y >> v.y, u.z >> v.z];
251 }
252 vec3(T)& ?>>=?(vec3(T)& u, vec3(T) v) {
253 u = u >> v;
254 return u;
255 }
256 }
257
258 // ~
259 forall(| { T ~?(T); })
260 vec3(T) ~?(vec3(T) v) with (v) {
261 return [~v.x, ~v.y, ~v.z];
262 }
263
264 // relational
265 forall(| equality(T)) {
266 bool ?==?(vec3(T) u, vec3(T) v) with (u) {
267 return x == v.x && y == v.y && z == v.z;
268 }
269 bool ?!=?(vec3(T) u, vec3(T) v) {
270 return !(u == v);
271 }
272 }
273
274 // Geometric functions
275 forall(| add(T) | multiply(T))
276 T dot(vec3(T) u, vec3(T) v) {
277 return u.x * v.x + u.y * v.y + u.z * v.z;
278 }
279
280 forall(| subtract(T) | multiply(T))
281 vec3(T) cross(vec3(T) u, vec3(T) v) {
282 return (vec3(T)){ u.y * v.z - v.y * u.z,
283 u.z * v.x - v.z * u.x,
284 u.x * v.y - v.x * u.y };
285 }
286
287 } // static inline
288}
289
290forall(ostype &, T | writeable(T, ostype)) {
291 ostype & ?|?(ostype & os, vec3(T) v) with (v) {
292 return os | '<' | x | ',' | y | ',' | z | '>';
293 }
294 OSTYPE_VOID_IMPL( vec3(T) )
295}
Note: See TracBrowser for help on using the repository browser.